Homework 1

August 26, 2015

De Morgan Law

$$
(B \cup C)^{c}=B^{c} \cap C^{c}
$$

Proof:
$x \in(B \cup C)^{c} \Leftrightarrow x \notin B \cup C \neg(x \in B \cup C) \Leftrightarrow \neg(x \in B \vee x \in C) \Leftrightarrow$ $\neg(x \in B) \wedge \neg(x \in C) \Leftrightarrow(x \notin B) \wedge(x \notin C) \Leftrightarrow\left(x \in B^{c}\right) \wedge(x \in$ $\left.C^{C}\right) \Leftrightarrow x \in B^{C} \cap C^{C}$

Ex 4.
$A \backslash(B \cup C)=A \cap(B \cup C)^{c}$
$=A \cap\left(B^{C} \cap C^{C}\right)$ [De Morgan]
$=\left(A \cap B^{C}\right) \cup\left(A \cap C^{C}\right)$ [Distributivity]
$=(A \backslash B) \cup(A \backslash C)$ [Definition of set difference]

Section 1.1

Image of sets in relation to set operations

(i) $f(E \cup F)=f(E) \cup f(F)$ Always true
(ii) $f(E \cap F) \subseteq f(E) \cap f(F)$ The other inclusion is false by Ex 12 . Find another simple example. It is true when f injective.

Preimage of sets in relation to set operations
(i) $f^{-1}(G \cup H)=f^{-1}(G) \cup f^{-1}(H)$
(ii) $f^{-1}(G \cap H)=f^{-1}(G) \cap f^{-1}(H)$

True even when f is neither injective, nor surjective. Here f^{-1} denotes the preimage and does not assume the existence of a proper inverse function.

Section 1.2

Divisibility by prime numbers

$u \mid v$ means u divides v
p, q are prime
$p \mid a$ and $q \mid a$ then $p q \mid a$
17. We prove that $m=6$. $n^{3}-n=(n-1) n(n+1)$ the product of three consecutive numbers.
Take $m \geq 7$ and $n=m-2$ then $(m-3)(m-2)(m-1)=$ Multiple $(m)-6$ so it must be that $m \mid 6$, which is impossible.
Prove that 2 and 3 divide $(n-1) n(n+1)$ for any n. Then use the result above. Hint: case by case modulo 2, respectively modulo 3.

Section 1.3. Number of functions between two finite

 sets$|S|=n$ and $|T|=m$
All functions m^{n}

Injective functions
$\binom{m}{n} n!=\frac{m!}{(m-n)!}$ if $n \leq m$
[Arrangements or permutations of m objects taken n at a time]
$n!$ if $n=m$
[Permutations of n objects]
0 if $n>m$
[Pigeonhole principle]

Section 1.3

Surjective functions

0 if $n<m$
$S(n, m)$ if $n \geq m$ where
$S(n, m)=m^{n}-\sum_{l=1}^{m-1}\binom{m}{l} S(n, l)$
Explanation: We subtract out of the total number of functions the number of functions with image having / elements, $1 \leq I \leq m-1$.

Section 1.3

3. Injective: Equals the number of permutations of 3 objects taken 2 at a time, also known as arrangements, equal to $\binom{3}{2} 2!=3 \cdot 2=6$
Surjective: There are 2^{3} function in total from T to S. Not all are surjective. Those that are not must have image exactly one element of S (there must be at least one). These are only two, constant functions. So the answer is $2^{3}-2=6$.
4. $f(n)=n+1$
5. Suppose S, T are denumerable and disjoint. We can reduce the problem to this case or the simpler case when S is denumerable and T is finite. Let $s: \mathbb{N} \rightarrow S, t: \mathbb{N} \rightarrow T$ be the bijections showing the sets are denumerable. Then define $f(n)=s\left(\frac{n}{2}\right)$ when n is even
$f(n)=t\left(\frac{n+1}{2}\right)$ when n is odd.
This function is bijective. Prove.

Section 1.3

12. Show that there exists a bijection between the subsets of \mathbb{N}_{n+1} containing $n+1$ and the subsets of \mathbb{N}_{n}.
13. A finite subset of \mathbb{N} has a maximal element, say m. Then the subset is contained in $A_{m}=\mathcal{P}\left(\mathbb{N}_{m}\right)$.
Now $A_{m} \subseteq A_{m+1}$ and all are finite sets. Denote
$B_{m}=A_{m+1} \backslash A_{m}$, taking $A_{0}=\emptyset$. Then we have $\mathcal{F}(\mathbb{N}) \subseteq \cup_{m=1}^{\infty} B_{m}$. The countable union of disjoint finite sets is countable.
Remark. Since $\{n\}$ is a subset of \mathbb{N} for sure $\aleph_{0} \leq|\mathbb{N}| \leq|\mathcal{F}(\mathbb{N})| \leq|\mathbb{P}(\mathbb{N})|=2^{\aleph_{0}}$. The last inequality is strict due to Cantor's Theorem (Thm 1.3.13), see next.

Section 1.3

Bjection between subsets and indicator functions

For any $A \subset S$ define a function from S to $\{0,1\}$ (binary) called the indicator function of A)
$\chi_{A}(s)=1$ if $s \in A$ and $\chi_{A}(s)=0$ if $x \notin A$.
Let χ be the set of all such functions. Then $|\chi|=2^{n}$ if $|S|=n$. The function that takes A into χ_{A} is a bijection between $\mathbb{P}(S)$ and χ.
We have $|\mathcal{P}(S)|=2^{|S|}$ for any set S, including infinite. Cantor's theorem says that $|S| \lesseqgtr 2^{|S|}$.

Cardinality of the real numbers \mathbf{c}, the Continuum

$|\mathbb{N}| \lesseqgtr\left|2^{|\mathbb{N}|}\right|=\mathbf{c}=|\mathbb{R}|$
The set of all sequences of 0 and 1 is not countable and has the same cardinal number as the real numbers. This corresponds to the binary form of a real number in $(0,1)$, which is in bijection with \mathbb{R} - see Ex 1.1.16.

