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Abstract

We consider a system of N Brownian particles evolving independently in a domain
D. As soon as one particle reaches the boundary it is killed and one of the other
particles is chosen uniformly and splits into two independent particles resuming a
new cycle of independent Brownian motion until the next boundary hit. We prove
the hydrodynamic limit for the joint law of the empirical measure process and the
average number of visits to the boundary as N approaches infinity.
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1 Introduction

In [2], Burdzy, HoÃlyst, Ingerman and March propose a variant of the Fleming-
Viot model in which the branching mechanism is triggered by the event that
a random walk reaches the boundary of an open set from the Euclidean space.
Later on (in [3]), the same authors propose a continuous time Brownian model,
which motivates our work.

Let d ∈ Z+ and D be a bounded open subset of Rd with piecewise smooth
boundary of class C2 satisfying the exterior cone condition. We fix a positive
integer N and consider the Nd-dimensional process with values in DN defined
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iteratively as follows. The bold notation will be used to designate vectors.
Let {wi(·)}, with 1 ≤ i ≤ N be N independent Brownian motions on Rd

with respect to a filtration {Ft}t≥0, starting at (possibly random) points xi ∈
D, respectively. As soon as one Brownian particle is killed upon reaching
the boundary ∂D, one of the remaining N − 1 particles chosen with equal
probability gives birth to a new independent Brownian particle at the same
location. The total number of particles is preserved, and the new system of N
particles, with starting points inside D, perform again independent Brownian
motions until one of them hits the boundary, when the branching procedure is
repeated. The consistency of the construction is discussed in [3]. The particles
can never reach the boundary more than one at a time and the number of
boundary hits in any bounded time interval is finite, almost surely. If x(0) =
(x1, . . . , xN) ∈ DN is the initial configuration, then for a fixed N we shall
denote by PN

x or simply PN the law of the process. In general, we shall consider
that all processes {xN(·)}, for all N , are constructed on the same probability
space (Ω,F , P ) with the same filtration {Ft}t≥0.

While the construction from above underscores the analogy with the Fleming-
Viot evolution, it is equivalent to a dynamics on D([0,∞), DN), the Skorohod
space, where the Brownian particles, once they have reached the boundary
∂D, jump with uniform probability to one of the locations of the remaining
N − 1 particles. For each time t > 0 and each path xi(·), we shall denote
by AN

i (t) the total number of visits to the boundary ∂D of xi(s−), when
s ∈ [0, t]. With probability one, this number is equal to the number of jumps
of the particle xi(·) up to time t. This fact is a consequence of the continuity
of the Brownian paths, and the continuity of the distribution of the hitting
times to the boundary of independent Brownian motions, which prevents the
possibility that two particles be on the boundary at the same time and forces
that any jump be nontrivial.

In comparison to the Fleming-Viot branching system, where Brownian par-
ticles die and choose uniformly the location where they are reborn among
the positions of the remaining particles at independent exponential times, the
present model is self-pacing the redistribution of particles with a clock count-
ing the hitting times to the boundary. One could regard this as a form of
catalytic branching with the boundary acting as a catalyst. In both models
there is conservation of mass, however in the present model the correlation
between update times and the location of particles makes impossible the speed
up of the branching process leading to a deterministic limit as opposed to a
superprocess.

Let D be the space of admissible genetical configurations (the allelic profile)
of a certain population. The Fleming-Viot and the present models are de-
scriptions of the slow diffusion of the profiles for a fixed population size N .
The boundary ∂D represents a collection of ‘extinction’ or non-viable pro-
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files. It is reasonable although an idealization to consider that an individual
with a viable profile is added to the population at the moment when another
one becomes non-viable. Our result proves the deterministic nature of the
sample mean profile and the average number of ‘extinctions’ for a large but
fixed population. In that sense, one can note the convergence to an equilib-
rium configuration given by the normalized first eigenfunction of the Dirichlet
Laplacian (Corollary 1).

The main objective of the paper is to prove the hydrodynamic limit for the
branching Brownian particles confined to the domain D (Theorem 1). The
construction of the process is based on Theorem 1.1 from [3]. All the other
results are independent, with the exception of Corollary 1, which is not needed
in the proof of Theorem 1, the main result.

One has to differentiate between the original result from [3] and Theorem 1.
A preliminary benefit of this proof is that we can drop the requirement that
particles start at deterministic location. The law of large numbers at the level
of the path space is a result about the joint law of the process, as opposed to
the one valid for the one-dimensional marginals. The question of convergence
of the time-dependent empirical distributions is more natural in the context
of the study of measure-valued processes (in this case a branching process). It
is the full trajectory of the particle profile which becomes deterministic in the
scaling limit satisfying equation (19), and not only its distribution at a given
time. In order to evaluate this, one has to prove the law of large numbers for
the average number of visits to the boundary, also at the level of the path
space, which is a completely new result. In addition, the limits allow very
strong absolute continuity estimates, for example showing that the average
number of particles located in a certain subset of the domain remains roughly
proportional to the volume, uniformly in time - the contents of (44), (47),
(49) and (50). These estimates can be extended, in the end, all the way to the
boundary ∂D as a consequence of (20).

It is worth mentioning that the method used can be generalized to diffusions
under natural regularity conditions. Finally, this approach leads to an exact
derivation of the asymptotic law of the tagged particle, together with a proof
of the propagation of chaos presented in [4].

Plan of the proof. The interaction between particles consists in the redistri-
bution mechanism activated as soon as they reach the boundary. The average
number of visits to the boundary (16) and the empirical measure (15) vary at
the same rate and on the same scale N−1 and proving tightness for one implies
tightness for the other as seen in (91). The first step is to obtain a hydrody-
namic limit (Lemma 1) for a transformation of the empirical measure (21)
which puts negligible mass in a neighborhood of the boundary, which is done
in Section 3. The technical difficulty here is to prove that a measure-valued
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weak solution to the heat equation with Dirichlet boundary conditions is a
function (absolute continuity). This result gives us control over the average
number of particles in any set D0 ⊂⊂ D (Corollary 2) through Propositions
3, 4 and 5. Section 4 proves Theorem 2, which establishes control over the
number of particles visiting (or at least situated near) the boundary. Section
5 proves the tightness of the average number of visits to the boundary in
Theorem 3, which is based on a very careful accounting of the activity near
∂D. Violating the tightness estimate is equivalent to the occurrence of either
one of two very unlikely events. One is the accumulation of a large number of
particles [εN ] in a layer of thickness r << ε neighboring the boundary ∂D,
which was already taken care of in Section 4. The other is the migration of a
massive number of particles O(εN) across a macroscopically thick region in a
short amount of time η << ε. The last section completes the proof of Theorem
1.

2 The Results.

Let f ∈ C(D
N

) and x = (x1, x2, . . . , xN) be a point in D
N

and let i, j be two
indices between 1 and N . We shall denote by f ij(x) the N−1 variable function
depending on x with the exception of the component xi which is replaced by
xj, that is

f ij(x) = f(x1, . . . , xi−1, xj, xi+1, . . . , xN) (1)

and by ∆N the Nd dimensional Laplacian. The family of independent Rd

Brownian motions wi(·), 1 ≤ i ≤ d is adapted to F = {Ft}t≥0. The point
processes {AN

i (·)}1≤i≤N counting the number of boundary hits for each particle
1 ≤ i ≤ N are adapted to the filtration F , finite and converge to infinity almost
surely, as shown in [3]. The construction of the process implies the following
proposition.

Proposition 1 For any function f ∈ C(D
N

), with f smooth up to the bound-
ary, we write

Af (t) =
N∑

i=1

1

N − 1

∫ t

0

∑

j 6=i

(
f ij(x(s−))− f(x(s−))

)
dAN

i (s) . (2)

Then,

f(x(t))− f(x(0))−
∫ t

0

1

2
∆Nf(x(s))ds −Af (t) = MN,B

f (t) +MN,J
f (t) (3)

where

MN,B
f (t) =

N∑

i=1

∫ t

0
∇xi

f(x(s)) · dwi(s) (4)
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is the Brownian martingale and MN,J
f (t) is the jump martingale for which

(MN,J
f (t))2 − 1

N − 1

N∑

i=1

∫ t

0

∑

j 6=i

(
f(xij(s−))− f(x(s−))

)2

dAN
i (s) (5)

is a martingale. All martingales are P -martingales with respect to the filtration
F .

Remark 1: Since the support of the counting measures {dAN
i (t)}t≥0 is the

set of hitting times of the boundary, the function f(x(s−)) in (2) has the ith

component situated on ∂D.

Remark 2: By construction f ij(x(s)) − f(x(s−)) = f ij(x(s−)) − f(x(s−))
on the support of dAN

i (t), which makes the integrand Fs−-measurable.

Proof. The continuous part of the semi-martingale (3) is obtained by applying
the Itô formula on the time intervals between jumps. The pure jump martin-
gale is equal to

∑

τ∈J(ω)∩[0,t]

f(x(τ))− f(x(τ−))−Af (t) (6)

where J(ω) is the discrete set of random jump times and has the quadratic
variation from (5). More precisely, for a given deterministic time t > 0, let
`(t) be the number of boundary hits {τl}0≤l≤`(t) in the time interval [0, t]. The
probability distributions of the visits to the boundary are continuous, hence
with probability one t is not a jump time. For simplification, write t = τ`(t)+1.
Then, almost surely

f(x(t))− f(x(0)) =

=
∑`(t)

l=0

(
f(x(τl+1−))− f(x(τl))

)
+

∑`(t)
l=1

(
f(x(τl))− f(x(τl−))

)
.

(7)

Again with probability one,

f(x(τl+1−))− f(x(τl)) =
∫ τl+1−

τl

1

2
∆Nf(x(s))ds +

∫ τl+1−

τl

∇xi
f(x(s)) · dwi(s)

(8)

and

MN,J
f (t) =

`(t)∑

l=1



f(x(τl))− f(x(τl−)) (9)

−
N∑

i=1

1∂D(xi(τl−))
[

1

N − 1

∑

j 6=i

(
f ij(x(τl−))− f(x(τl−))

)]
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equal to (6). The pure jump martingale (9) is such that

(MN,J
f (t))2 −

`(t)∑

l=1





N∑

i=1

1∂D(xi(τl−))
[

1

N − 1

∑

j 6=i

(
f ij(x(τl−))− f(x(τl−))

)2]




(10)

is a martingale, thus establishing (5). 2

Let 1
2
∆N be the Nd dimensional half Laplacian on L2(DN) with domain

D =
{
f ∈ C2(D

N
) : ∀ i , (N − 1)−1

∑

j 6=i

f ij(x) = f(x) whenever xi ∈ ∂D
}

.

