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Abstract. A game with K ≥ 2 players, each having an interger-valued fortune, consists

of choosing a pair (i, j) among the players with nonzero fortunes, flipping a fair coin,

independent of the process up to that time, and refreshing the fortunes by adding one

unit to the winner and subtracting one unit from the loser. All other players’ fortunes

remain the same. The game continues until only one player wins all. The choices of

pairs represent the control present in the problem. While it is known that the expected

time to ruin (i.e. expected duration of the game) is independent of the choices of pairs

(i, j) (the strategies), our objective is to find a strategy which maximizes the variance

of the time to ruin. We show that the maximum variance is uniquely attained by the

(optimal) strategy which always selects a pair of players who have currently the largest

fortunes. An explicit formula for the maximum value function is derived. Additionally, the

maximization problem is solved in a simpler constrained case, where a pair, once chosen,

continues to play until one of them is broke. By constructing a simple martingale, we also

provide a short proof of a result of S.M. Ross that the expected time to ruin is independent

of the strategies. A brief discussion of the (open) problem of minimizing the variance of

the time to ruin is given in the end.

1. Introduction and results

A game with K ≥ 2 players consists of choosing a pair (i, j) among the players with

nonzero fortunes, flipping a fair coin, independent of the process up to that time, and

refreshing the fortunes by adding one unit to the winner and subtracting one unit from

the loser. All other players’ fortunes remain the same. The game continues until only one
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player wins all. The choices of pairs represent the control present in the problem. It is

known [10] that the expected time to ruin E(T ) (i.e. expected duration of the game) is

independent of the choices of pairs (i, j). It is then meaningful to investigate the relation

among possible strategies of picking the pairs in terms of the variance of the time to ruin.

The Gambler’s ruin model (GRM) has been used in genetic algorithms (GA) [8] where

T is the time of convergence of the GA. Our model is an idealization which applies as

well to the estimation of the time to reach fixation in an evolutionary model with multiple

genotypes. The players represent the competing genotypes and the time to ruin models the

extinction of one type, or equivalently completing an evolutionary step in favor of the type

with better fitness. This is irreversible, as in Muller’s ratchet model [5, 7], motivating the

GRM.

Let (Ω,F , P, {Ft}t≥0) be a filtered probability space on which a sequence of i.i.d. Bernoulli

random variables with probability of success equal to 1/2 is defined such that for each

t = 1, 2, . . . , the first t Bernoulli random variables are measurable with respect to Ft and

all the later Bernoulli random variables are independent of Ft. (In particular, all of the

Bernoulli random variables are independent of F0.)

Thereafter we shall denote by η = (η1, . . . , ηK) a configuration with ηi the fortune of

player i and ei the K-dimensional vector with entries (components) equal to zero except at

i, where the entry is one. In this way

ηij = η + ei − ej(1.1)

is the transformation occurring when we pick the pair (i, j) and player i wins. Thus when

the pair (i, j) is chosen, the configuration η will move to either ηij (in case i wins) or ηji

(in case j wins) with equal probability.

Any sequence of pairs {(i(t), j(t))}t≥0 designating the pair picked at (the end of) time t ≥
0 (to play at time t+1) will generate a random process denoted by η(t) = (η1(t), η2(t), . . . , ηK(t)),

the vector of fortunes ηr(t) of players r, 1 ≤ r ≤ K, at time t by updating the configuration

η(t) to η(t + 1) = (η(t))ij if the pair (i, j) is selected at (the end of) time t, plays at time

t+ 1 and i wins by sampling the (t+ 1)-st term of the Bernoulli random sequence.

We shall assume that (i(t), j(t)) ∈ Ft, i.e. the pair to play at time t + 1 is selected

according to the information available up to and including time t of the game. Additionally

we assume that a zero entry in the vector η cannot be selected. Such a random sequence
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is said a strategy (or policy) and will be generally denoted by S. The set of all strategies

is denoted S. For any such strategy, the process {η(t)}t≥0 is adapted to the filtration. In

case the strategy (i(t), j(t)) depends only on η(t) for all t ≥ 0, {η(t)}t≥0 is a Markov chain.

For any strategy S ∈ S and an initial configuration η we denote by ESη [·] the expected

value of the process starting with fortune η0 = η which follows the strategy S.

Let N = |η| :=
∑K

i=1 ηi be the sum of all fortunes in configuration η and T be the time

to ruin of all but one player (i.e. T is the duration of the game). Note that for any strategy

the time to ruin T is a stopping time with respect to {Ft}t≥0. We also notice that trivially

N = |η(t)| remains constant.

Proposition 1. For any strategy S with T denoting the time to ruin, the process

(1.2) q1(t) =

K∑
i=1

(ηi(t))
2 − 2t , K ≥ 2 ,

is an Ft-martingale up to T . For K = 2, there is only one possible strategy, to pick both

players at all times, denoted by S0, and the process

(1.3) q2(t) = (q1(t))
2 − 1

6
(η1(t)− η2(t))4 +

8

3
t , K = 2 ,

is an Ft-martingale up to T .

Proof. It is easily shown that q1(t) is a martingale up to T . Recalling (i(t), j(t)) ∈ Ft, we

have a.s. on {t < T}

(1.4) ESη [(q1(t+ 1))2|Ft] = (q1(t))
2 + 4[ηi(t)(t)− ηj(t)(t)]2, K ≥ 2,

and

(1.5) ES0
η [(η1(t+ 1)− η2(t+ 1))4|Ft] = (η1(t)− η2(t))4 + 24(η1(t)− η2(t))2 + 16, K = 2,

from which it follows that q2(t) is a martingale up to T . �

Note that Eq. (1.4) for K > 2, while not needed for the proof of Proposition 1, will be

called for later. Now for K ≥ 2, noting that

q1(0) =
K∑
i=1

(ηi)
2 and q1(T ) = N2 − 2T =

( K∑
i=1

ηi

)2
− 2T ,
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the first martingale gives

(1.6) ESη [T ] =
1

2

[( K∑
i=1

ηi

)2
−

K∑
i=1

(ηi)
2
]

=
∑

1≤i<j≤K
ηiηj ,

which is independent of the strategy (cf. [10]). For K = 2, the only strategy S0 is deter-

ministic and the second martingale yields the following formula for the variance of T

(1.7) V arS0
η (T ) =

η1η2
3

((η1)
2 + (η2)

2 − 2) , K = 2 .

Hereafter we will write V S(η) = V arSη (T ) for notational simplicity.

Since the expected value of T is finite, the stopping time T is finite almost surely. While

the expected time to ruin is independent of the strategy, the variance depends on S for

K ≥ 3. In this case, we would like to solve the problems

find S+ such that V S+(η) = sup
S∈S

V S(η) ,(1.8)

find S− such that V S−(η) = inf
S∈S

V S(η) .(1.9)

Remark. Since ESη (T ) does not depend on S, optimizing the variance V S(η) is equivalent

to optimizing the second moment ESη (T 2), but it is more convenient to work directly with

the variance. Also, it is not difficult to show (cf. proof of Lemma 1 of [10]) that there

exist 0 < ρ < 1 and 0 < C < ∞ such that PSη (T > t) ≤ Cρt for all t ≥ 0 and all S ∈ S,

implying that supS∈S V
S(η) <∞. Moreover, V S+(η) and V S−(η) are invariant with respect

to permutations of η.

Adopting the terminology from the literature of dynamic programming and Markov

decision processes (see, e.g. [3]), a stationary strategy S is determined by a (deterministic)

mapping s from the configuration space to the set of pairs {(i, j) : 1 ≤ i < j ≤ K} such

that the pair (i(t), j(t)) is given by s(η(t)). Then the following recurrence holds

(1.10) V S(η) =
1

2
(V S(ηij) + V S(ηji)) + (ηi − ηj)2 , (i, j) = s(η) ,

which follows from the strong Markov property and the well-known conditional variance

formula

(1.11) V ar(X) = E[V ar(X|G)] + V ar(E[X|G])

for any σ-field G and random variable X with E(X2) <∞.
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In particular, when K = 2 the variance (1.7) satisfies trivially (1.10).

While any stationary strategy satisfies (1.10), only the optimal strategy satisfies Eq.

(1.12) below.

Proposition 2. The dynamic programming equation for the maximization problem (1.8)

is

(1.12) V (η) = max
(i,j)

{
1

2
(V (ηij) + V (ηji)) + (ηi − ηj)2

}
, V (ηf ) = 0 ,

where the maximum is taken over all pairs (i, j) with ηiηj > 0, and ηf is any final (terminal)

configuration, i.e. with all but one entry equal to zero. The dynamic programming equation

for the minimization problem (1.9) is (1.12) with max(i,j) replaced by min(i,j).

Proposition 3. Assume a real-valued function V (η) defined on the (finite) configuration

space satisfies V (ηf ) = 0 for any final configuration ηf and

(1.13) V (η) ≥ 1

2
(V (ηij) + V (ηji)) + (ηi − ηj)2 , for any pair (i, j) with ηiηj > 0.

Then V (η) ≥ V S(η) for any S ∈ S. If there exists S′ ∈ S such that V (η) = V S′(η), then

S+ = S′ and V is the solution to the maximization problem (1.8). The same is true for the

minimization problem (1.9) by replacing ≥ with ≤ in all inequalities.

Proof. For any real-valued function f(η), by conditional probability, we have

(1.14) ESη [f(η(t+ 1))|Ft] =
1

2

(
f((η(t))i(t)j(t)) + f((η(t))j(t)i(t))

)
, 0 ≤ t ≤ T − 1 .

