HALF-POINT CORRECTION
IN THE CLT APPROXIMATION

When the sample X7, X, ..., X, comes from a discrete distribution with integer values,
then the sum Y = Z?zl X, is an integer as well. Assume that the mean of X; is
1 and the variance is 02. We can approximate the probability of Y being between

two integers k' < k", denoted P(k}’ <Y< k”):

Directly with the Central Limit Theorem

K—np Y—nu k'—nu K" —nu kK —nu
P <Y <K' =P < < ~ ) i
( - ) ( vno?2 T vVno?2 T Vno? ) ( vVno? )= vVno? )

The half-point correction gives a 1/2 = 0.5 correction above and below the
integer values as follows:
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The approximation is improved.

If one of the endpoints is missing, we have simply
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Finally, we must pay attention to the inequality sign. If the sign is strict, i.e. <
or >, we convert it into < or >, respectively.
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and proceed like before.

Read carefully Examples 3,4, 5 in the text in Approzimations for Discrete
Distributions (Section 5.7 in the 8th Ed.)

Exercise. Let Y ~ Bin(25,.45). Compare P(10 < Y < 12) obtained (i)
exactly, from Table II; (ii) directly with the CLT; and (iii) using the half-point
approximation.

Answer: (i) .4513; (ii) .3255; (iii) .4673.