(11)

We notice that D contains the functions f ∈ C2(D
N

) vanishing on the bound-
ary as well as on any diagonal xj′ = xj′′ (where j′ 6= j′′ between 1 and N),
a subset of functions dense in L2(DN). Constants are included in D and the
maximum principle is valid in DN . This allows us to regard (1

2
∆N ,D) as a

Markov pregenerator on L2(DN). Then, the measure PN solves the martin-
gale problem (1

2
∆N ,D) starting at x0 = x(0).

Let φ ∈ C2(D) and for a given index i let f(x) = φ(xi). Formula (3)-(2)
reduces to

φ(xi(t)) = φ(xi(0)) +
∫ t

0

1

2
∆dφ(xi(s))ds + (12)

+
∫ t

0

(
1

N − 1

∑

j 6=i

φ(xj(s))− φ(xi(s−))
)
dAN

i (s) +

+
∫ t

0
∇φ(xi(s)) · dwi(s) +MN,J

φ (t) .

In a similar fashion, if f(x) = N−1 ∑N
i=1 φ(xi), formula (3) reads

1

N

N∑

i=1

φ(xi(t)) =
1

N

N∑

i=1

φ(xi(0)) +
∫ t

0

1

N

N∑

i=1

1

2
∆dφ(xi(s))ds (13)

+
1

N

N∑

i=1

∫ t

0

(
1

N − 1

∑

j 6=i

φ(xj(s))− φ(xi(s−))
)
dAN

i (s)

+
1

N

N∑

i=1

∫ t

0
∇φ(xi(s)) · dwi(s) +MN,J

〈φ,µN 〉(t) .

For r > 0 sufficiently small we define the set

Dr =
{
x ∈ D : d(x, ∂D) > r

}
. (14)

6



Definition 1 Let rD be the inner radius of the domain D, defined as the
supremum of all r > 0 with the properties that Dr has the same number of
connected components as D and ∂Dr is of the same regularity class as ∂D,
in our case, C2. For r ∈ (0, rD/2), we define the function γr ∈ C2(D) as a
smooth version of 1Dc

r
with the properties (i) 0 ≤ γr(x) ≤ 1 if x ∈ D, (ii)

γr(x) = 1 if x ∈ Dc
r, (iii) γr(x) = 0 if x ∈ D2r and (iv) ‖∆γr(x)‖∞ ≤ c(D)r−2

for a constant c(D) determined by the domain D and independent of r > 0.

Definition 2 For any N ∈ Z+ we define the empirical distribution process

µN(t, dx) =
1

N

N∑

i=1

δxi(t) (15)

and the average number of jumps

AN(t) =
1

N − 1

N∑

i=1

AN
i (t) . (16)

In general, when α(·, dx) is an element of D([0,∞),M(D)) and φ is a bounded
continuous function on D we shall write

∫
D φ(x)α(·, dx) = 〈φ, α(·, dx)〉.

Remark: The pre-factor (N − 1)−1 is only technical in order to simplify the
formula (28). Asymptotically as N →∞, AN(t) as defined in (16) is the same
as the actual average of the boundary hits by all particles.

Definition 3 The family of empirical distributions {µN(dx)}N>0 on the set
D is said asymptotically nondegenerate at the boundary if, for any ε > 0

lim
r→0

lim sup
N→∞

P
( ∫

D
γr(x)µN(dx) > ε

)
= 0 . (17)

Remark: In case µN(0, dx) converges weakly to a probability measure con-
centrated on D the condition (17) is automatically fulfilled. Since D ⊆ D any
family of measures on D is precompact yet we want to prevent the mass from
running away to the boundary.

Let pabs(t, x, y) be the absorbing Brownian kernel on the set D and, for a
finite measure µ(dx) ∈ M(D), we denote by u(t, y) =

∫
D pabs(t, x, y)µ(dx)

the solution in the sense of distributions to the heat equation with Dirichlet
boundary conditions

∂

∂t
u(t, x) =

1

2
∆xu(t, x) u(t, x)

∣∣∣∣
x∈∂D

= 0 u(0, x) = µ(dx) . (18)
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We also define z(t) =
∫
D u(t, x)dx > 0 the probability of survival up to time

t > 0 of a Brownian particle killed on the boundary ∂D and starting with
distribution µ(dx). The solution to the heat equation with Dirichlet boundary
conditions conditional on survival up to time t is v(t, x) = z(t)−1u(t, x) and
µ(t, dx) = v(t, x)dx is the weak solution of

∂

∂t
v(t, x) =

1

2
∆xv(t, x)− z′(t)

z(t)
v(t, x) v(t, x)

∣∣∣∣
x∈∂D

= 0 v(0, x) = µ(dx) .

(19)

We can state the main result.

Theorem 1 If µN(0, dx) converges in probability in weak sense to a deter-
ministic initial density profile µ(dx) = µ(0, dx) such that µ(D) = 1, then, for
any T > 0, the joint distribution of (AN(·), µN(·, dx)) ∈ D([0, T ],R+×M(D))
is tight in the Skorohod topology and the set of limit points is a delta function
concentrated on the unique continuous trajectory (− ln z(·), µ(·, dx)) as defined
in (19) and, for any φ ∈ C2(D) and any ε > 0

lim
N→∞

P
(

sup
t∈[0,T ]

∣∣∣∣
1

N

N∑

i=1

φ(xi(t))−
∫

D
φ(x)µ(t, dx)

∣∣∣∣ > ε
)

= 0 . (20)

Let MN(dx) be the unique stationary distribution of the process {x(·)} (the
measure exists according to [3]) and Φ1(x) be the first eigenfunction of the
Laplacian with Dirichlet boundary conditions normalized such that it inte-
grates to one over D. It is known that Φ1(x) > 0 in D and under general
regularity conditions for D (smooth ∂D) is continuous on D and vanishes at
the boundary. This allows us to regard Φ1(x) as a probability density function
over the domain D.

Corollary 1 Assume the process {x(·)} is in equilibrium at time t = 0. Then,
the family of empirical measure processes {µN(·, dx)}N∈Z+ is tight in the Sko-
rohod space D([0, T ],M(D)) and the unique limit point is the delta function
concentrated on the constant measure Φ1(x)dx.

Proof. The proof has two parts. The first part requires to show that the em-
pirical measures

µN(0, dx) =
1

N

N∑

i=1

δxi(0)

when xi(0)1≤i≤N have joint distribution MN(dx) are tight as measures on the
open set D. The proof of this fact is a consequence of Theorem 1.4 from
[3]. However, the only fact we need is the asymptotic non-degeneracy at the
boundary, and not the limit proper.
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The second part is an immediate consequence of Theorem 1. Since the process
is in equilibrium, any weak limit of the empirical measure process must be
constant in time and satisfy (19). Unless v(x) is identically zero, which is
impossible since the empirical measures have mass one, the factor z′(t)/z(t)
is constant, which implies that the limit is an eigenfunction. On the other
hand, we know that the first eigenfunction Φ1(x) is positive on D. If another
eigenfunction were nonnegative, the inner product with Φ1 will show it must
be zero almost surely. Since the solution is a probability measure (the total
mass is one), the proof is complete. 2

3 General estimates.

In the following, ν(t, dx) denotes the finite measure u(t, x) dx defined in (18).
Let

νN(t, dx) = exp(−AN(t))µN(t, dx) (21)

be a transformation of the empirical measure process. For D0 an open set such
that D0 ⊂ D we define the restriction of νN(t, dx) to D0 by νN

D0
(t, dx).

Proposition 2 Let νN be as in (21). Assume that the deterministic mea-
sure µ(0, dx) with µ(0, D) = 1 is the weak limit in probability of µN(0, dx).
Let T > 0. (a) For any φ ∈ C2(D) vanishing at the boundary the family of
processes {〈φ, νN(t, dx)〉}N>0 is tight in the Skorohod topology on D([0, T ],R)
and any limit point belongs to C([0, T ],R). (b) The law of νN

D0
(t, dx) converges

weakly to the delta function on C([0, T ],M(D0)) concentrated on the unique
deterministic solution of (18) with initial value ν(0, dx) = µ(0, dx).

Remark: The processes νN(t, dx) are tight in D([0, T ],M(D)) but the proof
of this fact will be completed in Section 6, Theorem 1. The conditions for weak
tightness are fulfilled as long as we concentrate on test functions vanishing on
the boundary. If we examine (13) we see that for arbitrary functions φ the
integrands of the jump terms AN

i (t) contain a boundary term which would
not reduce in the differential formula for the derived process νN(t, dx). Essen-
tially Proposition 2 is the hydrodynamic limit of the transformed processes
νN(·, dx) seen as measure-valued processes on open sets D0 ⊂⊂ D. However,
the uniform estimates in the current section can be obtained from the present
result at no further cost and will be used in the proof of Theorem 1.

Proof. Step 1: part (a) and tightness for (b).

Let (X, ‖ · ‖) be a Polish space. The conditions for tightness of a family of
processes {yN(·)}N>0 with values in X seen as measures on the Skorohod space
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D([0, T ], X) which ensure that any limit point belongs to C([0, T ], X) are

(i) there exists an M > 0 such that lim sup
N→∞

P
(
‖yN(0)‖ > M

)
= 0 and

(22)

(ii) for any ε > 0 lim
δ→0

lim sup
N→∞

P
(

sup
s, t ∈ [0, T ]

|t− s| < δ

‖yN(t)− yN(s)‖ > ε
)

= 0 . (23)

To prove the tightness of νN
D0

(t, dx) in weak sense we have to verify (i) and
(ii) for any test function φ ∈ C2(D0) (which include the smooth bounded
functions on D0). Tightness for the processes νN

D0
(t, dx) is implied by the proof

of tightness for 〈φ, νN(t, dx)〉 by considering functions φ ∈ C2(D) which vanish
on the boundary ∂D restricted to D0. In order to verify (i) it is sufficient to
see that the test functions are bounded and the total mass of the empirical
measures is one.