Applying this relation to f = V and using (1.4), the process

M(t) = V (η(t)) +
1

4
(q1(t))

2

is a super-martingale up to T and comparison between the expected values at t = 0 and

t = T shows the claim of the proposition. �

Theorem 1. Let the stationary Markovian strategy S+ be defined by s+(η) = (i, j) where

ηi and ηj are the largest two values in η. (In case of ties, any pair corresponding to the

largest two values may be selected.) Then (S+, V
S+(η)) solves the maximization problem

(1.8). Furthermore, the maximum variance of the time to ruin cannot be attained by any

strategy that ever selects a pair which does not correspond to the largest two values in the

current configuration.
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Proof. By Proposition 3, the proposed strategy S+ solves (1.8) if V S+(η) satisfies (1.13).

Note that by the definition of S+, both sides of (1.13) with V = V S+ are equal if (i, j) with

ηiηj > 0 is such that ηi and ηj are the largest two values in η. Thus it suffices to consider

those pairs (i, j) for which ηiηj > 0 and {ηi, ηj} is not the set of the largest two values in η.

Indeed, we will show that V S+(η) satisfies the following (stronger) strict inequality

(1.15) V S+(η) >
1

2
(V S+(ηij) + V S+(ηji)) + (ηi − ηj)2 ,

for any pair (i, j) with ηiηj > 0 and {ηi, ηj} 6= {ηM1, ηM2} where ηM1 and ηM2 denote,

respectively, the largest and second largest values in η. Here {ηi, ηj} and {ηM1, ηM2} are

interpreted as multisets counting multiplicities of elements (cf. page 483 in [9]). (Note

that ηM1 and ηM2 are equal if two or more entries are tied for the maximum value in η.)

The proof is done by induction on K, and for fixed K, by induction on N as stated in

Proposition 7 of Section 5 where the induction step is proven. The most difficult case of

the induction step is proven separately in Section 6. This case requires a lemma, proved in

Section 7. The verification step corresponding to K = 2 is done in Section 4. �

The rest of the paper is organized as follows. Section 2 gives several useful reduction

formulas, which provide an effective way to do explicit calculations in Section 3 and to

permit the induction argument in Sections 4–7. In particular, an explicit formula for the

maximal value function is presented in Section 3; see Theorem 2. In Section 8, we consider

a constrained version of the maximization problem (1.8) where an (admissible) strategy is

subject to the constraint that once a pair is chosen, it must play until one of the two players

is defeated and eliminated from the game (whose fortune reaches 0). This constrained

version is much easier to solve and the optimal strategy is similar to S+, which is to select

a pair of players with the largest two fortunes every time when a player is defeated and

eliminated. The final Section 9 contains brief discussions of the minimization problem (1.9)

(which remains open) and related multi-player gamblers’ ruin problems.

2. Reduction formulas

Let η = (η1, . . . , ηK) be a configuration with K components and total fortune N = |η|.
A configuration is said extremal if all except possibly one component are equal and the

unequal one (if exists) has a greater value. In other words, a configuration is extremal if

either all components are equal or all except the (unique) greatest component are equal.
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Since the total number N is known, we shall specify only the common value of the smaller

components, so ζc designates the configuration with K − 1 components equal to c and one

component equal to N − (K−1)c (which is greater than or equal to c). Thus c must satisfy

the condition Kc ≤ N . In particular, when c = 0, the extremal configuration ζ0 has only

one nonzero component and is referred to as a final configuration.

For notational simplicity, we shall write P+ for PS+ and V +(η) for V S+(η) (the variance

of T under the strategy S+ with initial configuration η). Two configurations are said

indistinguishable if they are identical up to an ordering (i.e. one is a permutation of the

other). Note that indistinguishability is an equivalence relation, so that the equivalence

class of η is the set of all configurations that are indistinguishable from η. Clearly V +(η) =

V +(η′) if η and η′ are indistinguishable, i.e. V + is invariant with respect to permutations.

A configuration ζ (or more precisely, the equivalence class of ζ) is said accessible from η

if under the strategy S+, it is reached before T with probability one, i.e. the hitting time

τζ of (the equivalence class of) ζ has the property P+
η (τζ ≤ T ) = 1. In what follows, the

words “the equivalence class of” will be omitted unless necessary for clarity purposes.

Among all extremal configurations we single out the one with c = 1. We shall deal

separately with V +(ζ1) = V S+(ζ1). First, we look at m(η) := mini ηi.

Proposition 4. For any η with m(η) ≥ 1, ζ1 is accessible from η.

Proof. The case K = 2 is trivial. Below we assume K ≥ 3. Under S+, the components with

values equal to m = m(η) will not be touched as long as there exist two larger components.

If η is such that M = M(η) := maxi ηi = m (all flat), we have two possibilities. In case

M = m = 1, η = ζ1 in the special case when N = K. In case M = m ≥ 2 we play one

turn under the strategy S+ and the two resulting configurations will be indistinguishable,

denoted η′, for which we have M(η′) > m(η′) ≥ 1.

Thus we can assume without loss of generality that η has M > m ≥ 1. If there exists

exactly one component greater than m, then η = ζm. If there are two or more components

greater than m, we may view m as a baseline and the set of those components greater

than the baseline continues to evolve under S+ until all except one component equal m.

The strategy S+ will simply not look at components equal to m until the process reaches

the extremal ζm, which shows that ζm is accessible. Note that this process up to the

hitting time τζm of ζm is exactly the same as the ruin problem with the initial configuration
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η−m = (η1−m, . . . , ηK −m), where m is the K-dimensional configuration with all entries

equal to m. (I.e. τζm has the same distribution as the time to ruin when the initial

configuration is η −m.) As such, P+
η (τζm <∞) = 1.

On the other hand, under S+ with K ≥ 3, we have m(η(t))− 1 ≤ m(η(t+ 1)) ≤ m(η(t)),

i.e. m(η(t)) is nonincreasing and can move down by one unit only. Since ζ0 (the final

configuration when the game stops) has m(ζ0) = 0, it follows that a configuration with

m = 1 will be reached a.s., and based on the preceding reasoning on τζm , the configuration

ζ1 will be reached with probability one as well. �

Proposition 5. For any η with m(η) ≥ 1

V +(η) = V +(η − 1̄) + V +(ζ1) .(2.1)

Proof. By Proposition 4, for a given initial configuration η with m(η) ≥ 1, we have 0 ≤
τζ1 < T <∞ a.s. under S+. Write T = τζ1 + (T − τζ1). It follows from the strong Markov

property that τζ1 and T − τζ1 are independent. Moreover, τζ1 has the same distribution

as the time to ruin when the initial configuration is η − 1̄, while T − τζ1 has the same

distribution as the time to ruin when the initial configuration is ζ1. So,

V +(η) = V arS+
η (T ) = V arS+

η (τζ1) + V arS+
η (T − τζ1) = V +(η − 1̄) + V +(ζ1),

proving (2.1). �

Let η be a configuration given in ordered form and let c ≥ 0 with the property

(2.2) η1 ≤ . . . ≤ ηi ≤ c < ηi+1 ≤ . . . ≤ ηK ,

where the strict inequality is to be interpreted that there exists at least one entry strictly

larger than c. We define the configuration flattened up to level c, denoted η|c, by

η|cr = ηr , 1 ≤ r ≤ i ; η|cr = c , i < r ≤ K − 1 ;(2.3)

η
|c
K =

K∑
r=i+1

ηr − (K − i− 1)c ,

which results from following S+ until all of the last K−i entries (except one) are reduced to

the level c. (We remark that the exceptional entry in the resulting configuration has a value

equal to
∑K

r=i+1 ηr−(K−i−1)c > c, which is not necessarily theK-th entry. Thus we should

interpret η|c as a configuration up to an ordering.) Let (η− c̄)+ := ((η1−c)+, . . . , (ηK−c)+),
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where (x)+ := max{x, 0}. If the configuration η would be restricted to entries ηr (r > i)

and shifted by c to ηr − c, i.e. (η − c̄)+, then the configuration η|c (restricted to the last

K − r entries and shifted by c) coincides, up to an ordering, with the final configuration of

the restricted process, while all other entries ηr, 1 ≤ r ≤ i, are left unchanged. This shows

that η|c is accessible from η.

Proposition 6. Let η be a configuration and c as in (2.2), such that there is at least one

entry greater than c. Then η|c is accessible from η and

V +(η) = V +((η − c̄)+) + V +(η|c) .(2.4)

In particular, for c = m = m(η) and η not constant, we have η|c = ζm and

V +(η) = V +((η −m)+) + V +(ζm) .(2.5)

Proof. If there is exactly one entry strictly larger than c, then η = η|c and (2.4) holds since

V +((η − c̄)+) = 0, (η − c̄)+ being a final configuration.

Suppose there are at least two entries greater than c. The reasoning is almost identical to

the proofs of Propositions 4 and 5. Since (η− c̄)+ has at least two nonzero components, the

process evolving under strategy S+ will not touch any entry ηr ≤ c until the entries above c

will be flattened out, i.e. until the configuration η|c is reached, which we know happens with

probability one. So η|c is accessible from η. Now write T = τ + (T − τ) where τ = τη|c , the

hitting time of η|c. By the strong Markov property, τ and T−τ are independent. Moreover,

τ has the same distribution as the time to ruin with initial configuration (η − c̄)+, while

T−τ has the same distribution as the time to ruin with initial configuration η|c, from which

(2.4) follows. �

2.1. A reduction formula that gives insight but we do not use in the proof. The

next lemma shows that we can prove (1.15) for any configuration and pair having at least two

entries dominating the members of the pair by proving it for a simplified configuration η|c.

