
SETS AND LOGIC

1. Sets

Sets are collections of elements. Usually they are denoted by capital letters (from
the beginning of the alphabet): A, B, C. There are special notations for some sets:
∅ the empty set, the set without any element.
N the set of positive integers (natural numbers)
Z the set of integers
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers.
Sets can be given by
- listing all elements A = {1, 3, 5}
- stating a property distinguishing its elements A = {x |x odd positive less or equal to 5}

x ∈ A means that the element x belongs to the set A

x /∈ A means that the element x does not belong to A

Note that elements count only once in a set: {1, 2, 3} = {1, 2, 2, 3} and their order
does not matter: {1, 2, 3} = {2, 1, 3}. If we wish to distinguish two occurrences of
the digit 2, we could create the set {2} and have the new set {1, 2, {2}, 3}. This
also shows that sets may be elements of larger sets.

1.1. Relations between sets. We say that A is a subset of B (A included in B)
and write A ⊆ B when all elements of A also belong to B. The relation A ⊂ B
means that A is a strict subset of B (A strictly included in B), meaning that A ⊆ B
and A 6= B. The order of inclusion may be reversed. Then B ⊇ A means that B
includes A (the same as A ⊆ B), and B ⊃ A means that B strictly includes A (the
same as A ⊂ B).

To prove A = B, we have to show the double inclusion A ⊆ B and
B ⊆ A.

2. Operations with sets

2.1. Union. A ∪B is a new set of elements x such that
x ∈ A ∪B if and only if x ∈ A or x ∈ B
We read “A union with B”. The key word is or.

2.2. Intersection. A ∩B is a new set of elements x such that
x ∈ A ∩B if and only if x ∈ A and x ∈ B
We read “A intersection with B”. The key word is and.

2.3. Complement. A′ = Ac is a new set of elements x such that
x ∈ A′ if and only if x /∈ A; this is the same as not (x ∈ A).
We read “A complement”. The key word is not.
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2.4. Set difference. A \B is a new set of elements x such that
x ∈ A \B if and only if x ∈ A and x /∈ B.
We read “A minus B” or A set-minus B. The key word is minus. We see that

A \B = A ∩B′.

2.5. The universal set. Sometimes it is useful to have a universal set U containing
all elements under consideration. Then A′ = U \A for any set A. Note that ∅′ = U ,
U ′ = ∅ and U = A ∪A′.

3. Propositional calculus

Logical statements are also known as propositions. A proposition can only be
true (has value T or the number 1) or false (has value F or the number 0). There is
a close relation between mathematical logic (propositional calculus) and set theory.
Let’s denote a the statement x ∈ A, b the statement x ∈ B, and so on. Then x /∈ A
corresponds to not A, denoted by ¬A. The truth value of a and ¬a are opposite:
¬a is true when a is false and ¬a is false when a is true. The disjunction of a and
b, denoted by a ∨ b is true when at least one of a or b is true; the conjunction of a
and b, denoted a ∧ b is true only when both a and b are true - see the tables in [3]
and [2].

The correspondence between sets and propositions is given by

A = {x | a is true} .
In this way

A′ = {x | ¬a is true} A ∪B = {x | a ∨ b is true} .

A ∩B = {x | a ∧ b is true} A \B = {x | a ∧ ¬b is true} .
We then have the table:

x ∈ A a
x /∈ A ¬a not a

x ∈ A ∪B a ∨ b a or b
x ∈ A ∩B a ∧ b a and b
x ∈ A \B a ∧ ¬b a minus b

To summarize:
∪ or ∨
∩ and ∧
′ not ¬

3.1. Logical equivalence. Two statements (propositions) with the same truth
values are logically equivalent. A statement which is always true is a tautology and
one that is always false is a contradiction.

Example: a∨ a ≡ a, a∧ a ≡ a are logically equivalent and a∨¬a is a tautology.
a a ∨ a a ∧ a ¬a a ∨ ¬a
1 1 1 0 1
0 0 0 1 1
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3.2. De Morgan’s laws. The relations

(B ∪ C)′ = B′ ∩ C ′ , (B ∩ C)′ = B′ ∪ C ′

between sets can be formulated in terms of propositional calculus

¬(b ∨ c) ≡ ¬b ∧ ¬c , ¬(b ∧ c) ≡ ¬b ∨ ¬c

and verified with a truth value table. Both are referred as de Morgan’s laws.
Proof.

b c b ∨ c ¬(b ∨ c) ¬b ¬c ¬b ∧ ¬c
1 1 1 0 0 0 0
1 0 1 0 0 1 0
0 1 1 0 1 0 0
0 0 0 1 1 1 1

Note that the fourth and seventh columns have the same truth values irrespective
of the truth values of b, c. This concludes the proof.