Condition (ii) (23) will be shown to be fulfilled as a consequence of 1) the time
integral on the right side of (28) satisfies (23) due to the uniform boundedness
of ∆φ, 2) the martingale term has a quadratic variation of order N−1 and 3)
the pure jump part is of order N−1 as well.

Let X(t) = (X1(t), . . . , Xm(t)) be an m-dimensional semi-martingale and F a
smooth function on Rm. Denote

∆̃X(t) =
∑

0≤s≤t

(
X(s)−X(s−)

)
(24)

and 〈(Xk)
c, (Xl)

c〉(s) the cross variation of the continuous martingale parts of
Xk(t) and Xl(t). Then, we can write

F (X(t))− F (X(0)) =
m∑

l=1

∫ t

0
∂lF (X(s−))dXl(s) (25)

+
1

2

m∑

k,l=1

∫ t

0
∂k lF (X(s−))d〈(Xk)

c, (Xl)
c〉(s) (26)

+
∑

0≤s≤t

[
F (X(s))− F (X(s−))−

m∑

k=1

∂kF (X(s−))∆̃Xk(s)
]
. (27)

For any fixed N > 0 and any φ ∈ C2(D) vanishing on the boundary ∂D
we can apply Itô’s formula for semimartingales (25)-(27)(see [5], Chapter
I, Section 4) in the two-dimensional case m = 2 to the pair of bounded
semimartingales (X1(t), X2(t)) = (AN(t),

∫
D φ(x)µN(t, dx)) and the function
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F (X1, X2) = exp(−X1)X2. We obtain that νN(t, dx) = F (X1(t), X2(t)) satis-
fies for any t > 0

∫

D
φ(x)νN(t, dx)−

∫

D
φ(x)νN(0, dx) = (28)

∫ t

0

∫

D

1

2
〈∆dφ(x)νN(u, dx)〉du + (29)

∫ t

0
exp

(
− 1

N − 1

N∑

i=1

AN
i (u)

)
1

N

N∑

i=1

∇φ(xi(u)) · dwi(u) + EN(t) (30)

with the error term such that E[sup0≤t≤T |EN(t)|2] is of order N−1. In order to
see this, keeping in mind the integral formula (13) expressing X2(t), the error
term obtained by applying (25)-(27) to the special case (28) will be divided in
two parts. Let E1(t) be the error term issued from the right hand side of (25)
and E2(t) be the error term equal to (27). On the right hand side of (25), the
dAN(t) term cancels out, this being the feature motivating the transformation
(21). The du (29) term and the Brownian martingale term (30) are not part of
EN(t). Consequently E1(t) is equal to the integral against the jump martingale

E1(t) =
∫ t

0
exp(−AN(s−))dMN,J

〈φ,µN 〉(s) . (31)

Doob’s maximal inequality and the computation of the quadratic variation for
a pure jump process provide a bound uniform in time

E
[

sup
0≤t≤T

|EN
1 (t)|2

]
≤ N−1CφE

[∫ T

0
exp(−2AN(s−))dAN(s)

]
. (32)

This estimate is based on (5) applied to (13), using the fact that the absolute
value of the integrand is bounded by a multiple of N−1‖φ‖ exp{−AN(s)},
where the constant Cφ depends on the dimension d and the supremum norm of
φ. It is obviously sufficient to provide a bound for the case when the integrand
is exp(−AN(s)). We remind that the average number of jumps (16) is divided
by N − 1 (and not by N) for convenience. Then (32) is bounded above by

N−1CφE
[ ∫ T

0
exp(−AN(u−))dAN(u)

]

≤ N−1(N − 1)−1CφE
[ (N−1)AN (t−)∑

l=0

exp(− l

N − 1
)
]

≤ N−1Cφ

(
(N − 1)(1− e−

1
N−1 )

)−1

= O(N−1) .

We move on to investigate the error EN
2 (t) equal to the pure jump term (27).

Assume without loss of generality that the jump consists of particle k situated
at time τ− on the boundary going to the location of particle j. If J denotes
the set of jump times, the pure jump term (27) is the sum over all τ ∈ J of

11



[
e−(AN (τ−)+ 1

N−1
)
(
〈µN(τ−, dx), φ(x)〉 +

1

N
φ(xj(τ−))

)
−

e−AN (τ−)〈µN(τ−, dx), φ(x)〉
]

−
[(
− e−AN (τ−) 1

N − 1

)
〈µN(τ−, dx), φ(x)〉+

1

N
φ(xj(τ−))e−AN (τ−)

)]
=

e−AN (τ−)
[
(e−

1
N−1 − 1 +

1

N − 1
)〈µN(τ−, dx), φ(x)〉

+
1

N
(e−

1
N−1 − 1)φ(xj(τ−))

]
.

The absolute value of each jump has upper bound C1‖φ‖(N − 1)−2e−AN (τ−)

where C1 depends only on the exponential function. Finally, the sum of the
jump terms is bounded above by

C1‖φ‖
(N − 1)2

∑

τ∈J∩[0,t]

e−AN (τ−) ≤ C1‖φ‖
(N − 1)2

∑

l≥0

e−
l

N−1 = O(
1

N
) ,

uniformly in time, which provides a stronger bound that the needed maximal
inequality.

In order to complete the proof of (ii) (23) for 〈φ, νN(·, dx)〉, we see that for
any ε > 0,

lim sup
N→∞

P
(

sup
t∈[0,T ]

{
1

N

N∑

i=1

∫ t

0
exp(−AN(u))∇φ(xi(u)) · dwi(u)

}
> ε

)
(33)

≤ lim sup
N→∞

N−1ε−2E

[∫ T

0

1

N

N∑

i=1

‖∇φ(xi(u))‖2du

]
= 0

by the martingale maximal inequality. Finally, the du term in (28) is bounded
uniformly in N by |t− s|(‖∆φ‖/2) .

Step 2: the weak heat equation. We have shown that the joint distribution of
the processes

QN
D0

= P ◦ νN
D0

(·, dx)−1 = P ◦
[
exp

(
− 1

N − 1

N∑

i=1

AN
i (·)

)(
1

N

N∑

i=1

δxi(·)
)]−1

(34)

is tight on D([0, T ],M(D0)) and any limiting measure QD0 is concentrated on
the set C([0, T ],M(D0)). For ψ ∈ C2(D) vanishing on the boundary ∂D, the
functional

C([0, T ],M(D0)) 3 m(·, dx) → Ψ(m(t, dx)) = (35)

= sup
t∈[0,T ]

∣∣∣∣
∫

D0

ψ(x)m(t, dx)−
∫

D0

ψ(x)m(0, dx)−
∫ t

0

∫

D0

1

2
∆dψ(x)m(s, dx)ds

∣∣∣∣

12



is continuous and bounded. Assume that QD0 is a limit point of the tight
family of measures {QN

D0
} and let N ′ → ∞ be a subsequence converging to

QD0 . It follows that, for any ε > 0,

QD0(ν : Ψ(ν(t, dx)) > ε
)
≤ lim inf

N ′→∞
P

(
Ψ(νN ′

D0
(t, dx)) > ε

)
= 0 (36)

due to the presence of the vanishing martingale term. This shows that QD0 is
concentrated on the set of measures νD0(·, dx) indexed by time which satisfy

∫

D0

ψ(x)νD0(t, dx)−
∫

D0

ψ(x)νD0(0, dx) =
∫ t

0

∫

D0

1

2
∆ψ(x)νD0(s, dx)ds (37)

for any ψ ∈ C2(D) vanishing on the boundary ∂D.

Step 3: properties of the weak solution. We shall follow the proof of Proposition
3.4 from [6]. The weak equation (37) can be extended to smooth functions
ψ(t, x) vanishing on the boundary ∂D. The new form of the equation is

∫

D0

ψ(t, x)νD0(t, dx)−
∫

D0

ψ(0, x)νD0(0, dx) (38)

=
∫ t

0

∫

D0

(
∂

∂s
ψ(s, x) +

1

2
∆ψ(s, x)

)
νD0(s, dx)ds .

Let g ∈ L1(D). The restriction of g to D0 is in L1(D0). We define

g̃(s, x) =
∫

D
g(y)pabs(t + h− s, x, y)dy (39)

for arbitrary h > 0 and t ∈ [0, T ]. Then g̃(s, x) is smooth and vanishes on the
boundary ∂D. We apply (38) to ψ(s, x) = g̃(s, x) and obtain

∫

D0

g̃(t, x)νD0(t, dx) =
∫

D0

g̃(0, x)νD0(0, dx) .

We derive ∣∣∣∣
∫

D0

g̃(t, x)νD0(t, dx)
∣∣∣∣ =

∣∣∣∣
∫

D0

g̃(0, x)νD0(0, dx)
∣∣∣∣

≤
∫

D0

˜|g|(0, x)νD0(0, dx) ≤ C(t + h)
∫

D
|g(x)|dx

by Fubini’s theorem, where C(t + h) is supx,y∈D pabs(t + h, x, y). Furthermore,
C(t + h) is bounded above by a constant C0(t) > 0 uniformly in h. Let G be

an open set G ⊆ D0. Fatou’s lemma applied to
∣∣∣∣
∫
D0

g̃(t, x)νD0(t, dx)
∣∣∣∣ as h → 0

shows that, for g(x) = 1G(x)

νD0(t, G) ≤ lim inf
h→0

∫

D0

g̃(t, x)νD0(t, dx) ≤ C0(t)
∫

D
|g(x)|dx = C0(t)|G| . (40)

13



For any time t > 0, we have shown that 1) νD0(t, dx) is absolutely continu-
ous with respect to the Lebesgue measure having a density uD0(t, x) and 2)
uD0(t, x) is uniformly bounded in x and D0 by the constant C0(t).