The reader should think of the case c > max{ηi, ηj} and should understand the condition

that there must exist two entries exceeding strictly max{ηi, ηj}+ 1, to prevent interference

when we commute the operation of “moving” between two entries and “flattening” at level

c described formally in (2.6) and (2.7) below.
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Recall (1.1) that the transformation of η consisting of a move from entry j to entry i is

denoted

ηij = η + ei − ej .

Lemma 1. Let η, c ≥ 0 and (i, j) be such that max{ηi, ηj} < c and there exist at least two

entries of η greater than c. Then

(η − c̄)+ = (ηij − c̄)+ = (ηji − c̄)+

V +(ηij) = V +((ηij − c̄)+) + V +((ηij)|c) = V +((η − c̄)+) + V +((η|c)ij)(2.6)

V +(ηji) = V +((ηji − c̄)+) + V +((ηji)|c) = V +((η − c̄)+) + V +((η|c)ji) .(2.7)

Proof. The operation η → η|c involves only entries exceeding c. The lemma follows from

Proposition 6 and the fact that η, ηij and ηji differ only in the i-th and j-th entries which

are all less than or equal to c since max{ηi, ηj} < c. �

3. Explicit formula for the maximal value function

For given K (the number of entries) and N (the total sum of entries), for 0 ≤ c ≤ N/K,

recall that ζc is the extremal configuration being all flat at c except possibly one maximal

value. We may write ζc = (N −Kc+ c, c, c, . . . , c) up to an ordering. The values of V + at

these extremal configurations will allow us to calculate V +(η) for general η. In some sense,

we need to develop a rudimentary calculus for these structures as presented below.

To make the dependence on K and N explicit, we write

ζc = ζc,K,N = (N −Kc+ c, c, c, . . . , c) (with K entries summing up to N),

and introduce the convenient notation

WK(N, c) := V +(ζc,K,N ) = V +(N −Kc+ c, c, c, . . . , c) , Kc ≤ N.(3.1)

We start writing a formula for WK(N, c). Based on (2.1), we have

WK(N, c) = V +(N −Kc+ c, c, . . . , c)

= V +(N −Kc+ c− 1, c− 1, . . . , c− 1) + V +(N −K + 1, 1, . . . , 1) ,

= WK(N −K, c− 1) +WK(N, 1) .
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Repeating the same argument,

WK(N −K, c− 1) = WK(N − 2K, c− 2) +WK(N −K, 1)

. . .

WK(N − (c− 2)K, 2) = WK(N − (c− 1)K, 1) +WK(N − (c− 2)K, 1) .

Summing up yields

WK(N, c) =

c−1∑
r=0

WK(N − rK, 1) .(3.2)

In these formulas the parameter K does not change. The simpler function WK(d, 1) with

d ≥ K can be obtained by applying the recurrence formula (1.10) for V S to V + = V S+ as

follows. For d ≥ K, we have by (1.10)

WK(d, 1) = V +(d−K + 1, 1, . . . , 1)

=
1

2
V +(d−K + 2, 0, 1, . . . , 1) +

1

2
V +(d−K, 2, 1, . . . , 1) + (d−K)2

=
1

2
WK−1(d, 1) +

1

2
V +(d−K, 2, 1, . . . , 1) + (d−K)2.(3.3)

By (2.1), we have for d > K

V +(d−K, 2, 1, . . . , 1) = V +(d−K − 1, 1, 0, . . . , 0) + V +(d−K + 1, 1, . . . , 1)

= V +(d−K − 1, 1, 0, . . . , 0) +WK(d, 1),

which together with (3.3) implies that

WK(d, 1) = WK−1(d, 1) + V +(d−K − 1, 1, 0, . . . , 0) + 2(d−K)2.(3.4)

By formula (1.7) for the two-player case for which there is only one strategy denoted S0,

we have

V +(d−K − 1, 1, 0, . . . , 0) = V S0(d−K − 1, 1) =
1

3
(d−K − 1)((d−K − 1)2 + 1− 2)

=
1

3
(d−K)(d−K − 1)(d−K − 2).

It follows from (3.4) that for d > K,

WK(d, 1) = WK−1(d, 1) +Q(d−K),(3.5)
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where

Q(x) =
1

3
x(x− 1)(x− 2) + 2x2 =

1

3
x(x+ 1)(x+ 2).(3.6)

Note that for d = K, we have by (3.3)

WK(K, 1) =
1

2
WK−1(K, 1) +

1

2
WK−1(K, 1) + (K −K)2

= WK−1(K, 1) = WK−1(K, 1) +Q(K −K),

so that (3.5) also holds for d = K. Applying (3.5) repeatedly yields

WK(d, 1) = W2(d, 1) +

K∑
r=3

Q(d− r) =

K∑
r=2

Q(d− r) ,(3.7)

where we have used the fact that

W2(d, 1) = V S0(d− 1, 1) = Q(d− 2).

Remark. For convenience, we define

(3.8) W1(d, 1) := 0 for all d, and V +(η) := 0 for all η of dimension 1,

which is consistent with (3.1).

Remark. We may derive (3.7) alternatively by considering K−1 subgames each involving

two players. Specifically, let T be the time to ruin under S+ with initial configuration

η = (η1, . . . , ηK) = (d −K + 1, 1, . . . , 1) = ζ1,K,d. We take the convention that in case of

ties, S+ picks the lower-indexed players. Since η3 = . . . = ηK = 1, under S+ players 1 and

2 continue to play until one of them has fortune 0 and is eliminated. Then the survivor

(with fortune d −K + 2) plays with player 3 until one of them has fortune 0, and so on.

Thus the original game is decomposed into K − 1 subgames where the i-th game involves

two players with fortunes d−K + i and 1 (i = 1, . . . ,K − 1) for which the time to ruin Ti

has variance V S0(d−K + i, 1) = Q(d−K + i− 1). Since T = T1 + . . .+ TK−1 and the T ′is

are independent, the variance of T is V +(ζ1,K,d) = WK(d, 1) = Q(d−K) + . . .+Q(d− 2),

agreeing with (3.7).

We are now ready to derive a formula for V +(η) for general η. Let 0 < η′1 < η′2 < . . . < η′p

be the distinct values present in η, in increasing order. Let 1 ≤ p = p(η) ≤ K be the total
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number of such values and let `k, 1 ≤ k ≤ p be the multiplicities of the values η′k. Note

that

p∑
k=1

`k = K , |η| :=
p∑

k=1

`kη
′
k = N.(3.9)

Here we have assumed that η has no zero entries, i.e. m(η) ≥ 1. In case m(η) = 0, we

simply reduce η to a lower-dimensional configuration by deleting all zero entries. By (2.5)

with m = η′1 and (3.1), we have

V +(η) = V +(η − η′1) + V +(ζη′1,K,N ) = V +(η − η′1) +WK(N, η′1).

Since with all zero entries removed, η − η′1 reduces to a lower-dimensional configuration

with K − `1 entries summing up to N −Kη′1 and the minimal entry value being η′2 − η′1,
we have by (2.5) with m = η′2 − η′1

V +(η − η′1) = V +((η − η′2)+) + V +(ζη′2−η′1,K−`1,N−Kη′1)

= V +((η − η′2)+) +WK−`1(N −Kη′1, η′2 − η′1).

Repeating this argument, we have for r = 0, . . . , p− 1

V +((η − η′r)+) = V +((η − η′r+1)+) + V +(ζη′r+1−η′r,Kr,Nr
)

= V +((η − η′r+1)+) +WKr(Nr, η
′
r+1 − η′r),(3.10)

where η′0 := 0, V +((η − η′p)+) := 0, and

Kr := K −
r∑
i=1

`i, Nr := N −
p∑
i=1

`i min{η′i, η′r} =

p∑
i=r+1

`i(η
′
i − η′r), r = 0, . . . , p− 1.

(3.11)

Note that K0 = K and N0 = N . Summing up (3.10) over r = 0, . . . , p − 1 yields the

following formula for V +(η).

Theorem 2. The maximal value function is given by (1.7) if K = 2. For K ≥ 3 and for η

with p distinct nonzero values 0 < η′1 < . . . < η′p and multiplicities `r, r = 1, . . . , p satisfying

(3.9), we have

V +(η) =

p−1∑
r=0

WKr(Nr, η
′
r+1 − η′r) ,(3.12)
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where Kr and Nr are given in (3.11) and WK(N, c) is given in (3.2), which can be reduced

to the special case c = 1, as shown in formula (3.7) for WK(d, 1).

4. Cases K = 2 and K = 3

Case K = 2. In this case, (1.15) is trivially satisfied, since there is only one pair (1, 2)

and hence there is no (i, j) such that {ηi, ηj} 6= {ηM1, ηM2} = {η1, η2}. It is useful to look

at the next simplest case K = 3 which can be calculated explicitly.

Case K = 3. Let η = (a, b, c) with min{a, b} ≥ c ≥ 1 and N = a + b + c. By (2.5) and

(3.2),

V +(a, b, c) = V +(a− c, b− c, 0) +W3(N, c)(4.1)

= V +(a− c, b− c, 0) +

c−1∑
r=0

W3(N − 3r, 1) .

