Homework 1

August 26, 2015

De Morgan Law

$$(B\cup C)^c=B^c\cap C^c$$

Proof: $x \in (B \cup C)^c \Leftrightarrow x \notin B \cup C \neg (x \in B \cup C) \Leftrightarrow \neg (x \in B \lor x \in C) \Leftrightarrow$ $\neg (x \in B) \land \neg (x \in C) \Leftrightarrow (x \notin B) \land (x \notin C) \Leftrightarrow (x \in B^c) \land (x \in C^c) \Leftrightarrow$

Ex 4.

 $\begin{aligned} A \setminus (B \cup C) &= A \cap (B \cup C)^c \\ &= A \cap (B^c \cap C^c) \text{ [De Morgan]} \\ &= (A \cap B^c) \cup (A \cap C^c) \text{ [Distributivity]} \\ &= (A \setminus B) \cup (A \setminus C) \text{ [Definition of set difference]} \end{aligned}$

Image of sets in relation to set operations

(i) $f(E \cup F) = f(E) \cup f(F)$ Always true

(ii) $f(E \cap F) \subseteq f(E) \cap f(F)$ The other inclusion is false by Ex 12. Find another simple example. *It is true when f injective.*

Preimage of sets in relation to set operations

(i)
$$f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$$

(ii) $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$

True even when *f* is neither injective, nor surjective. Here f^{-1} denotes the preimage and does not assume the existence of a proper inverse function.

Divisibility by prime numbers

u | v means u divides vp, q are prime

p|a and q|a then pq|a

17. We prove that m = 6. $n^3 - n = (n - 1)n(n + 1)$ the product of three consecutive numbers.

Take $m \ge 7$ and n = m - 2 then (m-3)(m-2)(m-1) = Multiple(m) - 6 so it must be that m|6, which is impossible.

Prove that 2 and 3 divide (n - 1)n(n + 1) for any *n*. Then use the result above. Hint: case by case modulo 2, respectively modulo 3.

Section 1.3. Number of functions between two finite sets

$$|S| = n$$
 and $|T| = m$

All functions

mⁿ

Injective functions

 $\binom{m}{n}$ $n! = \frac{m!}{(m-n)!}$ if $n \le m$ [Arrangements or permutations of *m* objects taken *n* at a time]

n! if n = m[Permutations of *n* objects]

0 if n > m[Pigeonhole principle]

(日) (四) (日) (日) (日) (日)

Surjective functions

0 if *n* < *m*

S(n,m) if $n \ge m$ where $S(n,m) = m^n - \sum_{l=1}^{m-1} {m \choose l} S(n,l)$

Explanation: We subtract out of the total number of functions the number of functions with image having *I* elements, $1 \le I \le m - 1$.

イロト イ押ト イヨト イヨトー

Section 1.3

3. Injective: Equals the number of permutations of 3 objects taken 2 at a time, also known as arrangements, equal to $\binom{3}{2} 2! = 3 \cdot 2 = 6$ Surjective: There are 2^3 function in total from *T* to *S*. Not all are surjective. Those that are not must have image exactly one element of *S* (there must be at least one). These are only two, constant functions. So the answer is $2^3 - 2 = 6$.

6. f(n) = n + 1

9. Suppose *S*, *T* are denumerable and disjoint. We can reduce the problem to this case or the simpler case when *S* is denumerable and *T* is finite. Let $s : \mathbb{N} \to S$, $t : \mathbb{N} \to T$ be the bijections showing the sets are denumerable. Then define $f(n) = s(\frac{n}{2})$ when *n* is even $f(n) = t(\frac{n+1}{2})$ when *n* is odd. This function is bijective. Prove.

12. Show that there exists a bijection between the subsets of \mathbb{N}_{n+1} containing n+1 and the subsets of \mathbb{N}_n .

13. A finite subset of \mathbb{N} has a maximal element, say *m*. Then the subset is contained in $A_m = \mathcal{P}(\mathbb{N}_m)$.

Now $A_m \subseteq A_{m+1}$ and all are finite sets. Denote $B_m = A_{m+1} \setminus A_m$, taking $A_0 = \emptyset$. Then we have $\mathcal{F}(\mathbb{N}) \subseteq \bigcup_{m=1}^{\infty} B_m$. The countable union of disjoint finite sets is

countable.

Remark. Since $\{n\}$ is a subset of \mathbb{N} for sure $\aleph_0 \leq |\mathbb{N}| \leq |\mathcal{F}(\mathbb{N})| \leq |\mathbb{P}(\mathbb{N})| = 2^{\aleph_0}$. The last inequality is strict due to Cantor's Theorem (Thm 1.3.13), see next.

Bijection between subsets and indicator functions

For any $A \subset S$ define a function from S to $\{0,1\}$ (binary) called *the indicator function of A*)

 $\chi_A(s) = 1$ if $s \in A$ and $\chi_A(s) = 0$ if $x \notin A$.

Let χ be the set of all such functions. Then $|\chi| = 2^n$ if |S| = n. The function that takes *A* into χ_A is a bijection between $\mathbb{P}(S)$ and χ .

We have $|\mathcal{P}(S)| = 2^{|S|}$ for any set *S*, including infinite. Cantor's theorem says that $|S| \leq 2^{|S|}$.

Cardinality of the real numbers c, the Continuum

 $|\mathbb{N}| \leq |\mathbf{2}^{|\mathbb{N}|}| = \mathbf{c} = |\mathbb{R}|$

The set of all sequences of 0 and 1 is not countable and has the same cardinal number as the real numbers. This corresponds to the binary form of a real number in (0, 1), which is in bijection with \mathbb{R} - see Ex 1.1.16.