Step 4: identification of the solution. At this stage we know the solution
νD0(·, dx) only as a limit point of the tight measures {νN(·, dx)|D0}N∈Z+ . Since
the measures depending on N are consistent, the limit points are consistent as
well. The solutions νD0(t, dx) = uD0(t, x)dx are consistent in the sense that,
if D′

0 ⊆ D′′
0 , then νD′0(t, dx) = νD′′0 (t, dx) on D′

0. We have shown that, for any
t ∈ [0, T ], there exists a function u(t, x) defined on the open set D such that
u(t, x)|D0 = uD0(t, x). Moreover, for ψ ∈ C2(D) vanishing on the boundary
∂D, the function u satisfies (37)

∫

D0

ψ(x)u(t′′, x)dx−
∫

D0

ψ(x)ν(t′, dx) =
∫ t′′

t′

∫

D0

1

2
∆ψ(x)u(s, x)dxds (41)

for any 0 ≤ t′ ≤ t′′ ≤ T . To make sure that u(t, x) is the weak solution to
(18), we must prove that, for any ψ ∈ C2(D) vanishing on the boundary ∂D

∫

D
ψ(x)u(t′′, x)dx−

∫

D
ψ(x)ν(t′, dx) =

∫ t′′

t′

∫

D

1

2
∆ψ(x)u(s, x)dxds (42)

Let n ∈ Z+ and Dn
0 be an increasing sequence of open subsets of D such that

Dn
0 ⊂ D and ∪n≥1D

n
0 = D. Because u has a uniform bound C0(t) for any t > 0

established in (40), we can pass to the limit in (41) as Dn
0 → D which implies

that u is the solution to the heat equation with zero boundary conditions on
D.

The left hand side of equation (37) has a limit as Dn
0 → D by dominated

convergence. It is clear that the right hand side term of equation (37) has a
limit as well. We need to prove that the limit is equal to the integral over
the full domain D. We cannot use dominated convergence directly for times
t approaching zero. However, the integral over Dn

0 is known to have a unique
limit over any choice of sequences Dn

0 . Consequently we can pass to the limit
in (37) as Dn

0 → D and obtain (42). Standard PDE results for linear parabolic
equations imply that the solution is unique in case ν(0, dx) is deterministic.
The weak solutions will be in fact strong solutions if ν(0, dx) = ρ0(x)dx. 2

Lemma 1 For any function φ ∈ C2
c (D), any ε > 0 and for any N ∈ Z+ there

exists an event SN
unif (φ) such that

SN
unif (φ) =

{
supt∈[0,T ]

∣∣∣∣
∫
D φ(x)νN(t, dx)− ∫

D φ(x)ν(t, dx)
∣∣∣∣ > ε

}
and

lim supN→∞ P
(
SN

unif (φ)
)

= 0 .
(43)
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Proof. We fix the function φ(x). The limit ν(t, dx) = u(t, x)dx is the solution
to the heat equation with zero boundary conditions from (18), a continuous
function of time when applied to φ. Since we are interested in establishing (43)
in the case when φ has compact support in D, we shall identify the measures
νN(t, dx) with their restrictions to an open set D0 ⊂⊂ D including the support
of φ, as in the proof of Proposition 2. The functional Φ(g(·)) = supt∈[0,T ] |g(t)−
g0(t)| is continuous on the Skorohod space D([0, T ],R) when g0(·) is continuous
(see [1]). Let g0(t) = 〈φ, ν(t, dx)〉. Since α(·, dx) → 〈φ, α(·, dx)〉 is continuous
as a functional on D([0, T ],M(D0)) we derive that α(·, dx) → Φ(〈φ, α(·, dx)〉)
is continuous. We recall the law QN

D0
from (34). Then

lim sup
N→∞

QN
D0

(
{α : Φ(〈φ, α(·, dx)〉) ≥ ε}

)
≤

QD0

(
{α : Φ(〈φ, α(·, dx)〉) ≥ ε}

)
= 0 ,

concluding the proof. 2

Proposition 3 Under the conditions of Proposition 2, for a given time in-
terval [0, T ], there exists a constant C(T ) > 0 and for each N ∈ Z+ an event
SN

A such that

SN
A =

{
AN(T ) > C(T )

}
and lim supN→∞ P

(
SN

A

)
= 0 . (44)

Proof. Let Φ1(x) be the normalized first eigenfunction of the Laplacian with
Dirichlet boundary conditions on D such that

∫
D Φ1(x)dx = 1. Let µ(dx)

a probability measure on D and u(t, x) given in (18). By applying Green’s
formula to u(t, ·) and Φ1(x) on D we see that the function

∫
D u(t, x)Φ1(x)dx

is nonincreasing as a function of time. We derive that

inf
t∈[0,T ]

∫

D
u(t, x)Φ1(x)dx = 2νT > 0 . (45)

For a sufficiently small r > 0, the function Φr
1(x) = Φ1(x)(1 − γr(x)) has

compact support and, by continuity,

inf
t∈[0,T ]

∫

D
u(t, x)Φr

1(x)dx = νT > 0 . (46)

We take C(T ) = log(2ν−1
T ‖Φr

1‖∞). The series of inclusions
{
AN(T ) > C(T )

}
⊆

{
∃ t ∈ [0, T ] : exp(AN(t)) > eC(T )

}
⊆

{
∃ t ∈ [0, T ] : exp(AN(t)) >

∫
D Φr

1(x)µN(t, dx)∫
D Φr

1(x)ν(t, dx)− νT

2

}
⊆

15



{
∃ t ∈ [0, T ] : exp(−AN(t))

∫

D
Φr

1(x)µN(t, dx)−
∫

D
Φr

1(x)ν(t, dx) < −νT

2

}
⊆

{
sup

t∈[0,T ]

∣∣∣∣ exp(−AN(t))
∫

D
Φr

1(x)µN(t, dx)−
∫

D
Φr

1(x)ν(t, dx)
∣∣∣∣ >

νT

2

}

imply (44) by using (43) applied to φ = Φr
1 a smooth function with compact

support in D and taking ε = νT /2. 2

Proposition 4 Recall γr(x) from Definition 1 and define γc
r(x) = 1−γr(x) ≥

0, which is smooth on D and vanishes on the boundary. Let rD(µ) > 0 be the
largest radius r less than rD such that µ(0, Dr) > 0. Under the conditions of
Proposition 2, for a given time interval [0, T ] and for any r ≤ rD(µ) there
exists a constant Cr > 0 and for each N ∈ Z+ an event SN

L (r) such that

SN
L (r) =

{
inft∈[0,T ]

1
N

∑N
i=1 γc

r(xi(t)) ≤ Cr

}
and

lim supN→∞ P
(
SN

L (r)
)

= 0 .
(47)

Remark: Proposition 4 gives a uniform lower bound for the number of parti-
cles in Dr or, equivalently, a uniform upper bound for the number of particles
in a vicinity of the boundary Dc

r.

Proof. The function γc
r(x) = 1 − γr(x) ≥ 0 is smooth on D and vanishes on

the boundary. For r > 0 we define

νT (r) = inf
t∈[0,T ]

∫

D
γc

r(x)ν(t, dx) (48)

and Cr = νT (r)/2. We make the observation that because µ(0, dx) puts zero
mass on the boundary ∂D we can always choose r > 0 such that νT (r) > 0.
We look at the following inclusions

{
inf

t∈[0,T ]

∫

D
γc

r(x)µN(t, dx) < Cr

}
⊆

{
∃ t ∈ [0, T ] :

∫

D
γc

r(x)µN(t, dx) <
νT (r)

2

}
⊆

{
∃ t ∈ [0, T ] :

∫

D
γc

r(x)µN(t, dx) <
∫

D
γc

r(x)ν(t, dx)− νT (r)

2

}
⊆

{
∃ t ∈ [0, T ] : e−AN (t)

∫

D
γc

r(x)µN(t, dx) <
∫

D
γc

r(x)ν(t, dx)− νT (r)

2

}
⊆

{
∃ t ∈ [0, T ] : e−AN (t)

∫

D
γc

r(x)µN(t, dx)−
∫

D
γc

r(x)ν(t, dx) < −νT (r)

2

}
⊆

{
sup

t∈[0,T ]

∣∣∣∣e−AN (t)
∫

D
γc

r(x)µN(t, dx)−
∫

D
γc

r(x)ν(t, dx)
∣∣∣∣ >

νT (r)

2

}
.

We can apply (43) with φ = γc
r and ε = νT (r)/2 and derive (47). 2
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Proposition 5 For any t0 > 0 there exists a constant Ct0 such that, for each
N ∈ Z+ and any φ ∈ C2(D) vanishing on the boundary, there exists an event
SN

U (φ) satisfying

SN
U (φ) =

{
supt∈[t0,T ]

∣∣∣∣
∫
D φ(x)µN(t, dx)

∣∣∣∣ > Ct0

∫
D |φ(x)|dx

}
and

lim supN→∞ P
(
SN

U (φ)
)

= 0 .
(49)

Proof. Without loss of generality we assume φ ≥ 0. Let

ε =

(
sup

t∈[t0,T ]
sup
x∈D

{|u(t, x)|}
) ∫

D
φ(x)dx

applied to equation (43). We write the following inclusions.

UN =
{

sup
t∈[t0,T ]

∣∣∣∣
∫

D
φ(x)νN(t, dx)−

∫

D
φ(x)ν(t, dx)

∣∣∣∣ > ε
}

⊇
{
∃ t :

∫

D
φ(x)νN(t, dx)−

∫

D
φ(x)ν(t, dx) > ε

}

=
{
∃ t :

∫

D
φ(x)µN(t, dx) > eAN (t)

( ∫

D
φ(x)ν(t, dx) + ε

)}

⊇
{
∃ t :

∫

D
φ(x)µN(t, dx) > eAN (T )

( ∫

D
φ(x)ν(t, dx) + ε

)}
.

Recall (44). For

Ct0 = 2 eC(T )

(
sup

t∈[t0,T ]
sup
x∈D

{|u(t, x)|}
)

the set from above includes the intersection of V N and CN where

V N =
{
∃ t :

∫

D
φ(x)µN(t, dx) > Ct0

∫

D
φ(x)dx

}
, CN =

{
AN(T ) ≤ C(T )

}
.

We obtain that V N ∩ CN ⊆ UN . Therefore

V N = (V N ∩ CN) ∪ (V N ∩ (CN)c) ⊆ UN ∪ (CN)c

which concludes the proof. 2

The number of particles in a subset F ⊆ D at time t ∈ [0, T ] will be denoted
by N(F, t).

Corollary 2 Let F ⊆ F ⊂ D. Then, for any t0 ∈ (0, T ) and for any N ∈ Z+

there exists an event SN
U (F ) such that

SN
U (F ) =

{
supt∈[t0,T ] N(F, t) > 2Ct0vol(F )N

}
and

lim supN→∞ P
(
SN

U (F )
)

= 0
(50)
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where Ct0 is the same constant from Proposition 5.