By (1.7) and (3.7),

V +(a− c, b− c, 0) =
1

3
(a− c)(b− c)[(a− c)2 + (b− c)2 − 2] ,

W3(N − 3r, 1) = Q(N − 3r − 2) +Q(N − 3r − 3)

=
1

3
(N − 3r − 2)(N − 3r − 1)(2N − 6r − 3) ,

implying by (4.1) that for min{a, b} ≥ c ≥ 1 and N = a+ b+ c,

(4.2) V +(a, b, c) = U(a− c, b− c) +
1

3

c−1∑
r=0

(N − 3r − 2)(N − 3r − 1)(2N − 6r − 3) ,

where

(4.3) U(x, y) :=
1

3
xy(x2 + y2 − 2) .

For a ≥ b ≥ c > 0, let

∆23 := V +(a, b, c)− 1

2
[V +(a, b+ 1, c− 1) + V +(a, b− 1, c+ 1)]− (b− c)2,
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which is the difference between the two sides of (1.15) with (i, j) = (2, 3). Now for a ≥ b ≥
c+ 2, letting α := a− c and β := b− c, we have by (4.2)

∆23 =U(α, β)− 1

2

(
U(α+ 1, β + 2) + U(α− 1, β − 2)

)
− β2

+
1

6

(
(N − 3c+ 1)(N − 3c+ 2)(2N − 6c+ 3)− (N − 3c− 2)(N − 3c− 1)(2N − 6c− 3)

)
=U(α, β)− 1

2

(
U(α+ 1, β + 2) + U(α− 1, β − 2)

)
− β2

+
1

6

(
(α+ β + 1)(α+ β + 2)(2α+ 2β + 3)− (α+ β − 2)(α+ β − 1)(2α+ 2β − 3)

)
=α2 + αβ > 0.

For a ≥ b = c+ 1 and a > b = c, it can be shown that

∆23 = (a− c)(a− c+ 1) > 0.

Let

∆13 := V +(a, b, c)− 1

2
[V +(a+ 1, b, c− 1) + V +(a− 1, b, c+ 1)]− (a− c)2,

which is the difference between the two sides of (1.15) with (i, j) = (1, 3). Similarly, by

(4.2), for a ≥ b > c, it can be shown that ∆13 = (a− c)(b− c) + (b− c)2 > 0. This proves

that (1.15) holds for K = 3. (It should be noted that the induction step in the next section

covers K = 3.)

5. The induction step

Let S(K) be the following induction statement.

S(K) : For any K ′ ≤ K and any N > 0, the function V +(·) satisfies

(5.1) V +(η) >
1

2

(
V +(ηij) + V +(ηji)

)
+ (ηi − ηj)2 ,

for any pair (i, j) with ηiηj > 0 and {ηi, ηj} 6= {ηM1, ηM2} where ηM1 and ηM2 denote the

largest two values in η. Note that (5.1) is (1.15) where V + = V S+ . (As remarked before,

by the definition of strategy S+, both sides of (5.1) are equal if (i, j) is such that ηiηj > 0

and {ηi, ηj} = {ηM1, ηM2}.)
For K = 2, S(K) is true trivially. The next proposition concludes the proof of Theorem

1.

Proposition 7. For each K ≥ 3, if S(K ′) is true for all K ′ < K, then it is true for K.
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Proof. For K ≥ 3 fixed, we start an induction on N . Note that for m = m(η) = 0,

η has at least one zero entry, which reduces to a K ′-dimensional configuration for some

K ′ < K, so that (5.1) holds by the induction hypothesis. Furthermore, if m = m(η) =

M = M(η) := maxr ηr, then all entries in η are equal, so that there is no (i, j) such that

{ηi, ηj} 6= {ηM1, ηM2}, implying that (5.1) holds trivially. Thus it suffices to consider the

case M > m ≥ 1 (implying that N > K). In light of (2.1), we shall prepare by observing

that for pair (i, j), ηij + 1̄ = (η + 1̄)ij is well defined if m ≥ 1, and ηij − 1̄ = (η − 1̄)ij is

well defined if m ≥ 2. With this in mind we now proceed by induction on N (with K ≥ 3

fixed).

Assume that (5.1) holds for all N ′ < N (N > K) and we want to prove it for N .

Case m ≥ 2. We have m(ηij) ≥ 1 and m(ηji) ≥ 1 for any pair (i, j), so that by (2.1)

V +(η) = V +(η − 1̄) + V +(ζ1)(5.2)

V +(ηij) = V +(ηij − 1̄) + V +(ζ1) = V +((η − 1̄)ij) + V +(ζ1)(5.3)

V +(ηji) = V +(ηji − 1̄) + V +(ζ1) = V +((η − 1̄)ji) + V +(ζ1) .(5.4)

This gives, for any pair (i, j) with {ηi, ηj} 6= {ηM1, ηM2},

V +(η)− 1

2

(
V +(ηij) + V +(ηji)

)
= V +(η − 1̄)− 1

2

(
V +((η − 1̄)ij) + V +((η − 1̄)ji)

)
(5.5)

> ((ηi − 1)− (ηj − 1))2 = (ηi − ηj)2 ,

where the inequality is due to the induction hypothesis applied to the configuration η − 1̄

for which the total fortune is N −K < N and

{(η − 1̄)i, (η − 1̄)j} = {ηi − 1, ηj − 1} 6= {ηM1 − 1, ηM2 − 1} = {(η − 1̄)M1, (η − 1̄)M2}.

Case m = 1. If the pair (i, j) does not contain any minimum (i.e. min{ηi, ηj} ≥ 2), the

above argument for m ≥ 2 (i.e. (5.2)–(5.5)) works identically. Also recall that it suffices

to consider M > m ≥ 1. Thus it is the case M > m = 1 and min{ηi, ηj} = 1 that will be

done separately in Section 6. �

Remark. The case m = 1 stands apart from all others because either (5.3) or (5.4) cannot

be applied when the pair (i, j) contains a minimal value, say ηi = m = 1. It is perfectly

correct to drop one unit on all entries based on (2.1) which is done in (5.2). Applying

the transformation ηij which increases the i-th entry to 2 and shifting by 1̄ is possible as
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they clearly commute. However, the transformation ηji which lowers the i-th entry to zero

would not commute with the one unit shift as (η − 1̄)ji is not properly defined. Moreover,

(2.1) does not apply to ηji since m(ηji) = 0. Thus (5.4) does not hold. As a result, the

induction step (5.5) breaks down.

6. The case m = 1 < M and min{ηi, ηj} = 1

In this section we consider the case m = 1 < M and min{ηi, ηj} = 1. We shall assume

without loss of generality that i = 1 and η1 = 1. Thus j ≥ 2 and ηj ≥ 1. With ` denoting

the multiplicity of 1 in η, we write the configuration η = (1̄`, ξ), where the subscript to

the vector of ones marks its dimension. (This notation is sometimes suppressed when no

danger of confusion can arise.) Then ξ is a (K − `)-dimensional vector with the total sum

of entries |ξ| = |η|− |1̄`| = N − ` and the minimum value m(ξ) ≥ 2. (Note that ` < K since

m(η) = 1 < M(η).)

We write V +
K (η) = V +(η) with the subscript K denoting the dimension of the argument

η. This is necessary in order to keep track of the reduction formulas of the type (6.4) below.

Case ` ≥ 2 and ηj = 1. This treats the case when we pick two minima. Without loss

of generality, assume η1 = η2 = 1, j = 2. (Note that {η1, η2} = {1, 1} 6= {ηM1, ηM2} since

M = ηM1 > 1.)

We need to prove inequality (5.1), i.e.

V +
K (η)− 1

2

(
V +
K (η − e1 + e2) + V +

K (η + e1 − e2)
)
> 0 .(6.1)

The inequality contains no (ηi− ηj)2 term since the two entries are equal. As η− e1 + e2

and η + e1 − e2 are indistinguishable, (6.1) reduces to

V +
K (1̄`, ξ) > V +

K (2, 0, 1̄`−2, ξ) = V +
K−1(2, 1̄`−2, ξ) ,(6.2)

where we have used the projection identity V +
K (ξ, 0̄`) = V +

K−`(ξ) which removes the zero

entries by lowering the dimension K correspondingly.

We have by (2.1) (recalling WK(N, c) := V +(ζc,K,N ) in (3.1))

V +
K (η) = V +

K (1̄`, ξ) = V +
K (0̄`, ξ − 1̄) +WK(N, 1)(6.3)

= V +
K−`(ξ − 1̄) +WK(N, 1) ,
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where for notational simplicity we have suppressed the subscript K − ` to the vector 1̄ in

ξ − 1̄. Similarly, by (2.1),

V +
K (2, 0, 1̄`−2, ξ) = V +

K−1(2, 1̄`−2, ξ) = V +
K−1(1, 0̄`−2, ξ − 1̄) +WK−1(N, 1)

(6.4)

= V +
K−`+1(1, ξ − 1̄) +WK−1(N, 1)

= V +
K−`+1(0, ξ − 2̄) +WK−`+1(N −K + 1, 1) +WK−1(N, 1)

= V +
K−`(ξ − 2̄) +WK−`+1(N −K + 1, 1) +WK−1(N, 1)

= V +
K−`(ξ − 1̄)−WK−`(N −K, 1) +WK−`+1(N −K + 1, 1) +WK−1(N, 1) .

The last line has replaced V +
K−`(ξ− 2̄) by V +

K−`(ξ− 1̄)−WK−`(N −K, 1). This follows from

(2.1) applied to V +
K−`(ξ − 1̄) where |ξ − 1̄| = |ξ| − (K − `) = (N − `)− (K − `) = N −K.

Note that if K − ` = 1, we have V +
K−`(ξ − 2̄) = V +

K−`(ξ − 1̄) = WK−`(N −K, 1) := 0 (cf.

(3.8)).

