HOMEWORK 3-SOLUTIONS

2. Use $q=\left\lfloor\frac{13}{3}\right\rfloor=4$, then $13=4 \cdot 3+1,0 \leq 1<3$.
3. $17=(-3)(-5)+2 q=-3, r=2$.
4. Answer: 211. $19201=5 \cdot 3587+1266,3587=2 \cdot 1266+1055,1266=$ $1 \cdot 1055+211,1055=5 \cdot 211+0$ the $\operatorname{gcd}=211$.
5. For 10 ! and 3^{10} we use the prime factor method. The gcd will contain only the prime 3 because the second number has no other factor than 3.
$10!=(1)(2)(3)\left(2^{2}\right)(5)(2 \cdot 3)(7)\left(2^{3}\right)\left(3^{2}\right)(2 \cdot 5)=\left(2^{7}\right)\left(3^{4}\right)\left(5^{2}\right)(7)$ answer $3^{4}=81$.
6. $a(-5)+b(2)=1, a=5, b=13$.
7. We shall use the fact that

If d divides a and b and there exist x, y such that $d=a x+b y$, then $d=\operatorname{gcd}(a, b)$.
\Rightarrow
$a x_{1}+c y_{1}=1, b x_{2}+c y_{2}=1$ for some $x_{1}, x_{2}, y_{1}, y_{2}$. Then we multiply

$$
1=\left(a x_{1}+c y_{1}\right)\left(b x_{2}+c y_{2}\right)=a b\left(x_{1} x_{2}\right)+c\left(a x_{1} y_{2}+b x_{2} y_{1}+c y_{1} y_{2}\right)
$$

and choose $x=x_{1} x_{2}$ and $y=a x_{1} y_{2}+b x_{2} y_{1}+c y_{1} y_{2}$.
\Leftarrow
$a b x^{\prime}+c y^{\prime}=1$ then take $x=b x, y=y^{\prime}$ for $\operatorname{gcd}(a, c)=1$ and $x=a x, y=y^{\prime}$ for $\operatorname{gcd}(b, c)=1$.
34. $11 x+15 y=31$ since $\operatorname{gcd}(11,15)=1$ the equation has infinitely many solutions.

We obtain $11(3)+(-2)(15)=1$ and thus

$$
\left(x_{0}, y_{0}\right)=31(3,-2)=(93,62)
$$

(multiply by 31).
The solutions are

$$
(93+15 n,-62-11 n), \quad n \in \mathbb{Z}
$$

44. Find a non-negative solution of $12 x+57 y=423$. Since $12=2^{2} \cdot 3$ and $57=3 \cdot 19$ then $\operatorname{gcd}(12,57)=3$. The number $423=3 \cdot 141$ which implies that the equation has solutions.

Divide by 3 . The equation becomes
$4 x+19 y=141$. Notice that $4(5)+19(-1)=1$ we have
$\left(x_{0}, y_{0}\right)=141(5,-1)=(705,-141)$ and the general solution
$(x, y)=(705+19 n,-141-4 n)$. To determine the positive solutions solve the inequalities:
$705+19 n \geq 0$ or $n \geq \frac{-705}{19}=-37.1$ finally $n \geq-37$
$-141-4 n \geq 0$ or $n \leq \frac{-141}{4}=-35.25$ finally $n \leq-36$
we have $n=-36,-37$ the only solutions
58. Express 433 in base 5. Answer $433=(3253)_{5}$
71.

$$
\begin{gathered}
5280=528 \cdot 10=132 \cdot 4 \cdot 10=3 \cdot 11 \cdot 2^{5} \cdot 5=2^{5} 3^{1} 5^{1} 11^{1} \\
57800=289 \cdot 2 \cdot 2^{2} \cdot 5^{2}=2^{3} 5^{2} 17^{2}
\end{gathered}
$$

because $289=17^{2}$. Try to divide 289 by $2,3, \ldots, 13,17$.
Common prime factors: 2 and 5 . The $g c d=2^{3} 5^{1}=40$.
76. Only when a, b have opposite signs and $g c d(a, b) \mid c$. You have to show the details.
82. Let n be the original number. $n=4 n_{1}+1$, where n_{1} is how much the first man puts aside for himself. $n-n_{1}=4 n_{2}+1$, which also implies that $3 n_{1}=4 n_{2}$. Continuing we get $4 n_{i}=3 n_{i-1}$ for $i=2,3,4,5$. This implies $3^{4} n_{1}=4^{4} n_{5}$ and $4^{4} \mid n_{1}$. The minimum number satisfying this condition is $n_{1}=4^{4}$. This shows that the minimum n is $n=4 \cdot 4^{4}+1=1025$.
92. a) The primes $p \in 2 \mathbb{Z}$ are even numbers, since all elements of $2 \mathbb{Z}$ are even numbers. We notice that all numbers of the form $p=2 m, m$ odd, are prime. If they could be written as $p=p_{1} p_{2}$ with p_{1}, p_{2} prime, then p_{1} should contain the factor 2 , as well as p_{2}. In this case, p would be divisible by 4 , which is impossible since $2 m$ does not contain a factor of 4 .