Remark: The constant 2Ct0 in the Corollary can be reduced to be exactly
Ct0 .

Proof. Since F ⊆ F ⊂ D we can approximate the indicator function of F
from above with a decreasing sequence of {φl(x)}l≥1 ∈ C∞

0 (D). We apply
Proposition 5 to the sequence φl to obtain (50). 2

Remark. We shall use Corollary 2 only for sets F with vol(∂F ) = 0 (with
negligible boundary in the sense of Lebesgue measure).

Lemma 2 Let Cr be the constant in equation (47) and Tr ≥ 0 be the stopping
time defined as

Tr = inf{t > 0 : 〈γc
r(x), µN(t, dx)〉 ≤ Cr} (51)

where γc
r(x) is as in Proposition 4 and Tr = ∞ if the infimum is taken over

the empty set. Then there exists a constant C(r, T ) independent of N such
that

E
[
AN(T ∧ Tr)

2
]
≤ C(r, T ) . (52)

Remark. In this paper we actually only need the bound on the first moment
of AN(T ∧Tr). However, the estimate is valid for any moment p > 1 along the
same lines as in the following proof.

Proof. We apply (12) for the function φ = γc
r in conjunction with the optional

stopping theorem to obtain

Cr

(
AN(T ∧Tr)−AN(0)

)
≤ inf

u∈[0,T∧Tr]

{
1

N

N∑

j=1

γc
r(xj(u))

}(
AN(T ∧Tr)−AN(0)

)

(53)

≤ 1

N

N∑

i=1

∫ T∧Tr

0

(
1

N − 1

∑

j 6=i

γc
r(xj(u))− γc

r(xi(u−))
)
dAN

i (u)

=
1

N

N∑

i=1

γc
r(xi(T ∧ Tr))− 1

N

N∑

i=1

γc
r(xi(0))−

∫ T∧Tr

0

1

N

N∑

i=1

1

2
∆dγ

c
r(xi(u))du

− 1

N

N∑

i=1

∫ T∧Tr

0
∇γc

r(xi(u)) · dwi(u)−MN,J
〈γc

r ,µN 〉(T ∧ Tr) .

The parameter r is fixed. We divide by the constant Cr > 0 and take the
expected value to see that the first moment of AN(T ∧ Tr) is bounded inde-
pendently of N . To estimate the second moment, we square both sides of the
inequality, apply Schwarz’s inequality on the right hand side and obtain

E
[
AN(T ∧ Tr)

2
]
≤ C1(r, T ) +

C2(r, T )

N
E

[
AN(T ∧ Tr)

]
.
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Denote then U2 = E
[
AN(T ∧Tr)

2

]
and apply Schwarz’s inequality once more

to the first moment of AN(T ∧Tr) from the right hand side. Since (U− C2

2N
)2 ≤

C1 + ( C2

2N
)2 we conclude that U2 ≤ 2C1 + (C2

N
)2 := C(r, T ) from (52). 2

Proposition 6 If the initial configuration of the process is asymptotically
nondegenerate at the boundary ∂D (in the sense of Definition 3), then for
any ε > 0,

lim
r→0

lim sup
h→0

lim sup
N→∞

P
(

sup
0≤h′≤h

∫

D
γr(x)µN(h′, dx) > ε

)
= 0 (54)

and

lim sup
h→0

lim sup
N→∞

P
(
AN(h) > ε

)
= 0 . (55)

Remark. This result takes care of the asymptotic behavior at the boundary
for a short time interval [0, h] and is needed only because we do not assume
regularity of the initial profile µ(0, dx).

Proof. We recall Tr from Lemma 2, with r ≤ rD(µ), denoted by rD in the
following. We write (13) for the function φ = γr. The dAN

i (t) terms are all
negative due to the form of the function γr. This gives the bound (valid path-
wise)

0 ≤ 1

N

N∑

i=1

γr(xi(h
′)) ≤ 1

N

N∑

i=1

γr(xi(0))+ (56)

∫ h′

0

1

N

N∑

i=1

1

2
∆dγr(xi(u))du +

1

N

N∑

i=1

∫ h′

0
∇γr(xi(u)) · dwi(u) +MN,J

〈γr,µN 〉(h
′) .

The case Tr < h is a subset of the asymptotically negligible event SN
L (r) from

(47). Assume Tr ≥ h. Since the function γr is positive, the supremum over
h′ ∈ [0, h] of the left hand side of the inequality will be bounded above by 1) the
du term which is bounded in absolute value by 1

2
hc(D)r−2, 2) the martingale

terms, which are of order N−1 after calculating the quadratic variation and
using the martingale maximal inequality and 3) the first term that will vanish
as r → 0 according to (17). This proves (54).

To prove (55),

P
(
AN(h)−AN(0) > ε

)
≤ P

(
AN(h)−AN(0) > ε , TrD

> T
)

+P
(
TrD

≤ T
)

.

Proposition 4 shows that the second probability converges to zero as N →∞.
The first probability can be written as

P
(
AN(h∧TrD

)−AN(0) > ε , TrD
> T

)
≤ P

(
AN(h∧TrD

)−AN(0) > ε
)

. (57)
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Then, similarly to Lemma 2 we can have the inequality

CrD

(
AN(h ∧ TrD

)− AN(0)
)
≤ (58)

inf
u∈[0,h∧TrD

]

{
1

N

N∑

j=1

γc
r(xj(u))

}(
AN(h ∧ TrD

)− AN(0)
)
≤

1

N

N∑

i=1

∫ h∧TrD

0

(
1

N − 1

∑

j 6=i

γc
r(xj(u))− γc

r(xi(u−))
)
dAN

i (u)

=
1

N

N∑

i=1

γc
r(xi(h ∧ TrD

))− 1

N

N∑

i=1

γc
r(xi(0))−

∫ h∧TrD

0

1

N

N∑

i=1

1

2
∆dγ

c
r(xi(u))du

− 1

N

N∑

i=1

∫ h∧TrD

0
∇γc

r(xi(u)) · dwi(u)−MN,J
〈γc

r ,µN 〉(h ∧ TrD
)

hence AN(h ∧ TrD
) will have an upper bound given by the right-hand side of

(58) times C−1
rD

. Since γc
r = 1− γr, we can write for any h

1

N

N∑

i=1

γc
r(xi(h))− 1

N

N∑

i=1

γc
r(xi(0)) =

1

N

N∑

i=1

γr(xi(0))− 1

N

N∑

i=1

γr(xi(h)) .

In order to estimate the probability in (57) we notice that we have to estimate
the probabilities of the union of the events that either of the four terms of the
right hand side of the inequality (58) exceeds ε/4. The first term is bounded
by 〈γr(x), µN(0, dx)〉 and approaches zero as r → 0 after N → ∞ by the
definition of the existence of the initial profile concentrated on the open set
D. The time integral is of order h uniformly in N . The Brownian martingale
has a quadratic variation of order hN−1. The jump martingale has quadratic
variation with an integrand of order N−1 and the process AN(h ∧ TrD

) has
a first moment uniformly bounded in N from Lemma 2. This concludes the
proof. 2

4 Bound for the number of particles at the boundary.

This section proves Theorem 2, which shows that the empirical measure is
asymptotically non-degenerate at the boundary ∂D in the sense of Definition
3, uniformly in time.

For M ∈ {1, 2, . . . , N} and τ ≥ 0 a stopping time, we denote

ξ(r, τ, M) = inf{t > τ : N(Dc
r, t) = M} ∧ T , (59)

which is well defined because the times when particles enter and exit Dc
r, either

through diffusive motion or jump occur one at a time with probability one. If
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τD is the exit time from D for a d-dimensional Brownian motion starting with
the probability measure µ(dx) coinciding with the initial profile from (18), let

p(ζ, r) = inf
x∈Dc

r

Px(τD ≤ ζ) = inf
x∈Dc

r

(
1−

∫

D
pabs(ζ, x, dy)

)
(60)

with the property that limr→0 p(ζ, r) = 1.

Let t0 > 0 be as in (49) and (50) and recall the upper bound for the number
of particles in a set F ⊆ D from Corollary 2. Based on equation (50), write

c1(t0) = 4Ct0 sup
0<r≤rD

r−d vol(Dr \D2r) (61)

for a constant depending on the geometry of D, where Ct0 is the uniform
constant from (50). Also, if u(t, x) is the solution of the heat equation with
Dirichlet boundary conditions (18), write

c2(t0) =
eC(T )

2

(
1 + sup

t0≤t≤T

∫

D
|∆u(t, x)|dx

)
, (62)

justified by the following proposition, which is a refinement of Corollary 2.
In the following, we shall write c1 and c2 instead of c1(t0) and c2(t0) for sim-
plification (see the remark after Theorem 2 in relation to the dependence on
t0).

Proposition 7 For any fixed t0 ∈ (0, T ), any r > 0, ζ > 0, and any stopping
time τ ≥ t0, there exists an event SN(ζ, r) such that

SN(ζ, r) =
{

sup0≤ζ′≤ζ

∣∣∣
∫ τ+ζ′
τ

1
2N

∑N
i=1 ∆γc

r(xi(s))ds
∣∣∣ > c2ζ

}

limN→∞ P (SN(ζ, r)) = 0 .
(63)

Notice that the constant c2 depends only on the initial density profile µ(dx) in
(18), the time t0, and not on N , r, ζ or τ .

Remark. The proposition justifies the lower bound −c2ζ for (72).