The advantage is that both last lines in (6.3) and (6.4) contain V +
K−`(ξ− 1̄), and the rest

are known computable quantities. Now (6.2) is equivalent to

WK(N, 1)−WK−1(N, 1) > WK−`+1(N −K + 1, 1)−WK−`(N −K, 1) ,

which by (3.7) is equivalent to

Q(N −K) > Q(N −K − 1).

This is true since Q(x) is an increasing function for x ≥ 0.

Case ` ≥ 2 and ηj > 1.

Note that (i, j) = (1, j), η = (1̄`, ξ), η
ij = (1̄`, ξ)− ej + e1 and ηji = (1̄`, ξ) + ej− e1. Note

also that the entry ηj > 1 is an entry of ξ. We show inequality (5.1) using the following

terms. First

V +
K (1̄`, ξ) = V +

K (0̄`, ξ − 1̄) +WK(N, 1)(6.5)

= V +
K−`+1(0, ξ − 1̄) +WK(N, 1) ,

where we have intentionally kept one zero entry resulting in the dimension K − `+ 1. This

equals

V +
K (1̄`, ξ) = V +

K−`+1(1, ξ)−WK−`+1(N − `+ 1, 1) +WK(N, 1) ,(6.6)
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where we have used the identity V +
K−`+1(1, ξ) = V +

K−`+1(0, ξ − 1̄) + WK−`+1(N − ` + 1, 1)

which follows from (2.1).

Second, with e′j denoting the (K − `)-dimensional vector of zeros except for a one at the

location where ηj appears in ξ,

V +
K ((1̄`, ξ)− ej + e1) = V +

K (2, 1̄`−1, ξ − e′j)
(6.7)

= V +
K (1, 0̄`−1, ξ − e′j − 1̄) +WK(N, 1)

= V +
K−`+1(1, ξ − e

′
j − 1̄) +WK(N, 1)

= V +
K−`+1(2, ξ − e

′
j)−WK−`+1(N − `+ 1, 1) +WK(N, 1)

= V +
K−`+1((1, ξ)− e

′′
j + e1)−WK−`+1(N − `+ 1, 1) +WK(N, 1),

where e′′j = (0, e′j) (the (K − ` + 1)-dimensional vector of zeros except for a one at the

location where ηj appears in (1, ξ)), and the fourth equality follows from the identity

V +
K−`+1(2, ξ − e

′
j) = V +

K−`+1(1, ξ − e
′
j − 1̄) +WK−`+1(N − `+ 1, 1).

Third,

V +
K ((1̄`, ξ) + ej − e1) = V +

K (0, 1̄`−1, ξ + e′j)

(6.8)

= V +
K−1(1̄`−1, ξ + e′j) = V +

K−1(0̄`−1, ξ + e′j − 1̄) +WK−1(N, 1)

= V +
K−`(ξ + e′j − 1̄) +WK−1(N, 1)

= V +
K−`(ξ + e′j)−WK−`(N − `+ 1, 1) +WK−1(N, 1)

= V +
K−`+1(0, ξ + e′j)−WK−`(N − `+ 1, 1) +WK−1(N, 1)

= V +
K−`+1((1, ξ) + e′′j − e1)−WK−`(N − `+ 1, 1) +WK−1(N, 1) ,

where e′′j = (0, e′j). Notice that we have brought the same terms in terms of K → K− `+1.

Since the pair (i, j) = (1, j) satisfies {η1, ηj} 6= {ηM1, ηM2}, it follows that the two entries

1 and ηj in (1, ξ) are not the pair consisting of the largest two values in (1, ξ). By the

induction hypothesis applied to the configuration (1, ξ) of dimension K − ` + 1 < K, we

have

V +
K−`+1(1, ξ)−

1

2

(
V +
K−`+1((1, ξ)− e

′′
j + e1) + V +

K−`+1((1, ξ) + e′′j − e1)
)
− (1− ηj)2 > 0.
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It remains to show that the extra terms that appear in (6.6)–(6.8) add up to a nonnegative

term, which means that

[−WK−`+1(N − `+ 1, 1) +WK(N, 1)]

− 1

2

(
[−WK−`+1(N − `+ 1, 1) +WK(N, 1)] + [−WK−`(N − `+ 1, 1) +WK−1(N, 1)]

)
≥ 0 ,

or equivalently,

(6.9) WK(N, 1)−WK−1(N, 1) ≥WK−`+1(N − `+ 1, 1)−WK−`(N − `+ 1, 1).

By (3.5), the left and right hand sides of (6.9) both equal Q(N −K). Thus (6.9) holds as

an equality.

Case ` = 1 and ηj ≥ 3. This treats a subcase of ηr ≥ 2 for all r > 1. The subcase

ηj = 2 is treated in the next subsection. The reason we adopt ηj ≥ 3 is (6.11) where we

reduce the configuration by two units. Writing η = (1, ξ), note that all entries of ξ are

greater than 1. Since ηj ≥ 3, all entries in ξ − e′j − 2̄ are nonnegative where e′j denotes the

vector of all entries equal to zero except a one at the location where ηj appears in ξ.

First,

V +
K (1, ξ) = V +

K (0, ξ − 1̄) +WK(N, 1)(6.10)

= V +
K−1(ξ − 1̄) +WK(N, 1) .

Second, using ηj ≥ 3,

V +
K ((1, ξ)− ej + e1) = V +

K (2, ξ − e′j)(6.11)

= V +
K (0, ξ − e′j − 2̄) +WK(N, 2) (by (2.5) with m = 2)

= V +
K−1(ξ − e

′
j − 2̄) +WK(N, 2)

= V +
K−1(ξ − 1̄− e′j)−WK−1(N −K − 1, 1) +WK(N, 2) ,

where we have used the identity

V +
K−1(ξ − 1̄− e′j) = V +

K−1(ξ − e
′
j − 2̄) +WK−1(N −K − 1, 1).

Third,

V +
K ((1, ξ) + ej − e1) = V +

K (0, ξ + e′j)(6.12)

= V +
K−1(ξ + e′j) = V +

K−1(ξ − 1̄ + e′j) +WK−1(N, 1) .
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We need to establish

V +
K (1, ξ)− 1

2

(
V +
K ((1, ξ)− ej + e1) + V +

K ((1, ξ) + ej − e1)
)
− (ηj − 1)2 > 0 .(6.13)

By (6.10)–(6.12), the left hand side of (6.13) equals A+B where

A = V +
K−1(ξ − 1̄)− 1

2

(
V +
K−1(ξ − 1̄ + e′j) + V +

K−1(ξ − 1̄− e′j)
)
− (ηj − 1)2(6.14)

and

B = WK(N, 1)− 1

2

(
−WK−1(N −K − 1, 1) +WK(N, 2) +WK−1(N, 1)

)
.(6.15)

By (3.2), (3.7) and (6.15),

2B = 2WK(N, 1)−
(
−WK−1(N −K − 1, 1) +WK(N, 1) +WK(N −K, 1) +WK−1(N, 1)

)
= (WK(N, 1)−WK−1(N, 1))− (WK(N −K, 1)−WK−1(N −K − 1, 1))

= Q(N −K)−Q(N −K − 2) = 2(N −K)2.

So we have

(6.16) B = (N −K)2.

By (6.14) and (6.16), (6.13) is equivalent to

V +
K−1(ξ − 1̄)− 1

2

(
V +
K−1(ξ − 1̄ + e′j) + V +

K−1(ξ − 1̄− e′j)
)
− (ηj − 1)2 + (N −K)2 > 0,

which follows from Lemma 2 in Section 7 (and concludes the proof of the most difficult

case). Note that N−K,K−1, ξ−1̄, ηj−1 and e′j here should be identified, respectively, with

N,K, η, ηj and ej in (7.1) of Lemma 2. Note also that m(ξ) ≥ 2 implies that m(ξ − 1̄) ≥ 1

and N −K ≥ K − 1 as required by Lemma 2.

We are left with the case ` = 1 and ηj = 2. Without loss of generality, assume j = 2.

Let `′ be the multiplicity of η2 = 2.

Case ` = 1, ηj = 2 and `′ = 1.
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Write η = (1, 2, ξ) where all entries in ξ are greater than 2. (Note that ξ cannot be

vacuous since K ≥ 3.) We have by (2.1)

V +
K (1, 2, ξ) = V +

K (0, 1, ξ − 1̄) +WK(N, 1)(6.17)

= V +
K−1(1, ξ − 1̄) +WK(N, 1)

= V +
K−1(0, ξ − 2̄) +WK−1(N −K, 1) +WK(N, 1)

= V +
K−2(ξ − 2̄) +WK−1(N −K, 1) +WK(N, 1),

and by (2.5) (with m = 3)

V +
K (0, 3, ξ) = V +

K−1(3, ξ) = V +
K−1(0, ξ − 3̄) +WK−1(N, 3)(6.18)

= V +
K−2(ξ − 3̄) +WK−1(N, 3)

= V +
K−2(ξ − 2̄)−WK−2(N − 2K + 1, 1) +WK−1(N, 3),

where the last line follows from the identity

V +
K−2(ξ − 2̄) = V +

K−2(ξ − 3̄) +WK−2(N − 2K + 1, 1).

Since V +
K ((1, 2, ξ) − e1 + e2) = V +

K (0, 3, ξ) and V +
K ((1, 2, ξ) + e1 − e2) = V +

K (1, 2, ξ), the

inequality (5.1) is equivalent to V +
K (1, 2, ξ) > V +

K (0, 3, ξ) + 2. By (3.2), we have

WK−1(N, 3) = WK−1(N, 1) +WK−1(N −K + 1, 1) +WK−1(N − 2K + 2, 1) .

