HOMEWORK 2

1. Let $U=(-\infty, \infty)$. Determine the truth values of the propositions. When they are false, write down the negation.
a) $(\forall x)\left(2 x=x^{2}\right)$
b) $(\exists x)\left(2 x=x^{2}\right)$
c) $(\forall x)\left((x>-1) \rightarrow\left(x^{2}>1\right)\right)$
d) $(\exists x)\left((x>-1) \rightarrow\left(x^{2}>1\right)\right)$
2. Express the statements using quantifiers and propositional calculus. Specify the appropriate universe of discourse U. Determine their truth value.
a) The difference between a positive number and a negative number is positive
b) It is not always the case that if the product of two numbers is positive, then both are positive
c) The ratio of two positive integers is always an integer
d) The product of two integers is always a perfect square
3. Let $U=$ \{all integers $\}$. Determine the truth values of the propositions. When they are false, write down the negation.
a) $(\forall n)(\forall m)\left(n^{2}<m\right)$
b) $(\exists m)(\forall n)\left(n^{2}<m\right)$
c) $(\exists m)(\exists n)\left(m^{2}+n^{2}=5\right)$
d) $(\exists m)(\exists n)\left(m^{2}+n^{2}=6\right)$
e) $(\forall n)(\forall m)(\exists p)(m+n=2 p)$
4. Let $U=(-\infty, \infty)$. Determine the truth values of the propositions. When they are false, write down the negation.
a) $(\forall x)(\exists y)(x+y=0)$
b) $(\exists y)(\forall x)(x+y=0)$
c) $(\forall x)(\exists y)(x y=1)$
d) $(\forall x)(\exists y)((x \neq 0) \rightarrow(x y=1))$