3.3. Set identities. All set identities can be proven in this fashion. Verify the
distributivity of the intersection with respect to union: For any sets A, B, C, we
have the equality A∩ (B ∪C) = (A∩B)∪ (A∩C). First, note that for x to belong
to the first set, the statement a ∧ (b ∨ c) must be true and for x to belong to the
second set, the statement (a ∧ b) ∨ (a ∧ c) must be true. The two sets are equal if
and only if the two propositions are logically equivalent. Construct the truth value
table and verify.

Once we derive a sufficient number of set formulas, most others need not be
proven with truth tables, but by simple application of basic rules of logic. Venn
diagrams [4] are non-rigorous but useful tools to visualize such identities.

3.4. The implication. We say that a implies b and write a → b if b is true
whenever a is true. In other words, the truth value of a→ b is false only when a is
true and b is false. Note that this implies that a false statement implies any other
statement. Verify that

a→ b ≡ ¬a ∨ b .

We say that a is equivalent to b and write a ↔ b if a is true only when b is true.
The relation is symmetric, meaning that if a↔ b then also b↔ a. We have

a↔ b ≡ (a→ b) ∧ (b→ a) .

This means that both b if a and a if b must be true in order to have a true
statement. In common language, the double implication is expressed as a if and
only if b. Also, the expression if and only if is abbreviated by iff.

3.5. Composite statements. Composite statements may be formulated by com-
bining the propositions with the operators ¬, ∨, ∧ and parentheses. An example
is ¬a ∨ ¬(b ∧ ¬c) ∨ d. It is convened that ¬ has precedence over other operations.
Thus ¬p ∨ q means (¬p) ∨ q and not ¬(p ∨ q).
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3.6. Negation of a composite statement. To negate a composite logical propo-
sition, we replace each proposition p by ¬p, ∨ by ∧ and ∧ by ∨, while keeping the
precedence order between parentheses. To negate the example form above we have

¬[¬ a ∨ ¬ (b ∧ ¬ c) ∨ d] ≡ a ∧ (b ∧ ¬ c) ∧ ¬ d .
This rule is a consequence of the double negation (i.e. ¬¬p ≡ p) and the de Morgan
rules.

3.7. Quantifiers. We shall use mainly two quantifiers, the existential quantifier,
denoted by ∃, and the universal quantifier, denoted by ∀. When we say “for any
even integer n there exists an integer k such that n = 2k” we write

(∀n)(∃k)p(n, k) ,

where p(n, k) is the statement n = 2k (as we see, it depends on n and k).

3.8. Negation of statements containing quantifiers. To negate a statement
containing quantifiers, we change ∃ into ∀ and ∀ into ∃ and negate the statement
according to the negation rules. The negation of the example above is

¬
[
(∀n)(∃k)p(n, k)

]
= (∃n)(∀k) ¬ p(n, k) .

In other words, “there exists n even such that, for all integers k, we have n 6= 2k”.
Equivalently, “there exists n even that cannot be written as the double of another
integer”. Notice that if we replace the set of even numbers with the set of multiples
of three, then the negation is no longer false.

Universal statements are easy to disprove (prove that they are false) by finding
a counterexample (example when they are false). For instance, “all prime numbers
are odd” is false, since n = 2 is prime and even.

4. The Cartesian product

The Cartesian product (from René Descartes) of two sets A and B is denoted
A × B and contains all ordered pairs (a, b) of elements a ∈ A and b ∈ B. In other
words, we consider all possible pairs when one element is in the first set, and the
other is in the second set; the pair is ordered because (1, 2) 6= (2, 1). Notice that
{1, 2} = {2, 1} as a set. Example:

{1, 2} × {−1, 0, 1} = {(1,−1), (1, 0), (1, 1), (2,−1), (2, 0), (2, 1)}

[1, 2]× {−1, 0, 1} = {(x, y) | 1 ≤ x ≤ 2 , y = −1, 0, 1}

[1, 2]× [−1, 1] = {(x, y) | 1 ≤ x ≤ 2 ,−1 ≤ y ≤ 1}
In the x − y plane the first set represents six points, the second set represents
three parallel segments at three levels y = −1, 0, 1 and the third represents a closed
rectangle.

4.1. Relations. A relation between elements of A and elements of B is a subset
R of A× B. There are many kinds of relations, for instance equivalence relations,
order relations, satisfying different sets of axioms. We are interested in a special
kind of relation, called function.
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4.2. Functions. A function f from A to B is a procedure that associates to every
a ∈ A a unique element b ∈ B. We write b = f(a). It is possible that f(a′) = f(a′′)
for two different elements a′ and a′′ of A. However it is not accepted that f(a) = b′

and f(a) = b′′ for b′ 6= b′′. The element b ∈ B is the image of a ∈ A. Summarizing, a
function has two constraints: all elements have an image, and that image is unique.
We may regard f as a relation on A×B with the property that

(i) for all a ∈ A there exists b ∈ B such that (a, b) ∈ f ,
(ii) if (a, b′) ∈ f and (a, b′′) ∈ f then b′ = b′′. In that case (a, b) ∈ f is written

b = f(a) for convenience.
When A and B are subsets of the real numbers, we may plot A on the x-axis

and B on the y- axis. A simple criterion to have a proper function is the vertical
line test: Any vertical line should intersect the set f (seen as a subset of A×B) at
most once.