Proof. A supremum norm estimate of the integrand is of order ζr−2, which
would interfere with our argument. However, we can obtain a bound depending
only on ζ as follows.

sup
0≤ζ′≤ζ

∣∣∣∣
∫ τ+ζ′

τ

1

2N

N∑

i=1

∆γc
r(xi(s)) ds

∣∣∣∣ ≤ ζ sup
t0≤t≤T

∣∣∣∣
1

2N

N∑

i=1

∆γc
r(xi(t))

∣∣∣∣

≤ ζ

2
sup

t0≤t≤T

∣∣∣∣eAN (t)
[(

1

N

N∑

i=1

∆γc
r(xi(t))

)
e−AN (t)

]∣∣∣∣
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≤ eC(T )ζ

2
sup

t0≤t≤T

∣∣∣∣〈
∫

D
∆γc

r(x)νN(t, dx)〉 − 〈
∫

D
∆γc

r(x)ν(t, dx)〉
∣∣∣∣ (64)

+
eC(T )ζ

2
sup

t0≤t≤T

∣∣∣∣〈
∫

D
∆γc

r(x)ν(t, dx)〉
∣∣∣∣ (65)

where (64) holds except on the exceptional set (44) with probability approach-
ing zero as N →∞. Take ε = 1 in (43). Notice that ν(t, dx) = u(t, x)dx as in
(18) and the density profile is smooth for t ≥ t0 > 0. In addition, apply Green’s
second formula to see that (65) is bounded above by a constant independent
of r. 2

In the following, ε > 0 is a small but fixed number. Recall the universal
constant CrD

defined in Proposition 4, specifically for the case r = rD (the
thickness r of the boundary layer Dc

r). We would like to find a set of positive
constants (a, ζ, r, k, k′) satisfying the system





k > 1 , ka < ε/2 , k′/k < p(ζ, r)

a + c1r + c2ζ < ε/2

k − CrD
k′ + a−1(c1r + c2ζ) < 1

(66)

with the condition that a and ζ depend only on ε and the solution exists for
any r < r(ε), where r(ε) is a critical value depending on ε. The explanation
for the necessity of choosing the parameters according to (66) will become
apparent with Lemma 3.

We shall construct a solution of the system (66) as follows. Take α ∈ (0, 1 ∧
C−1

rD
) and pick a solution of the system of inequalities in the variables (λ1, λ2)





1
6
(1− αCrD

) < λ1 < 1
2
(1− αCrD

)

λ1 + c2λ2 < 1
4

0 < λ2 <
αCrD

10c2
λ1

(67)

bounded away from the boundary of the domain. Let a = λ1ε and ζ = λ2ε
and notice that the numbers a and ζ constructed in this way depend only on
ε. Set v = 1− CrD

αp(ζ, r) > 0 which implies that

1 + v

2
∈ (v, 1) , k =

1 + v

2v
, k′ = kαp(ζ, r) . (68)

Notice that 1− CrD
α ≤ v < 1 and v = 1 if and only if p(ζ, r) = 0. We notice

that k ≤ (1−αCrD
)−1. Combining (67) and (60), we can see that the original

system (66) has a solution as prescribed for any sufficiently small r.
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The main ingredient of the proof is Lemma 3. For a given ε, we choose a
which is roughly of the same magnitude but strictly smaller, in the sense that
ka < ε/2 where k > 1. If the number of particles in Dc

r at start is [aN ],
then there will be at least [kaN ] particles in Dc

r before the number [εN ] is
reached. Denote the time when [kaN ] is reached by ξk. However, Itô’s formula
(71) ensures that a large number of particles reaching the boundary (at least
CrD

[k′aN ]) will return in the complement Dr, where k′ ≈ p(ζ, r)k. The second
inequality on line one of the system (66) together with the second line of the
system ensure that the number of particles will never reach [εN ] in the time
interval [τ, ξk + ζ]. The third line of (66) says that the number of particles will
drop below the initial number [aN ] at time ξk + ζ, the right endpoint of the
time interval. In addition, it is essential to note that a and ζ depend on ε only,
which proves that the process spends a macroscopic time ζ (independent of
N) away from the state with [εN ] particles in the boundary layer, with the
exception of an event with probability approaching zero as N →∞.

Lemma 3 Let ε > 0, k > 1, k′/k < p(ζ, r), a < ε, and ζ > 0 be defined as
in (66). We fix 0 < t0 << T as in (49) and (50). Let τ be a stopping time
τ ∈ [t0, T ]. Then

lim
N→∞

P




{
N(Dc

r, τ) ≤ [aN ] , ξk + ζ ≤ T
} ⋂

(69)

{
ξk + ζ < ξ(r, τ, [εN ]) , N(Dc

r, ξk + ζ) ≤ [aN ]
}c


 = 0

and

lim
N→∞

P

({
N(Dc

r, τ) ≤ [aN ] , ξk + ζ > T
} ⋂ {

sup
τ≤t≤T

N(Dc
r, t) < [εN ]

}c
)

= 0 .

(70)

Proof.1) The limit (69). Recall TrD
from (51) for the inner set DrD

. Without
loss of generality we assume that r << rD. Given γc

r(x) the indicator function
of Dr convoluted with a mollifier approximating the delta function (Definition
1), we write for ζ ′ ≤ ζ,

1

N

N∑

i=1

γc
r(xi([ξk + ζ ′] ∧ TrD

))− 1

N

N∑

i=1

γc
r(xi(ξk ∧ TrD

)) (71)

=
∫ [ξk+ζ′]∧TrD

ξk∧TrD

1

2N

N∑

i=1

∆γc
r(xi(s)) ds (72)

+
∫ [ξk+ζ′]∧TrD

ξk∧TrD

1

N

N∑

i=1

γc
r(xi(s)) dAN(s) (73)
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+ MN
γc

r
([ξk + ζ ′] ∧ TrD

)−MN
γc

r
(ξk ∧ TrD

) . (74)

Consider Proposition 5 and Corollary 2 applied to Dr \ D2r, a set appear-
ing in the approximation of the error separating the number of particles in
Dr and Dc

r and their smooth approximation counterparts 〈γc
r , µ

N(·, dx)〉 and
〈γr, µ

N(·, dx)〉. The cumulative errors are of order r, with constant c1 indepen-
dent of both N and r, as defined in (61). We notice that the exceptional sets
(49) and (50) depend on r but their probability will vanish as N →∞ before
we pass to the limit in the other parameters. We shall give a lower bound to
the term (72) based on Proposition 7, with constant c2 independent of N and
r. Next, (73) will be bounded below by using the universal constant CrD

from
Proposition 4, again outside the exceptional event SN

L (rD) from (47). Finally,
the martingale part (74) has quadratic variation of order O(N−1) with the
same argument as in Proposition 6. With the notation N(B, t) for the number
of particles in subset B at time t, we have

1

N
N(Dr, ξk + ζ ′) ≥ (75)

≥ 1

N
N(Dr, ξk)− c1r − c2ζ + CrD

(AN(ξk + ζ ′)− AN(ξk))−O(N−1/2)

which can be written as

1

N
N(Dc

r, ξk + ζ ′) ≤ (76)

1

N
N(Dc

r, ξk) + c1r + c2ζ − CrD
(AN(ξk + ζ ′)− AN(ξk)) + O(N−1/2)

outside of an exceptional event UN(r, τ), defined as the union of the excep-
tional events allowing the lower bound described in the paragraph from above.
For r sufficiently small as in (66), limN→∞ P (UN(r, τ)) = 0. This proves that,
for any ζ ′ ≤ ζ, the average number of particles 1

N
N(Dc

r, t) for t ∈ [ξk, ξk + ζ ′]
has an upper bound in probability

lim sup
N→∞

P
(

1

N
sup

t∈[ξk,ξk+ζ′]
N(Dc

r, t) > a + c1r + c2ζ
′
)

= 0 (77)

as a consequence of (76). As soon as ε/2 > a + c1r + c2ζ, since 2ka < ε once
again from (66), we have shown that ξ(r, τ, [εN ]) > ξk + ζ ′.

Proposition 8 implies that at time ξk + ζ the lower bound for the term in (73)
is CrD

[k′aN ]/N , bringing (76) to the form

1

N
N(Dc

r, ξk + ζ) ≤ 1

N
N(Dc

r, ξk) + c1r + c2ζ − CrD

[k′aN ]

N
+ O(N−1/2) . (78)

Let N → ∞ to see that if line three of (66) is true, then (78) implies that
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at time ξk + ζ the average number of particles in Dc
r drops again below [aN ],

without having ever reached [εN ] in [τ, ξk + ζ].

2) The limit (70). The first case is when ξk = T . It is clear that for any
t ∈ [τ, T ], N(Dc

r, t) ≤ [kaN ] ≤ [(ε/2)N ]. Suppose ξk < T but ξk + ζ > T .
For the interval t ∈ [τ, ξk] case 1) applies, while for the interval t ∈ [ξk, T ] we
apply the estimate (77).

2

Proposition 8 If k′/k < p(ζ, r), and ξk is defined as in Lemma 3 and satisfies
ξk + ζ ≤ T , then

lim
N→∞

P
(
# jumps in [ξk, ξk + ζ] < [k′aN ]

)
= 0 . (79)

Proof. Denote

pj(ζ, r) = Pxj(ξk)(τD ≤ ζ) . (80)

Construct the Bernoulli random variables Zj by setting Zj = 1 if the particle
of index j, 1 ≤ j ≤ N starting at time ξk hits the boundary ∂D before time
ξk + ζ and Zj = 0 otherwise. Then, if J = {j = 1, 2, . . . , N : xj(ξk) ∈ Dc

r},

P
(
# jumps in [ξk , ξk + ζ] < [k′aN ]

)
≤ P

( N∑

j=1

Zj < [k′aN ]
)

≤ P
( ∑

j∈J

Zj < [k′aN ]
)

≤ P
( ∑

j∈J

(〈pj(ζ, r)〉 − Zj) >
∑

j∈J

〈pj(ζ, r)〉 − [k′aN ]
)

.

Since

∑

j∈J

〈pj(ζ, r)〉− [k′aN ] ≥ |J |
(
p(ζ, r)− [k′aN ]

|J |
)
≥ [kaN ]

(
p(ζ, r)− [k′aN ]

[kaN ]

)
> 0 ,

the particles are independent Brownian motions until they hit the boundary,
and the actual number of boundary hits can only be larger than

∑
Zj, Cheby-

shev’s inequality gives that the probability from (79) has an asymptotic upper
bound as N →∞

maxj∈J V ar(Zj)|J |
|J |2

(
p(ζ, r)− [k′aN ]

|J |

)2 ≤
1

4aN

(
p(ζ, r)− k′

k

)−2

∼ O(
1

N
) .

2
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Theorem 2 Let ε > 0. Then

lim
r→0

lim sup
N→∞

P
(
ξ(r, 0, [εN ]) ≤ T

)
= 0 . (81)

Remark. All the estimates in this section are obtained for times starting
after a positive t0, in order to avoid the possible singularity of the initial
profile µ(dx) and take advantage of the uniform estimates in Section 3. The
only limit where t0 is not fixed (namely t0 → 0) is the asymptotic bound for
the event (83). In regards to (82), the limit is zero after letting N → ∞ due
to Proposition 6.

