
HOMEWORK 3 - SOLUTIONS

2. Use q = b 133 c = 4, then 13 = 4 · 3 + 1, 0 ≤ 1 < 3.

8. 17 = (−3)(−5) + 2 q = −3, r = 2.

16. Answer: 211. 19201 = 5 · 3587 + 1266, 3587 = 2 · 1266 + 1055, 1266 =
1 · 1055 + 211, 1055 = 5 · 211 + 0 the gcd=211.

18. For 10! and 310 we use the prime factor method. The gcd will contain only
the prime 3 because the second number has no other factor than 3.

10! = (1)(2)(3)(22)(5)(2 · 3)(7)(23)(32)(2 · 5) = (27)(34)(52)(7) answer 34 = 81.

22. a(−5) + b(2) = 1, a = 5, b = 13.

27. We shall use the fact that
If d divides a and b and there exist x, y such that d = ax+by, then d = gcd(a, b).
⇒
ax1 + cy1 = 1, bx2 + cy2 = 1 for some x1, x2, y1, y2. Then we multiply

1 = (ax1 + cy1)(bx2 + cy2) = ab(x1x2) + c(ax1y2 + bx2y1 + cy1y2)

and choose x = x1x2 and y = ax1y2 + bx2y1 + cy1y2.
⇐
abx′ + cy′ = 1 then take x = bx, y = y′ for gcd(a, c) = 1 and x = ax, y = y′ for

gcd(b, c) = 1.

34. 11x + 15y = 31 since gcd(11, 15) = 1 the equation has infinitely many
solutions.

We obtain 11(3) + (−2)(15) = 1 and thus

(x0, y0) = 31(3,−2) = (93, 62)

(multiply by 31).
The solutions are

(93 + 15n,−62− 11n) , n ∈ Z

44. Find a non-negative solution of 12x + 57y = 423. Since 12 = 22 · 3 and
57 = 3 · 19 then gcd(12, 57) = 3. The number 423 = 3 · 141 which implies that the
equation has solutions.

Divide by 3. The equation becomes
4x+ 19y = 141. Notice that 4(5) + 19(−1) = 1 we have
(x0, y0) = 141(5,−1) = (705,−141) and the general solution
(x, y) = (705 + 19n,−141 − 4n). To determine the positive solutions solve the

inequalities:
705 + 19n ≥ 0 or n ≥ −70519 = −37.1 finally n ≥ −37

−141− 4n ≥ 0 or n ≤ −1414 = −35.25 finally n ≤ −36
we have n = −36,−37 the only solutions

(21, 3), (2, 7)
1
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58. Express 433 in base 5. Answer 433 = (3253)5

71.
5280 = 528 · 10 = 132 · 4 · 10 = 3 · 11 · 25 · 5 = 253151111

57800 = 289 · 2 · 22 · 52 = 2352172

because 289 = 172. Try to divide 289 by 2, 3, ..., 13, 17.
Common prime factors: 2 and 5. The gcd = 2351 = 40.

76. Only when a, b have opposite signs and gcd(a, b)|c. You have to show the
details.

82. Let n be the original number. n = 4n1 + 1, where n1 is how much the first
man puts aside for himself. n − n1 = 4n2 + 1, which also implies that 3n1 = 4n2.
Continuing we get 4ni = 3ni−1 for i = 2, 3, 4, 5. This implies 34n1 = 44n5 and
44|n1. The minimum number satisfying this condition is n1 = 44. This shows that
the minimum n is n = 4 · 44 + 1 = 1025.

92. a) The primes p ∈ 2Z are even numbers, since all elements of 2Z are even
numbers. We notice that all numbers of the form p = 2m, m odd, are prime. If
they could be written as p = p1p2 with p1, p2 prime, then p1 should contain the
factor 2, as well as p2. In this case, p would be divisible by 4, which is impossible
since 2m does not contain a factor of 4.

We now show that there are no other prime numbers. Let p prime and let
p = 2αm, where m is odd. If α ≥ 2, then p = 2α−1 · 2m and both 2 and 2m are
prime. It follows that α ≤ 1. But we know α ≥ 1 since p ∈ 2Z. We have shown
that p = 2m, m odd.

b) Any number n ∈ Z can be written as n = 2αm, m odd. Numbers in 2Z have
the special property that α ≥ 1. we have

n = 2α−1 · 2m,

where the factors 2 (α− 1 times) and 2m are prime.
c) The factorization is not unique.

72 = 2 · 62 = 2 · 2 · 18

are distinct factorizations in prime factors.

94. There is a formula for the exponent of p prime in n!

bn
p
c+ b n

p2
c+ b n

p3
c+ ....

observing that the sum is finite. This gives
50 + 25 + 12 + 8 + 3 + 1 = 99 for 2 and
20 + 4 = 24 for 5.
The power of 10 is then equal to the smaller one of the two.
Answer 24 zeros.

Proof of the formula for the exponent of a prime in a factorial.
Let ak be the number of elements among 1, 2, 3 . . . , n which are divisible exactly

by pk. It is enough to consider indices k up to k ≤ n as the numbers become zero
for sure afterwards. The sum
ak + ak+1 + . . . an = b n

pk
c equals the number of elements among 1, 2, 3 . . . , n

which are divisible by pk. Notice that we dropped the word exactly, since we
include factors containing p at higher powers than k.
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Exponent of p in n! = 1 · a1 + 2 · a2 + 3 · a3 + . . . n · an =
∑n
k=1b

n
pk

which proves the formula.

98. The numbers k between b and a are
b+ 1, b+ 2, ..., a− 1
b+ 1, b+ 2, ... , b+ (a− b− 1)
Their sum is

b(a− b− 1) +
1

2
(a− b− 1)(a− b) =

1

2
(a− b− 1)(a+ b) = 1000

so
(a − b − 1)(a + b) = 2453 Notice that the first facor is necessarily odd, which

gives the only possibilities
a+ b = 24, a− b− 1 = 53 impossible because a+ b < a− b− 1
a+ b = 24 · 5, a− b− 1 = 52 i.e. a = 53, b = 27 (good)
a+ b = 24 · 52, a− b− 1 = 5, i.e. a = 203, b = 197 (good)
a+ b = 24 · 53, a− b− 1 = 1, i.e. a = 1001, b = 999 (good)

100. In general, if d = gcd(a, b), m = lcm(a, b) we denote a′ = a/d, b′ = b/d.
We proved elsewhere that

(i) gcd(a′, b′) = 1
(ii) m = a′b′d.
The equality in the problem is d = gcd(da′ + db′, da′b′). We did in class Ex 11

which says that the right hand side is d times gcd(a′ + b′, a′b′). Simplify by d.
We have to show the much simpler identity
1 = gcd(a′ + b′, a′b′) when gcd(a′, b′) = 1.
The simplest proof is to show that a′ + b′ and a′b′ cannot have any common

prime factor. We make a proof by contradiction.
Suppose p prime is such that p|a′+b′ and p|a′b′. Then p|(a′+b′)b′ and since p|a′b′

it must be that p|(a′)2. This cannot happen unless p|a′ (because p is prime). But
p|a′+b′ from the assumption, following that p|(a′+b′)−a′ = b′. Since gcd(a′, b′) = 1
we have p = 1. So there is no common prime factor between a′ + b′ and a′b′.