Formally, a function is a triple (A,B, f) where A is called the domain of the
function (also denoted by Df ), B is the co-domain (also denoted by Cf ) of the
function and f is the procedure associating elements from A to elements from
B. Two functions are equal if and only if all three elements are equal. Let A =
{−1, 0, 1} and B = {0, 1}, f(x) = x2 and g(−1) = 1, g(0) = 0, g(1) = 1. Then
(A,B, f) = (A,B, g) while (A,B, f) 6= (A,A, f).

- The set {(a, f(a)) ∈ A×B | a ∈ A} is called the graph of f .
- If A′ ⊆ A, the set f(A′) = {b ∈ B | ∃a ∈ A′ such that b = f(a)} is called the

image of A′.
- If B′ ⊆ B, the set f−1(B′) = {a ∈ A | f(a) ∈ B′} is called the pre-image of B′.
- When A′ = A, Rf = f(A) is the range of f .
- Sometimes a function is regarded as a procedure, or a formula; by abuse of

notation we sometimes identify the function with the formula y = f(x). This may
make sense only because we are making assumptions on the correct domain and
co-domain of the function, consistent with the context. In that case, the domain is
assumed to be the largest set where the formula makes sense, and the co-domain
is the full line R = (−∞,∞), unless more information is specified. Typically
f(x) =

√
x− 3 will have domain [3,∞) and g(x) = 1/(x − 1) will have domain

R \ {1} = (−∞, 1) ∪ (1,∞).

4.3. Composition. Let (A,B, f) and (B,C, g) be two functions. Then the com-
position of f and g, denoted by g ◦ f is (A,C, g(f(a)) = c). The composition is
possible only if the co-domain of f equals the domain of g. The procedure associ-
ating a ∈ A to c ∈ C is: Transform a into b = f(a) and the b into g(b). In short
form, g ◦ f(a) = g(f(a)).

- Notice that f ◦ g may not make sense, and even if it does, in general we have
f ◦ g 6= g ◦ f . Give examples of all these cases.

- For any set A, we define IA, the identity function of A by the triple (A,A, IA(a) =
a). In other words, IA(a) = a does not make any change on a ∈ A.

4.4. Injective, surjective and bijective functions. Let (A,B, f) be the func-
tion where A is the set of inhabitants in a city and B is the set of ten digit numbers,
while b = f(a) is the phone number of person a. There are many problems with
this definition. First problem: If there were people without a phone, or one person
would have more than one phone number at their residence, then it would not even
be a function. Second problem: Supposing that everybody has only phone at home,
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in many cases more than one person is associated to the same phone number. If
we change A with the set of residences in the city, then the function becomes one-
to-one, meanwhile the original function was not one-to-one. Third problem: The
image of the function f does not cover all ten digit numbers. Once we restrict B
to just numbers starting with the city’s area code, the function becomes what we
call onto.

We say that the function is
- An injective (also called one-to-one) function has different images for different

elements. That is, if f(a) = f(a′), then a = a′.
- A surjective function (also called onto) function takes all values in its co-domain.

That is, f(A) = B.
- A function that is both injective and surjective is said bijective.

4.5. The inverse function. Consider the function (A,B, f) where A is the set of
words in language 1 and B is the set of words in language 2, while b = f(a) is the
translation of word a from language 1 into word b from language 2 (a dictionary).
Ideally this should be a bijection. Then the function translating from language 2
into language a (reverse dictionary) is called the inverse function to f .

A bijective function f always has an inverse function denoted by f−1. More
precisely, (B,A, f−1) has domain equal to the co-domain of f , co-domain equal to
the domain of f and f−1(b) is the unique element a ∈ A such that f(a) = b. The
existence of such a is guaranteed by surjection and the uniqueness by injection.

- Informally, finding the inverse of a function f amounts to solving y = f(x) for
a known y and an unknown x. For each y, the answer will be f−1(y) = x. An
example is (R,R, f(x) = x+ 2) with the inverse (R,R, f−1(y) = y− 2) because the
solution to y = x + 2 is x = y − 2. Another example is ([0,∞), [0,∞), f(x) = x2)
with inverse ([0,∞), [0,∞), f(y) =

√
y).

- The inverse of the inverse is the function itself, or (f−1)−1 = f .
- The function f and its inverse f−1 satisfy f−1 ◦ f = IA and f ◦ f−1 = IB .

These are the cancellation identities. As an example,
√
a2 = a and (

√
b)2 = b when

A = B = [0,∞).
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