We now show that there are no other prime numbers. Let p prime and let $p=2^{\alpha} m$, where m is odd. If $\alpha \geq 2$, then $p=2^{\alpha-1} \cdot 2 m$ and both 2 and $2 m$ are prime. It follows that $\alpha \leq 1$. But we know $\alpha \geq 1$ since $p \in 2 \mathbb{Z}$. We have shown that $p=2 m, m$ odd.
b) Any number $n \in \mathbb{Z}$ can be written as $n=2^{\alpha} m$, m odd. Numbers in $2 \mathbb{Z}$ have the special property that $\alpha \geq 1$. we have

$$
n=2^{\alpha-1} \cdot 2 m
$$

where the factors $2(\alpha-1$ times) and $2 m$ are prime.
c) The factorization is not unique.

$$
72=2 \cdot 6^{2}=2 \cdot 2 \cdot 18
$$

are distinct factorizations in prime factors.
94. There is a formula for the exponent of p prime in n !

$$
\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\ldots
$$

observing that the sum is finite. This gives
$50+25+12+8+3+1=99$ for 2 and
$20+4=24$ for 5 .
The power of 10 is then equal to the smaller one of the two.
Answer 24 zeros.
Proof of the formula for the exponent of a prime in a factorial.
Let a_{k} be the number of elements among $1,2,3 \ldots, n$ which are divisible exactly by p^{k}. It is enough to consider indices k up to $k \leq n$ as the numbers become zero for sure afterwards. The sum
$a_{k}+a_{k+1}+\ldots a_{n}=\left\lfloor\frac{n}{p^{k}}\right\rfloor$ equals the number of elements among $1,2,3 \ldots, n$ which are divisible by p^{k}. Notice that we dropped the word exactly, since we include factors containing p at higher powers than k.

Exponent of p in $n!=1 \cdot a_{1}+2 \cdot a_{2}+3 \cdot a_{3}+\ldots n \cdot a_{n}=\sum_{k=1}^{n}\left\lfloor\frac{n}{p^{k}}\right.$ which proves the formula.
98. The numbers k between b and a are
$b+1, b+2, \ldots, a-1$
$b+1, b+2, \ldots, b+(a-b-1)$
Their sum is

$$
b(a-b-1)+\frac{1}{2}(a-b-1)(a-b)=\frac{1}{2}(a-b-1)(a+b)=1000
$$

so
$(a-b-1)(a+b)=2^{4} 5^{3}$ Notice that the first facor is necessarily odd, which gives the only possibilities
$a+b=2^{4}, a-b-1=5^{3}$ impossible because $a+b<a-b-1$
$a+b=2^{4} \cdot 5, a-b-1=5^{2}$ i.e. $a=53, b=27(\mathrm{good})$
$a+b=2^{4} \cdot 5^{2}, a-b-1=5$, i.e. $a=203, b=197(\operatorname{good})$
$a+b=2^{4} \cdot 5^{3}, a-b-1=1$, i.e. $a=1001, b=999(\operatorname{good})$
100. In general, if $d=\operatorname{gcd}(a, b), m=\operatorname{lcm}(a, b)$ we denote $a^{\prime}=a / d, b^{\prime}=b / d$. We proved elsewhere that
(i) $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$
(ii) $m=a^{\prime} b^{\prime} d$.

The equality in the problem is $d=\operatorname{gcd}\left(d a^{\prime}+d b^{\prime}, d a^{\prime} b^{\prime}\right)$. We did in class Ex 11 which says that the right hand side is d times $g c d\left(a^{\prime}+b^{\prime}, a^{\prime} b^{\prime}\right)$. Simplify by d.

We have to show the much simpler identity
$1=\operatorname{gcd}\left(a^{\prime}+b^{\prime}, a^{\prime} b^{\prime}\right)$ when $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.
The simplest proof is to show that $a^{\prime}+b^{\prime}$ and $a^{\prime} b^{\prime}$ cannot have any common prime factor. We make a proof by contradiction.

Suppose p prime is such that $p \mid a^{\prime}+b^{\prime}$ and $p \mid a^{\prime} b^{\prime}$. Then $p \mid\left(a^{\prime}+b^{\prime}\right) b^{\prime}$ and since $p \mid a^{\prime} b^{\prime}$ it must be that $p \mid\left(a^{\prime}\right)^{2}$. This cannot happen unless $p \mid a^{\prime}$ (because p is prime). But $p \mid a^{\prime}+b^{\prime}$ from the assumption, following that $p \mid\left(a^{\prime}+b^{\prime}\right)-a^{\prime}=b^{\prime}$. Since $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ we have $p=1$. So there is no common prime factor between $a^{\prime}+b^{\prime}$ and $a^{\prime} b^{\prime}$.