By (3.7), (6.17) and (6.18),

V +
K (1, 2, ξ)− V +

K (0, 3, ξ) =[WK(N, 1)−WK−1(N, 1)]

− [WK−1(N −K + 1, 1)−WK−1(N −K, 1)]

− [WK−1(N − 2K + 2, 1)−WK−2(N − 2K + 1, 1)]

=Q(N −K)− [Q(N −K − 1)−Q(N − 2K + 1)]−Q(N − 2K)

=[Q(N −K)−Q(N −K − 1)] + [Q(N − 2K + 1)−Q(N − 2K)]

≥12 > 2,

since Q(x)−Q(x− 1) = x(x+ 1) ≥ 12 for x ≥ 3 and N −K ≥ 3.
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Case ` = 1, ηj = 2 and `′ ≥ 2. Let η = (1, 2, 2̄`′−1, ξ) where ξ is possibly vacuous. We

single out one “2” to explicitly carry out the transform corresponding to the pair (1, 2).

Note that ξ is of dimension K − `′ − 1 with |ξ| = N − 2`′ − 1. We have by (2.1)

V +
K (1, 2, 2̄`′−1, ξ) = V +

K (0, 1, 1̄`′−1, ξ − 1̄) +WK(N, 1)(6.19)

= V +
K−1(1, 1̄`′−1, ξ − 1̄) +WK(N, 1)

= V +
K−1(0, 0̄`′−1, ξ − 2̄) +WK−1(N −K, 1) +WK(N, 1)

= V +
K−`′−1(ξ − 2̄) +WK−1(N −K, 1) +WK(N, 1) ,

and

V +
K (0, 3, 2̄`′−1, ξ) = V +

K−1(3, 2̄`′−1, ξ)

(6.20)

= V +
K−1(1, 0̄`′−1, ξ − 2̄) +WK−1(N, 2)

= V +
K−`′(1, ξ − 2̄) +WK−1(N, 2)

= V +
K−`′(0, ξ − 3̄) +WK−`′(N − 2K + 2, 1) +WK−1(N, 2)

= V +
K−`′−1(ξ − 3̄) +WK−`′(N − 2K + 2, 1) +WK−1(N, 2)

= V +
K−`′−1(ξ − 2̄)−WK−`′−1(N − 2K + 1, 1) +WK−`′(N − 2K + 2, 1) +WK−1(N, 2),

where the last equality follows from the identity

V +
K−`′−1(ξ − 2̄) = V +

K−`′−1(ξ − 3̄) +WK−`′−1(N − 2K + 1, 1).

(Note that if ξ is vacuous, V +
K (1, 2, 2̄`′−1, ξ) and V +

K (0, 3, 2̄`′−1, ξ) reduce to WK−1(N −
K, 1) +WK(N, 1) and WK−1(N, 2), respectively.) As in the preceding case, the inequality

(5.1) is equivalent to

(6.21) V +
K (1, 2, 2̄`′−1, ξ) > VK(0, 3, 2̄`′−1, ξ) + 2.
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Noting by (3.2) that WK−1(N, 2) = WK−1(N, 1) +WK−1(N −K + 1, 1), we have by (6.19)

and (6.20) that

V +
K (1, 2, 2̄`′−1, ξ)− V +

K (0, 3, 2̄`′−1, ξ) =

= [WK(N, 1)−WK−1(N, 1)] + [WK−1(N −K, 1)−WK−1(N −K + 1, 1)]

− [WK−`′(N − 2K + 2, 1)−WK−`′−1(N − 2K + 1, 1)]

=Q(N −K) + [Q(N − 2K + 1)−Q(N −K − 1)]−Q(N − 2K) by (3.7)

≥Q(N −K)−Q(N −K − 1) = (N −K)(N −K + 1) ≥ 6, since N −K ≥ 2,

establishing (6.21). This completes the proof.

7. Lemma 2

In this section we have the same notation V +
K (η) for the value function under S+ in

dimension K as in Section 6.

Lemma 2. For N ≥ K ≥ 2, for configuration η with m(η) ≥ 1 and N = |η|,

V +
K (η)− 1

2

(
V +
K (η + ej) + V +

K (η − ej)
)
− η2j +N2 > 0 .(7.1)

Proof. We first consider the special case N = K ≥ 2 and η = 1̄K . By (3.7),

2V +
K (η)− V +

K (η + ej)− V +
K (η − ej) =

= 2WK(K, 1)−WK(K + 1, 1)−WK−1(K − 1, 1)

= [WK(K, 1)−WK−1(K − 1, 1)]− [WK(K + 1, 1)−WK(K, 1)]

= Q(K − 2)−Q(K − 1) = −K(K − 1) > 2(1−K2) = 2(η2j −N2),

establishing (7.1) for this case. Next for the case K = 2, note by (1.7) that V +
K (η1, η2) =

U(η1, η2) where U(x, y) = (1/3)xy(x2 + y2 − 2) as defined in (4.3). Then for N ≥ K = 2,

the left hand side of (7.1) (with j = 1) equals

V +
K (η)− 1

2

(
V +
K (η + e1) + V +

K (η − e1)
)
− η21 +N2

= U(η1, η2)−
1

2

(
U(η1 + 1, η2) + U(η1 − 1, η2)

)
− η21 + (η1 + η2)

2

= −η1η2 − η21 + (η1 + η2)
2 = η1η2 + η22 > 0,
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establishing (7.1). (The case with j = 2 is done by symmetry.) Thus we have shown that

(7.1) holds for all 2 ≤ K ≤ N with either K = 2 or N = K.

To prove the general case with N > K ≥ 3, in similar fashion as in the proof of Proposi-

tion 7, we do induction onK, and for fixedK, induction onN . Specifically, with 3 ≤ K < N

fixed, suppose (7.1) holds for all 2 ≤ K ′ ≤ N ′ with either K ′ < K or K ′ = K and N ′ < N .

Then we need to prove that (7.1) holds for (K,N).

Case m = m(η) ≥ 2 or m = 1 < ηj. Like in (5.2)–(5.4), if m ≥ 2 or m = 1 < ηj , we

may apply the induction step immediately for η − 1̄ for which K ′ (the number of nonzero

entries in η − 1̄) is at most K and N ′ := |η − 1̄| = N −K < N . Clearly, N ′ ≥ K ′ ≥ 1. In

the special case K ′ = 1 (arising when m = 1 < ηj and ηi = 1 for all i 6= j) for which the

induction hypothesis does not apply, we note that η, η + ej and η − ej are respectively the

extremal configurations ζ1,K,N , ζ1,K,N+1 and ζ1,K,N−1, so that

V +
K (η) = WK(N, 1), V +

K (η + ej) = WK(N + 1, 1), V +
K (η − ej) = WK(N − 1, 1) .

The left hand side of (7.1) equals C +D where

C : = −η2j +N2 = −(N −K + 1)2 +N2 (since ηj = N −K + 1),

D : = WK(N, 1)− 1

2

(
WK(N + 1, 1) +WK(N − 1, 1)

)
(7.2)

=
1

2

(
[WK(N, 1)−WK(N − 1, 1)]− [WK(N + 1, 1)−WK(N, 1)]

)
=

1

2

(
[Q(N − 2)−Q(N −K − 1)]− [Q(N − 1)−Q(N −K)]

)
(by (3.7))

=
1

2

(
[Q(N −K)−Q(N −K − 1)]− [Q(N − 1)−Q(N − 2)]

)
=

1

2
(N −K)(N −K + 1)− 1

2
N(N − 1).(7.3)

It follows that C +D = g(N)− g(N −K + 1) > 0, where

(7.4) g(x) := x2 − 1

2
x(x− 1), an increasing function in x > 0.

This establishes (7.1) for K ′ = 1.

We now considerN ′ ≥ K ′ ≥ 2. Let η′ denote theK ′-dimensional vector derived from η−1̄

by deleting all zero entries, and let e′j be the K ′-dimensional vector of zeros except for a one

at the location where ηj−1 appears in η′. Then m(η′) ≥ 1 and |η′| = N−K = N ′ ≥ K ′ ≥ 2.

By the induction hypothesis applied to η′ (for which either 2 ≤ K ′ < K or K ′ = K and
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N ′ < N), we have

α : = V +
K (η − 1̄)− 1

2

(
V +
K (η − 1̄ + ej) + V +

K (η − 1̄− ej)
)

(7.5)

= V +
K′(η

′)− 1

2

(
V +
K′(η

′ + e′j) + V +
K′(η

′ − e′j)
)
> (ηj − 1)2 − (N −K)2.

Since by (2.1)

V +
K (η) = V +

K (η − 1̄) +WK(N, 1)

V +
K (η + ej) = V +

K (η − 1̄ + ej) +WK(N + 1, 1)

V +(η − ej) = V +
K (η − 1̄− ej) +WK(N − 1, 1) ,

the left hand side of (7.1) equals

α+WK(N, 1)− 1

2

(
WK(N + 1, 1) +WK(N − 1, 1)

)
− η2j +N2

>
(

(ηj − 1)2 − (N −K)2
)

+D − η2j +N2 (by (7.2) and (7.5))

= D +N2 − (N −K)2 − 2ηj + 1

≥ D +N2 − (N −K)2 − 2(N −K + 1) + 1 (since ηj ≤ N −K + 1)

=
1

2
(N −K)(N −K + 1)− 1

2
N(N − 1) +N2 − (N −K)2 − 2(N −K + 1) + 1 (by (7.3))

=
1

2
(N −K)(N −K + 1)− 1

2
N(N − 1) +N2 − (N −K + 1)2

= g(N)− g(N −K + 1) > 0 (by (7.4)).