Proof. Let t0 ∈ (0, T ) be a small positive number exactly as in Lemma 3. Then

{
ξ(r, 0, [εN ]) ≤ T

}
⊆ UN

1 ∪ UN
2

where

UN
1 =

{
ξ(r, 0, [εN ]) ≤ T , ξ(r, 0, [aN ]) > t0

}
(82)

UN
2 =

{
ξ(r, 0, [εN ]) ≤ T , ξ(r, 0, [aN ]) ≤ t0

}
⊆

{
ξ(r, 0, [aN ]) ≤ t0

}
. (83)

Let τ ∈ [t0, T ] be a stopping time, a, ζ, r, k, k′ be chosen as in Lemma 3. We
shall call a regular cycle a random time interval [τ, (ξ(r, τ, [aN ])+ ζ)∧T ] with
either one of the properties (p) or (p’), where

(p)





(i) N(Dc
r, τ) ≤ [aN ],

(ii) ξ(r, τ, [aN ]) + ζ ≤ T ,

(iii) ξ(r, τ, [εN ]) > ξ(r, τ, [aN ]) + ζ

(iv) N(Dc
r, ξ(r, τ, [aN ]) + ζ) ≤ [aN ]

and

(p’)





(i′) = (i) ,

(ii′) ξ(r, τ, [aN ]) + ζ > T ,

(iii′) supτ≤t≤T N(Dc
r, t) < [εN ] .

Let l = 0, τ̃0 = t0. Define τ̃l+1 = (ξ(r, τ̃l, [aN ]) + ζ) ∧ T if [τ̃l, τ̃l+1] is a regular
cycle. Proceed inductively until we reach a non-regular cycle. Then, since ζ
defined in (66) does not depend on N and r, UN

1 from (82) belongs to

{
there are at most [

T

ζ
] + 1 regular cycles starting at t0 , ξ(r, 0, [εN ]) ≤ T

}
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⊆
[T

ζ
]+1⋃

l=0

{
there are exactly l regular cycles before T , ξ(r, 0, [εN ]) ≤ T

}

⊆
[T

ζ
]⋃

l=0

{
[τ̃l, (ξ(r, τ̃l, [aN ]) + ζ) ∧ T ] is not a regular cycle

}
.

At this point we apply Lemma 3 to τ = τ̃l to see that limN→∞ P (UN
1 ) = 0.

We have shown that

lim sup
N→∞

P
(
ξ(r, 0, [εN ]) ≤ T

)
≤ lim sup

N→∞
P (UN

2 ) .

Finally, according to Proposition 6 applied to ε ↔ a/2 and h ↔ t0 in equation
(54),

lim
r→0

lim sup
t0→0

lim sup
N→∞

P (UN
2 ) ≤

≤ lim
r→0

lim sup
t0→0

lim sup
N→∞

P
({

sup
0≤t≤t0

1

N

N∑

i=1

γr(xi(t)) >
a

2

})
= 0 , (84)

which proves the iterated limit (81) for UN
2 . 2

5 Tightness.

Let X be a Polish space with norm ‖ · ‖ and let D([0, T ], X) be the Sko-
rohod space of functions with left limits and right continuous on [0, T ]. The
following are sufficient conditions for tightness in D([0, T ], X) of the family
of processes {yN(·)}N>0 ∈ D([0, T ], X), adapted to the filtration {Ft}t≥0 (the
Aldous condition).

Let T be the collection of all stopping times with respect to the filtration
{Ft}t≥0 bounded above by T .

(i) There exists a constant Y0 > 0 such that

lim sup
N→∞

P
(

sup
t∈[0,T ]

‖yN(t)‖ > Y0

)
= 0 (85)
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(ii) For any ε > 0

lim
η→0

lim sup
N→∞

sup

τ ∈ T
s ∈ [0, η]

P
(
‖yN(τ + s)− yN(τ)‖ > ε

)
= 0 (86)

with the convention that τ + s stands for (τ + s) ∧ T .

Let rD be the inner radius of the domain D (from Definition 1). For ε > 0 we
define r′ > 0 with the property

2r′ < rD Ct0V ol(Dr′ \D2r′) <
CrD

ε

48
(87)

where CrD
is the lower bound (47). We shall choose r > 0 such that

4r < r′ , Ct0V ol(Dr′−r \Dr′) <
CrD

ε

48
, and let δ = r′ − 2r . (88)

As in Corollary 2, the number of particles in the set F ⊆ D at time t ∈ [0, T ]
will be denoted as N(F, t).

Proposition 9 Let t0 > 0 and τ ≥ t0 a stopping time. Then, for any ε > 0
and any r as in (88), there exists a sufficiently small η > 0, such that if we

write ε′ = CrD
ε

24
, then

lim sup
N→∞

P
(
AN((τ + η) ∧ T )− AN(τ) ≥ ε

2
, N(Dc

r, τ) ≤ [Nε′]
)

= 0 . (89)

Proof. We shall suppress the minimum with the time interval endpoint T for
simplification. Define

Sτ =
{
AN(τ + s)− AN(τ) ≥ ε

2
, N(Dc

r, τ) ≤ [Nε′]
}

(90)

for 0 ≤ s ≤ η. We shall partition the domain D into Dc
r, Dr\Dr+δ, Dr+δ\D2r+δ

and D2r+δ, where δ = r′−2r is defined in equation (88). Notice that r′ is fixed
according to ε and δ will be also of the order of ε as r → 0. The estimates
obtained in the following are valid for any r less than a critical value depending
on ε only.

The first set contains at most [Nε′] particles at time τ . The third is a buffer
zone containing an asymptotically bounded number of particles (49). This
implies that Sτ in (90) is a sub-event of the event that a number of particles
of order N is transferred from Dr \Dr+δ into D2r+δ in a time interval no longer
than η. The probability of this event tends to zero as N → ∞ because the
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particles have to cross either one of the two buffer zones Dc
r or Dr+δ \D2r+δ as

independent Brownian motions in order to reach D2r+δ. The following makes
precise this idea.

We recall the asymptotical lower bound for the number of particles away from
the boundary (47). For r′ we obtain a lower bound Cr′ and a set

SN
L (r′) =

{
inf

t∈[t0,T ]

1

N

N∑

i=1

γc
r′(xi(t)) ≤ Cr′

}

such that limN→∞ P (SN
r′ ) = 0. Due to the monotonicity of the functions γc

r(x)
in r, according to the definition (48), we derive that CrD

≤ Cr′ for r′ < rD/2.
We write the Itô formula (58) for r′ and a time interval [t′, t′′] instead of [0, h].
The details of this estimation are the same as in Proposition 6. We let

a(r′, t′, t′′) = inf
u∈[t′∧Tr′ ,t′′∧Tr′ ]

{
1

N

N∑

j=1

γc
r′(xj(u))

}
.

Then outside the exceptional set SN
L (r′) ⊆ {Tr′ > T},

CrD

(
AN(t′′ ∧ Tr′)− AN(t′ ∧ Tr′)

)
≤ (91)

a(r′, t′, t′′)
(

1

N − 1

N∑

i=1

AN
i (t′′ ∧ Tr′)− 1

N − 1

N∑

i=1

AN
i (t′ ∧ Tr′)

)
≤

1

N

N∑

i=1

∫ t′′∧Tr′

t′∧Tr′

(
1

N − 1

∑

j 6=i

γc
r′(xj(u))− γc

r′(xi(u−))
)
dAN

i (u) =

1

N

N∑

i=1

γc
r′(xi(t

′′ ∧ Tr′))− 1

N

N∑

i=1

γc
r′(xi(t

′ ∧ Tr′)) (92)

−
∫ t′′∧Tr′

t′∧Tr′

1

N

N∑

i=1

1

2
∆dγ

c
r′(xi(u))du (93)

− 1

N

N∑

i=1

∫ t′′∧Tr′

t′∧Tr′
∇γc

r′(xi(u))·dwi(u)−MN,J
〈γc

r′ ,µ〉
(t′∧Tr′)+MN,J

〈γc
r′ ,µ〉

(t′′∧Tr′) . (94)

Applying (91) for t′ = τ and t′′ = τ+s, we evaluate Sτ from (90) as a sub-event
of the union

Sτ ⊆ Sτ1 ∪ Sτ2 ∪ Sτ3 ∪ SN
L (rD) (95)

where (we suppress the minimum with Tr′ when unnecessary)

Sτ1 =
{

1

N

N∑

i=1

γc
r′(xi(t

′′))− 1

N

N∑

i=1

γc
r′(xi(t

′)) ≥ εCrD

6
, N(Dc

r, τ) ≤ [Nε′]
}

,

(96)

Sτ2 =
{∣∣∣∣

∫ t′′

t′

1

N

N∑

i=1

1

2
∆dγ

c
r′(xi(u))du

∣∣∣∣ ≥
εCrD

6

}
, (97)
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the event Sτ3 = Sτ31 ∪ Sτ32, where

Sτ31 =
{∣∣∣∣MN,B

〈γc
r′ ,µ〉

(t′′)−MN,B
〈γc

r′ ,µ〉
(t′)

∣∣∣∣ ≥
εCrD

12

}
(98)

and

Sτ32 =
{∣∣∣∣MN,J

〈γc
r′ ,µ〉

(t′′ ∧ Tr′)−MN,J
〈γc

r′ ,µ〉
(t′ ∧ Tr′)

∣∣∣∣ ≥
εCrD

12

}
. (99)

The event Sτ1 from (96) is included in

Sτ1 ⊆
{
N(Dr′ , τ +s)−N(D2r′ , τ) ≥ NεCrD

6
, N(Dc

r, τ) ≤ [Nε′]
}
⊆ Sτ11∪Sτ12

with

Sτ11 =
{
N(Dr′ , τ + s)−N(Dr′ , τ) ≥ NεCrD

12
, N(Dc

r, τ) ≤ [Nε′]
}

(100)

and

Sτ12 =
{
N(Dr′ , τ)−N(D2r′ , τ) ≥ NεCrD

12

}
⊆ SN

U (Dr′ \D2r′) . (101)

From the definition (87) of r′ and Corollary 2 of Proposition 5 we see that
the probability of Sτ12 tends to zero as N → ∞. For sufficiently small η,
P (Sτ2 is zero, due to the boundedness of the derivatives (up to the second
order) of γc

r′(·). Doob’s inequality shows that limN→∞ P (Sτ31) = 0. Similarly,
lim supN→∞ P (Sτ32) = 0 due to the fact that the quadratic variation has an
integrand of order N−1 and the second moment of AN(T ∧ Tr′) is uniformly
bounded in N.

