NOTES ON HOMEWORK 1

Problem A. We introduce the lexicographic order on $\mathbb{Z} \times \mathbb{Z}$. We say

$$
\left(p_{1}, q_{1}\right) \leq\left(p_{2}, q_{2}\right) \quad \text { if either }
$$

$$
\left(p_{1}<p_{2}\right) \quad \text { or } \quad\left(p_{1}=p_{2} \quad \text { and } \quad q_{1} \leq q_{2}\right)
$$

Here \leq means less or equal and $<$ means strictly less, in the usual sense.
(i) Show that the lexicographic relation is indeed an order relation.
(ii) Show that any two pairs can be compared, i.e. we can determine which is less than the other. We then say that the set $\mathbb{Z} \times \mathbb{Z}$ is totally ordered.
(iii) Sketch how to generalize this relation for $\mathbb{Z}^{k}, k \geq 2$? What if the product is over infinitely many copies of \mathbb{Z} (infinite words)?

Problem B. We introduce the coordinatewise order on $\mathbb{Z} \times \mathbb{Z}$. We say

$$
\begin{gathered}
\left(p_{1}, q_{1}\right) \leq\left(p_{2}, q_{2}\right) \quad \text { if } \\
\left(p_{1} \leq p_{2}\right) \quad \text { and } \quad\left(q_{1}=q_{2}\right) .
\end{gathered}
$$

(i) Show that this relation is indeed an order relation.
(ii) Show that NOT any two pairs can be compared. We say that the set $\mathbb{Z} \times \mathbb{Z}$ is partially ordered.