This completes the proof for the case m ≥ 2 or m = 1 < ηj .

Case m = 1 = ηj. Let ` be the multiplicity of the minimum value 1. Without loss of

generality, assume j = 1. Write η = (1̄`, ξ) = (1, 1̄`−1, ξ) where ξ is a vector of dimension

K − ` with m(ξ) ≥ 2. Note that ξ cannot be vacuous (since N > K), so K − ` > 0.
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By (2.1),

V +
K (1, 1̄`−1, ξ) = V +

K (0, 0̄`−1, ξ − 1̄) +WK(N, 1)

= V +
K−`(ξ − 1̄) +WK(N, 1) ,(7.6)

V +
K (0, 1̄`−1, ξ) = V +

K−1(1̄`−1, ξ)

= V +
K−1(0̄`−1, ξ − 1̄) +WK−1(N − 1, 1)

= V +
K−`(ξ − 1̄) +WK−1(N − 1, 1) ,(7.7)

V +
K (2, 1̄`−1, ξ) = V +

K (1, 0̄`−1, ξ − 1̄) +WK(N + 1, 1)

= V +
K−`+1(1, ξ − 1̄) +WK(N + 1, 1)

= V +
K−`+1(0, ξ − 2̄) +WK−`+1(N −K + 1, 1) +WK(N + 1, 1)

= V +
K−`(ξ − 2̄) +WK−`+1(N −K + 1, 1) +WK(N + 1, 1)

= V +
K−`(ξ − 1̄)−WK−`(N −K, 1) +WK−`+1(N −K + 1, 1) +WK(N + 1, 1) ,(7.8)

where the last equality follows from the identity

V +
K−`(ξ − 1̄) = V +

K−`(ξ − 2̄) +WK−`(N −K, 1).

(Note by (3.8) that if K−` = 1, we have V +
K−`(ξ−2̄) = V +

K−`(ξ−1̄) = WK−`(N−K, 1) = 0.)

By (7.6)–(7.8),

β : = V +
K (1, 1̄`−1, ξ)−

1

2

(
V +
K (0, 1̄`−1, ξ) + V +

K (2, 1̄`−1, ξ)
)

(7.9)

= WK(N, 1)− 1

2

(
WK−1(N − 1, 1)−WK−`(N −K, 1)

+WK−`+1(N −K + 1, 1) +WK(N + 1, 1)
)

= D +
1

2

(
WK(N − 1, 1)−WK−1(N − 1, 1)

)
− 1

2

(
WK−`+1(N −K + 1, 1)−WK−`(N −K, 1)

)
(by (7.2))

= D +
1

2
Q(N −K − 1)− 1

2
Q(N −K − 1) = D.
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Thus, the left hand side of (7.1) equals

β − η21 +N2 = D − 1 +N2

≥ D − (N −K + 1)2 +N2

=
1

2
(N −K)(N −K + 1)− 1

2
N(N − 1)− (N −K + 1)2 +N2 (by (7.3))

= g(N)− g(N −K + 1) > 0 (by (7.4)).

This concludes the proof of the lemma.

�

8. The constrained case

In this section we shall consider only strategies where once a pair is chosen, it must

play until one of the two players is defeated and eliminated from the game (whose fortune

reaches zero). After that, another pair is chosen and the game continues with the new pair

until one is defeated, and so on, until all but one are defeated, at time T . We are once

again interested in maximizing V ar(T ), the variance of the duration of the game.

Recall (1.7) for the variance of the duration of the game with only two players. Let

U(x, y) := 1
3xy(x2 + y2 − 2) (cf. (4.3)).

We shall denote by S∗ the “constrained maximal” strategy, given by choosing the pair

with the largest two values, letting them play, and continuing with the new pair with

largest values at the end of the round between the first pair and so on. Let V ∗K(η) be the

corresponding value function. We shall prove that S∗ is optimal and unique to achieve the

maximum variance.

Let η = (η1, η2, . . . , ηK) be an initial configuration, where K is the number of players

at t = 0. Plainly, V ∗K(η) is invariant with respect to permutations of η. With the players’

fortunes arranged in descending order η1 ≥ η2 ≥ . . . ≥ ηK , strategy S∗ first picks the pair

(1, 2) for the first round and then pick the winner (survivor of the first round between the
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pair (1, 2)) together with player 3 for the second round and so on. It follows easily that

V ∗K(η) = V ∗` (η1, . . . , η`) + V ∗K−`+1(η1 + . . .+ η`, η`+1, . . . , ηK) , 2 ≤ ` ≤ K − 1,

V ∗K(η) = U(η1, η2) + V ∗K−1(η1 + η2, η3, . . . , ηK)(8.1)

= U(η1, η2) + U(η1 + η2, η3) + V ∗K−2(η1 + η2 + η3, η4, . . . , ηK)

=
K−1∑
r=1

U(η1 + . . .+ ηr, ηr+1) .

Proposition 8. For any pair (i, j) with {ηi, ηj} 6= {ηM1, ηM2},

(8.2) V ∗K(η) > V ∗K−1(η
(ij)) + U(ηi, ηj) ,

where ηM1 and ηM2 denote the largest two values in η, and η(ij) is the (K− 1)-dimensional

vector which is derived from η by adding an entry ηi + ηj and deleting two entries ηi and

ηj.

Proof. Note that the two sides of (8.2) are equal if {ηi, ηj} = {ηM1, ηM2}. The proof of

the proposition is done by induction on K. For K = 3, it is done by direct computation.

Specifically, for η = (η1, η2, η3) with η1 ≥ η2 ≥ η3, we have

V ∗K−1(η
(13)) = U(η1 + η3, η2) , and V ∗K−1(η

(23)) = U(η2 + η3, η1) .

It is readily verified that

V ∗K(η)− [V ∗K−1(η
(13)) + U(η1, η3)] = η1η1η3(η2 − η3) > 0 , if η2 > η3 ,

V ∗K(η)− [V ∗K−1(η
(23)) + U(η2, η3)] = η1η2η3(η1 − η3) > 0 , if η1 > η3 ,

implying that (8.2) holds for K = 3.

Now suppose (8.2) holds for K − 1 (K ≥ 4). We need to prove that it holds for K.

Without loss of generality, assume that η1 ≥ η2 ≥ . . . ≥ ηK . Let (i, j) be a pair with

(8.3) i < j and {ηi, ηj} 6= {ηM1, ηM2} = {η1, η2}.

Necessarily, j ≥ 3.

Case 1. Suppose {ηi, ηj} ∩ {η1, η2} 6= ∅. By (8.3), we have ηi ∈ {η1, η2} and η1 > ηj .

(Recall that {ηi, ηj} is interpreted as a multiset counting multiplicities. It is possible that

both ηi and ηj belong to {η1, η2} but {ηi, ηj} 6= {η1, η2}, which arises when η1 > η2 = ηi =

ηj .)
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The left hand side of (8.2) satisfies

V ∗K(η1, η2, . . . , ηK) = V ∗K−1(η1 + η2, η3, . . . , ηK) + U(η1, η2)

≥ V ∗K−2(η1 + η2 + ηj , η3, . . . , ηj−1, ηj+1, . . . , ηK) + U(η1 + η2, ηj) + U(η1, η2) ,(8.4)

where the equality is by (8.1) and the inequality is true from the induction hypothesis

(noting that the inequality becomes an equality if η1 + η2 and ηj are the largest two values

in η(12) = (η1 + η2, η3, . . . , ηK)).

Subcase 1(i). Suppose {ηi, ηj} ∩ {η1, η2} = {η1}, i.e. ηi = η1. Without loss of generality,

assume i = 1. Then the right hand side of (8.2) satisfies

V ∗K−1(η
(1j)) + U(η1, ηj) = V ∗K−1(η1 + ηj , η2, η3, . . . , ηj−1, ηj+1, . . . , ηK) + U(η1, ηj)

= V ∗K−2(η1 + ηj + η2, η3, . . . , ηj−1, ηj+1, . . . , ηK) + U(η1 + ηj , η2) + U(η1, ηj) ,(8.5)

where the first equality is just re-stating the definition of η(1j) and the second equality uses

the definition of the constrained maximal strategy S∗ (observing that η1 + ηj and η2 are

the largest two values in η(1j)). By (8.4) and (8.5), to prove (8.2), it suffices to show

U(η1 + η2, ηj) + U(η1, η2) > U(η1 + ηj , η2) + U(η1, ηj) .(8.6)

Letting

(8.7) η′ = (η′1, η
′
2, η
′
3) := (η1, η2, ηj),

the left and right hand sides of (8.6) are, respectively, V ∗3 (η′) and V ∗2 (η′(13)) + U(η′1, η
′
3).

The inequality (8.6) is true since (8.2) holds for K = 3 and {η′1, η′3} 6= {η′1, η′2}.
Subcase 1(ii). Suppose {ηi, ηj} ∩ {η1, η2} = {η2}. Then ηi = η2. Without loss of

generality, assume i = 2. We further assume that η1 > η2 (otherwise, it reduces to the

preceding subcase). The right hand side of (8.2) satisfies

V ∗K−1(η
(2j)) + U(η2, ηj) = V ∗K−1(η1, η2 + ηj , η3, . . . , ηj−1, ηj+1, . . . , ηK) + U(η2, ηj)

= V ∗K−2(η1 + η2 + ηj , η3, . . . , ηj−1, ηj+1, . . . , ηK) + U(η2 + ηj , η1) + U(η2, ηj) ,(8.8)

where the second equality follows from (8.1) upon observing that η1 and η2 + ηj are the

largest two values in η(2j). (We remark that we do not need to know which is larger between

η1 and η2 + ηj .)
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By (8.4) and (8.8), to prove (8.2), it suffices to show

U(η1 + η2, ηj) + U(η1, η2) > U(η2 + ηj , η1) + U(η2, ηj) .