The remaining event to be evaluated is Sτ11. The only way to increase by
[
NεCrD

12
] the number of particles in Dr′ in a time interval [τ, τ +s′] if N(Dc

r, τ) ≤
[Nε′] = [

NεCrD

24
] is to bring in at least [

NεCrD

24
] new particles from Dr\Dr′ . Again,

since Dr′−r \Dr′ has at most [
NεCrD

48
] particles by construction (88) with the

exception of a set SN
U (Dr′−r \ Dr′) with negligible probability as N → ∞

(Proposition 5) we are in the position to evaluate the event Sτ11 from the
equation (100). Since r′ = 2r + δ,

P
(
Sτ11

)
≤ P

(
SN

U (Dr+δ \D2r+δ)
)

+

P
({ N∑

i=1

1(Dr\Dr+δ)×D2r+δ
(xi(τ), xi(τ + s)) ≥ NεCrD

48

})
. (102)

The particles situated in Dr \Dr+δ at time τ may reach D2r+δ at time τ + s′

either directly or by reaching first the boundary ∂D and performing a series
of jumps according to the definition of the process. In either case, they first
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must reach the boundary of D \D2r+δ. Before reaching ∂D the particles move
independently as Brownian motions. Henceforth (102) is bounded above by




N[
Nε

(
CrD

48

)]




 sup

x∈Dr\Dr+δ

PW
x

(
τD\D2r+δ

≤ η
)



[
Nε(

CrD
48

)

]

(103)

where PW denotes a Brownian motion on Rd. For fixed r and δ, as defined in
(87) and (88),

sup
x∈Dr\Dr+δ

PW
x

(
τD\D2r+δ

≤ η
)
≤ 1− inf

x∈Dr\Dr+δ

∫

D\D2r+δ

pabs
D\D2r+δ

(η, x, y)dy

can be further bounded above by a function p(η) depending exclusively on
the fixed parameter ε, the domain D which has limit zero as η → 0. Let
M =

[
Nε(

CrD

48
)
]
. Using Stirling’s formula the upper bound for (103) is of

order

(
πε′(1− ε′

2
)N

)− 1
2

exp
{
N

(
M

N
ln p(η)− M

N
ln

M

N
−

(
1− M

N

)
ln

(
1− M

N

))}
.

Since limη→0 p(η) = 0 the proof is complete. 2

Theorem 3 {AN(·)}N∈Z+ is tight in D([0, T ],R+).

Proof. The family of processes {AN(·)}N>0 belongs to D([0, T ],R+) for any
N ∈ Z+. Condition (85) results from Proposition 3. For condition (ii) given
in (86) we shall use the results of Proposition 9 and Proposition 6. Set h = t0
as in Proposition 6. Let τ ∈ T , η ∈ (0, 1) and s ∈ [0, η]. Since the results of
the previous sections are valid for an arbitrary T > 0 we can extend the time
interval to T ′ = T + 1 to prevent the possibility that τ + s exceeds T . The
variation AN(τ +s)−AN(τ) is bounded above by AN(h)−AN(0) if τ +s ≤ h,
by the sum of AN(τ + s)− AN(h) and AN(h)− AN(0) in case h ∈ (τ, τ + s].
This implies that in all cases

P
(
AN(τ + s)−AN(τ) > ε

)
(104)

≤P
(
AN(h)− AN(0) >

ε

2

)
(105)

+ sup
τ ∈ T , τ ≥ h

s ∈ [0, η]

P
(
AN(τ + s)− AN(τ) >

ε

2

)
. (106)

Recall ε′ =
CrD

ε

24
from Proposition 9. Apply Theorem 2 with ε 7→ ε′ to prove

that, outside an event with probability vanishing as N →∞, for a sufficiently
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small r > 0, the number of particles in the boundary layer Dc
r is at most equal

to [ε′N ]. Then (106) is bounded above by

sup
τ∈T , τ≥h

P
(
AN(τ + η)− AN(τ) >

ε

2

)
≤

sup
τ∈T , τ≥h

P
(
AN(τ + η)− AN(τ) >

ε

2
, N(Dc

r, τ) ≤ [ε′N ]
)

+ (107)

sup
τ∈T , τ≥h

P
(
N(Dc

r, τ) > [ε′N ]
)

. (108)

This puts (107) in the setting of Proposition 9, which shows that as we let
N → ∞ and η → 0 (107) vanishes. The term (108) vanishes after we let
N → ∞ followed by r → 0, eliminating (106). Finally, we let N → ∞ and
then h → 0 and obtain limit zero for (105). To summarize, we can see that
the limit of (104) over N , η, r and h, in this order, is zero. 2

6 Proof of Theorem 1.

Tightness. Theorem 3 establishes the tightness of {AN(·)}N∈Z+ . We need to
prove that {µN(·, dx)}N∈Z+ is tight in the weak∗ topology of D([0, T ],M(D)),
that is, that for any φ ∈ Cb(D) the processes {〈φ, µN(·, dx)〉}N∈Z+ satisfy (85)
and (86). Since D is compact we only have to prove tightness for φ ∈ C∞(D).
Condition (85) is immediate from the boundedness of φ. For (86) we look at
(13). The martingale part is naturally tight by the optional sampling theorem
and the maximal inequality with quadratic variation of order N−1. Lemma
2 completes the argument outside the special set (47). The integrand of the
second order term containing the Laplacian has a uniform bound in N given by
the supremum norm of the Laplacian of φ hence the time integral is of the same
order as η. The only difficult term is the summation of the singular integrals
with respect to the counting measures dAN

i (t). However, the integrands are
uniformly bounded by 2‖φ‖ which reduces the total variation to the total
variation of the average number of jumps AN(t) in (16) which is proven in
Theorem 3.

Identification of the limiting profile. The tightness of {νN(·, dx)}N∈Z+ follows
from the joint tightness of {(µN(·, dx), AN(·))}N∈Z+ . We notice that Proposi-
tion 2 stops short of stating the actual tightness of {νN(·, dx)}N∈Z+ since the
test functions φ for which the weak tightness was shown were restricted to func-
tions vanishing on the boundary. After proving the tightness of {AN(·)}N∈Z+

we can make full use of the relationship between µN(t, dx) and νN(t, dx). Let
ν(·, dx), µ(·, dx) and A(·) be limit points of {νN(·, dx)}N∈Z+ , {µN(·, dx)}N∈Z+

and {AN(·)}N∈Z+ , respectively. We can assume that there exists a subsequence
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N ′ → ∞ converging jointly to the limit points. For test functions φ vanish-
ing on the boundary we know that 〈φ, νN ′

(t, dx)〉 converges in distribution
to 〈φ, u(t, x)dx〉, where u(t, x) is the unique solution of (18). Convergence in
distribution coincides with convergence in probability when the limit is non-
random (a point in the underlying space). We conclude that if G ⊂⊂ D,
then ν(t, G) =

∫
G u(t, x)dx almost surely. Since ν(t, dx) is well defined as a

finite measure on D, we see that limG→D ν(t, G) = ν(t,D), which implies that
ν(t,D) =

∫
D u(t, x)dx almost surely. This identifies ν(t, dx) obtained above as

an absolutely continuous measure with respect to the Lebesgue measure on
D coinciding with u(t, x)dx. We integrate νN ′

(t, dx) given in (21) against the
constant test function φ(x) ≡ 1 and obtain that 〈1, νN ′

(t, dx)〉 converges in dis-
tribution to ν(t,D), a nonrandom limit. We notice that 〈1, µN ′

(t, dx)〉 ≡ 1 for
all N ′. Since 〈1, νN ′

(t, dx)〉 = exp (−AN ′
(t))〈1, µN ′

(t, dx)〉 and exp (−AN ′
(t))

converges in distribution to exp (−A(t)), we can sum up and verify that,

∫

D
u(t, x)dx = ν(t, D) = lim

N ′→∞
〈1, νN ′

(t, dx)〉 =

lim
N ′→∞

exp (−AN ′
(t))〈1, µN ′

(t, dx)〉 = exp (−A(t))

in distribution. Once again, the limit
∫
D u(t, x)dx is nonrandom and this im-

plies that exp(−AN ′
(t)) → exp(−A(t)) in probability. Due to the uniqueness

of the solution to (18) we conclude that µ(t, dx) solves (19) with A(t) given
by − ln z(t).

Uniform convergence in time. For a given T > 0 the Skorohod metric on the
space of left-limit and right continuous functions D([0, T ], X) on a Polish space
(X, ‖ · ‖) is given by the distance d(f, g) between two elements of D([0, T ], X)

d(f, g) = inf
λ∈Λ

{
‖λ‖+ sup

t∈[0,T ]
‖f(t)− g(λ(t))‖

}
(109)

where Λ is the space of nondecreasing continuous functions λ : [0, T ] → [0, T ]
with λ(0) = 0 and λ(T ) = T with the notation

‖λ‖ = sup
0≤s≤t≤T

∣∣∣∣ log

(
λ(t)− λ(s)

t− s

) ∣∣∣∣ .

Let φ ∈ C2(D) and for X = R and m ∈ D([0, T ],M(D)) we define the
bounded continuous functional

d̂(m) = d
(
〈φ,m(·, dx)〉 − 〈φ, µ(·, dx)〉 , 0

)
. (110)

Note that d̂(·) would not be continuous in the Skorohod topology if 〈φ, µ(·, dx)〉
would not be continuous, even though d(f, 0) = ‖f‖∞ (the distance (109) is
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not translation invariant). We know that, in distribution,

(〈φ, µN(·, dx)〉 − 〈φ, µ(·, dx)〉 ⇒ 0 (111)

where the limit is the path identically equal to zero. In other words, if P̃N

denotes the law of (111), then P̃N ⇒ P̃ = δ0. Let O = {m : d̂(m) ≥ ε},
a closed set in D([0, T ],M(D)) not containing the identically equal to zero
element. In general for closed sets lim supN→∞ P̃N(O) ≤ P̃ (O) = 0, which
proves our claim. 2
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