With η′ as defined in (8.7), this inequality is stating that

V ∗3 (η′) > V ∗2 (η′(23)) + U(η′2, η
′
3) ,

which is true as (8.2) holds for K = 3 and {η′2, η′3} 6= {η′1, η′2}.
Case 2. Suppose {ηi, ηj} ∩ {η1, η2} = ∅. Then η1 ≥ η2 > ηi ≥ ηj .
Subcase 2(i). ηi + ηj ≤ η2. By (8.1), the left hand side of (8.2) equals

(8.9) V ∗K(η) = V ∗K−1(η
(12)) + U(η1, η2),

while the right hand side satisfies

(8.10) V ∗K−1(η
(ij)) + U(ηi, ηj) = V ∗K−2(η

(12)(ij)) + U(η1, η2) + U(ηi, ηj),

where η(12)(ij) denotes the (K − 2)-dimensional vector which is derived from η by adding

two entries η1 + η2 and ηi + ηj and deleting four entries η1, η2, ηi and ηj . Note that (8.10)

follows from (8.1) upon observing that η1 and η2 are the largest two values in η(ij). By

(8.9) and (8.10), (8.2) is equivalent to

V ∗K−1(η
(12)) > V ∗K−2(η

(12)(ij)) + U(ηi, ηj),

which is true by the induction hypothesis applied to the (K − 1)-dimensional vector η(12).

(Note that the largest value in η(12) is η1 + η2 > ηi ≥ ηj and that η(12)(ij) is the (K − 2)-

dimensional vector which is derived from the (K − 1)-dimensional vector η(12) by adding

an entry ηi + ηj and deleting two entries ηi and ηj .)

Subcase 2(ii). Suppose ηi+ηj > η2. First consider the pair (i′, j′) = (1, i) for which (8.2)

holds since this corresponds to subcase 1(i). So,

(8.11) V ∗K(η) > V ∗K−1(η
(i′j′)) + U(ηi′ , ηj′) = V ∗K−1(η

(1i)) + U(η1, ηi).

By the induction hypothesis applied to η(1i), we have

(8.12) V ∗K−1(η
(1i)) > V ∗K−2(η

(1ij)) + U(η1 + ηi, ηj),

where η(1ij) is the (K − 2)-dimensional vector which is derived from η by adding an entry

η1 + ηi + ηj and deleting three entries η1, ηi, ηj (which can also be defined as derived from
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η(1i) by adding an entry (η1 + ηi) + ηj and deleting two entries η1 + ηi and ηj .) Note that

in η(1i), ηj < η2 so ηj is not the second largest value.

Noting that η1 and ηi + ηj are the largest two values in η(ij) (since ηi + ηj > η2), the

right hand side of (8.2) (corresponding to the pair (i, j)) satisfies by (8.1)

(8.13) V ∗K−1(η
(ij)) + U(ηi, ηj) = V ∗K−2(η

(1ij)) + U(η1, ηi + ηj) + U(ηi, ηj).

By (8.11)–(8.13), to prove (8.2), it suffices to show

(8.14) U(η1 + ηi, ηj) + U(η1, ηi) > U(η1, ηi + ηj) + U(ηi, ηj).

Letting η′′ = (η′′1 , η
′′
2 , η
′′
3) := (η1, ηi, ηj), (8.14) is equivalent to

V ∗3 (η′′) > V ∗2 (η′′(23)) + U(η′′2 , η
′′
3),

which is true since (8.2) holds for K = 3 and η′′1 > η′′2 ≥ η′′3 . �

Theorem 3. The strategy S∗ is optimal and unique to achieve the maximum variance in

the constrained case.

Proof. Inequality (8.2) is the analogue of (1.15) for the constrained strategies. This shows

that V ∗K is an upper bound for the value function of the game. Since V ∗K is realized for the

strategy S∗, V ∗K is equal to the value function of the game. The optimal strategy is unique

since (8.2) is a strict inequality.. �

Remark. Since in the constrained game, a pair (i, j) continues to play until one player is

defeated, there is no intrinsic randomness in the game. The control (choice of pairs) is the

only variable, and as such, the optimization is a finite dimensional problem unlike the main

problem in the paper. The value of the game is an explicit function calculated in K − 1

recursive steps, written in terms of U(x, y). Then V ∗K(η) is the maximum over sequences of

pairs (i, j) of length K−1. It is of interest to note that in order to maximize the variance of

the duration of the game in both constrained and unconstrained cases, one should always

pick a pair of players who have currently the largest fortunes whenever selection of a pair

is called for.

9. Concluding remarks

We introduced the “maximal” strategy S+ which is stationary Markovian, defined by

s+(η) := (i, j) where ηi and ηj are the largest two values in η. We showed that S+
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uniquely attains the maximum variance of the duration of the game, i.e. S+ along with the

corresponding value function V S+(η) solves the maximization problem (1.8). However, for

the minimization problem (1.9), we have yet to find a strategy that attains the minimum

variance of the duration of the game. A natural candidate strategy is the “minimal”

strategy S̃ which is stationary Markovian, defined by s̃(η) = (i, j) where ηi and ηj are the

smallest two values in η. Unfortunately, this strategy does not yield the minimum variance.

As an example, consider the case η = (η1, η2, η3) = (1, 2, 2). Under S̃, players 1 and 2

continue to play until one of them has fortune 0 (and is out of the game). It follows that

V S̃(η) = U(1, 2)+U(3, 2) = 24. (For this special configuration η = (1, 2, 2), S̃ happens to be

an “admissible” strategy in the constrained case.) On the other hand, consider the strategy

that selects players 2 and 3 to play at t = 1 and then selects the loser and player 1 to play

at t = 2. At the end of t = 2, only two players survive with fortunes 2 and 3. Thus the

variance of the duration of the game under this strategy equals U(2, 3) = 22 < 24 = V S̃(η).

It may be instructive to consider the minimization problem for the constrained case as

in Section 8, which is relatively easier to deal with. Again, a natural candidate strategy is

to select the two players with smallest fortunes every time when a player is defeated and

eliminated from the game. We refer to this strategy as S̃′. While it can be readily shown

that S̃′ attains the minimum variance in the constrained case for K = 3, the following

example demonstrates that S̃′ does not attain the minimum variance in general. For K = 4

and a configuration η = (η1, η2, η3, η4), consider strategies S1 and S2 in the constrained case

where S1 (S2, resp.) selects players 3 and 4 (2 and 3, resp.) to play in the initial round

(until one of them is defeated), and then selects players 1 and 2 (1 and 4, resp.) for the

second round. At the end of the second round, only two players survive who then play till

the end of the game. It can be shown that

V S1(η)− V S2(η) = (η1 − η3)(η2 − η4)(η1η3 + η2η4).

If η1 ≥ η2 > η3 ≥ η4, then V S1(η) > V S2(η). If, in addition, η3 + η4 ≥ η1, then S1 = S̃′,

which yields a larger variance than S2. In fact, in this case S2 attains the minimum variance

in the constrained case. It is also worth noting that

V S1(η)− V S3(η) = (η1 − η4)(η2 − η3)(η1η4 + η2η3) > 0,
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where S3 is the strategy that selects players 2 and 4 in the initial round and selects players

1 and 3 in the second second. Even in the constrained case, the minimization problem (1.9)

does not seem to admit a simple solution.

Finally, we conclude the paper by reviewing some relevant literature. The so-called K-

tower problem is concerned with the strategy SR that at each time t, a pair is chosen

at random among all players remaining in the game and the game stops as soon as one

player’s furtune drops to 0. For K = 3, Engel [6] obtained a simple formula for the

expected duration with the help of extensive computer calculations, while Stirzaker [12]

used martingale theory to drive the formula. Bruss et al. [4] later derived the variance and

the probability distribution of the duration for K = 3, and also argued convincingly that

no simple formula for the expected duration can be expected for K ≥ 4. Engel [6] and

Stirzaker [12] also considered the ruin problem where the game stops when one player wins

all, and found the expected duration under SR for general K (cf. (1.6)). Later Ross [10]

showed among other things that the expected duration is the same for all strategies. We

gave a short proof of this result by constructing a simple martingale (cf. (1.2)).

There are other versions of the multi-player gamblers’ ruin problem. In particular, the

so-called multi-player ante one game consists of K players each with initial (interger-valued)

fortune ηi, i = 1, . . . ,K. At each time t = 1, 2, . . . , each player with positive fortune puts

one unit in a pot, which is then won (with equal probability) by one of them. Players whose

fortunes drop to 0 are eliminated. Let T (i) be the total time player i stays in the game.

(Equivalently, T (i) is the first time when player i’s fortune either drops to 0 or reaches the

maximum |η|.) Let T = maxi T
(i), the duration of the game. Let Tj be the total time when

exactly j players are in the game. Note that T = TK + . . .+ T2 and that TK is equivalent

to the first time when at least one player’s fortune drops to 0. Martingale theory has been

used to derive E(T ), E(T (i)) and E(Tj) for K = 3; see [2, 6, 11]. See also [1] for related

results. No simple formulas are available for K ≥ 4.
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