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Abstract. We present the explicit derivation of the asymptotic law of the
tagged particle process for a system of interacting Brownian motions in the
presence of a diffusive scaling in non-equilibrium. The interaction is local and
interpolates between the totally independent case (non-interacting) and the
totally reflecting case. It can be viewed as the limiting local version of an
interaction through a pair potential as its support shrinks to zero. We also
prove the independence of two tagged particles in the limit and analyze the
case when the initial profile is singular.

1. Introduction

Assume we have decided to look at a given interacting particles system. There
are various scaling options for the same dynamics, but we are interested in the
nontrivial ones, i.e. those when certain quantities such as spatial averages are
conserved. A system of n ∈ Z+ independent Brownian motions (x1(t), x2(t), . . . ,
xn(t))t≥0 evolving on a circle of size N > 0 can be scaled down to 1

N xi(t), for
i = 1, 2. . . . , n to produce a n-dimensional process on the unit circle. The number
of particles can be chosen such that n = ρ̄N , for ρ̄ > 0. The average density on the
circle stays ρ̄ for any N > 0. For a meaningful diffusive evolution we shall speed
up time by a factor of N2. The resulting dynamics is a set of n = ρ̄N independent
Brownian motions (xN

1 (t), xN
2 (t), . . . , xN

n (t))t≥0 on the n-dimensional unit torus Γn

denoted by PN .
The scaled process represents a microscopic realization of the interaction. By

contrast, we shall look at macroscopic quantities. The average density ρ̄ is the
only preserved macroscopic quantity in our system. At time t = 0 we assume the
existence of a measure µ(0, dx) on the unit circle with total mass µ(0,Γ) = ρ̄ such
that

(1.1) lim
N→∞

1
N

n∑

i=1

δxi(0) = µ(0, dx)

in weak sense. This macroscopic quantity is the initial profile of the system. A
natural quantity to look at is the hydrodynamic limit:

(1.2) lim
N→∞

1
N

n∑

i=1

δxi(t) = µ(t, dx) .

For independent Brownian motions this amounts to the classic law of large num-
bers. The measure-valued process {µ(t, dx)}t≥0 will be concentrated on the unique
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deterministic solution of the heat equation ρt = 1
2ρxx in the distribution sense with

initial condition limt→0 ρ(t, x)dx = µ(0, dx). Large deviations from the macroscopic
profile are studied for this model in [7]. We are also interested in the existence of
a limiting measure Qµ on the path space Ω = C([0,∞), Γ) with initial distribution
Qµ(ω(0) ∈ dx) = µ(0, dx) such that

(1.3) lim
N→∞

1
N

n∑

i=1

δxi(·) = Qµ .

Again, for the non-interacting case, the limit Qµ is identical to a Wiener measure
on the unit circle starting at µ(0, dx).

A third quantity we may look at is the fluctuations from the hydrodynamic limit.
Let ϕ(x) and ψ(x) be smooth test functions on Γ. The random field {ζN (t)}t≥0

with values in H−2(Γ), defined in equilibrium by

〈ϕ, ζN (t)〉 =
1√
N

n∑

i=1

(ϕ(xi(t))−
∫

Γ

ϕ(x)dx)(1.4)

converges to a generalized Ornstein-Uhlenbeck process {ξ(t)}t≥0 satisfying

dζ(t) =
1
2
∂xxζ(t)dt +

√
ρ̄(d∂xW (t)) .(1.5)

Here ∂xW (t) is the Gaussian random field with covariance

E[〈ϕ, ∂xW (t)〉〈ψ, ∂xW (s)〉] = min{s, t}
∫

Γ

ϕ′(x)ψ′(x)dx .

The averaging taking place in the law of large numbers (1.3) may wipe out a lot
of features of the interaction between particles. However, in the independent case
we have in mind, the limit Qµ is essentially the same as the law of each particle
considered by itself, for a fixed label, (say equal to one) {x1(t)}t≥0. This is the
tagged particle process or the so-called tracer particle. The individual particles
have trajectories supported on the set of continuous paths on the unit circle Γ.
Every such path can pe lifted in a canonical way to the real line. Theorems 2.3,
2.4 are true for the lifted process. However we shall not differentiate between the
two in the context of this paper.

The outlook of these considerations changes radically as soon as we allow some
interaction between the particles in the system. Suppose V (x) is a smooth, positive,
even potential with compact support. Let’s consider the n-dimensional interacting
Brownian motions process PN

V with generator

(1.6) Lf(x) =
1
2
∆f(x)−

∑

i

(
∑

j 6=i

V ′(xi − xj))∂if(x) with D(L) = C2(Γn, R) .

The presence of the Lapalcian induces a diffusive scaling tmicro = N2tmacro and
xmicro = Nxmacro. This amounts to the scaling of the potential VN (x) = V (Nx).
The equilibrium measure is given by the density

(1.7)
1

ZN
exp


−1

2

∑

i,j

V (N(xi − xj))


 .
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Under the initial condition (1.1) one can obtain a hydrodynamic limit for the macro-
scopic density of the system. The bulk diffusion appears in [5]. See [18] for the
nonequilibrium case. The limit for the fluctuation field from the macroscopic den-
sity in equilibrium is a Gaussian random field of the same nature as (1.5), shown
in [13]. (See [1] for the Ginzburg-Landau model in nonequilibrium.)

The tagged particle process has been studied in equilibrium by Guo. The self-
diffusion coefficient has a variational formula ([4] and [6]). The self-diffusion coef-
ficient in nonequilibrium has not been done.

Another type of interaction we may be interested in studying is an extreme case of
(1.6). At this level we are not interested in the scaling for the interacting particle
system. The primary fact is that for a fixed n and any ε > 0 we can consider a
potential Vε(x) of the same nature but with support included in the interval [−ε, ε].
Assume there exists a positive λ such that

(1.8) lim
ε→0

∫

Γ

(exp (2Vε(x))− 1)dx =
1
λ

.

Then {PN
Vε
}ε is tight and has a unique limit PN

λ which is described below.

2. The interaction model

Consider a positive integer n and λ ≥ 0. Let Γn be the n-dimensional torus. We
define F ij = {x ∈ Γn : xi = xj} for any i, j in {1, . . . , n} and F = ∪1≤i<j≤nFij .
With this notation we introduce the following class of functions.

Definition 2.1. Let C̄(Γn, F ) = { f : Γn −→ R : f ∈ C2(Γn \F ) with f ij(x0) and
Dijf(x0) finite for any x0 ∈ F and any (i, j)} - the set of smooth functions up to
the boundary F , where f ij and Dijf are defined as

f ij(x1, x2, ..., xi−1, x, xi+1, ..., xj−1, x, xj+1, ..., xn)(2.1)
= f(x1, x2, ..., xi−1, x + 0, xi+1, ..., xj−1, x− 0, xj+1, ..., xn)

and

Dijf(x1, x2, ..., xi−1, x, xi+1, ..., xj−1, x, xj+1, ..., xn)(2.2)
= (∂i − ∂j)f(x1, x2, ..., xi−1, x + 0, xi+1, ..., xj−1, x− 0, xj+1, ..., xn) .

We are now in a position to define the generator of the process

xn(t) = (x1(t), . . . , xn(t))

on Γn. For a real λ ≥ 0 we define the boundary conditions:

(2.3) (BC) Dijf(x) + λ(f ji(x)− f ij(x)) = 0 ∀i, j ∈ {1, . . . , n} .

The operator (L,D(L)) with

(2.4) Lf =
1
2
∆f , D(L) = {f ∈ C̄(Γn, F ) : (BC) are satisfied}

is the infinitesimal generator of a process Pn
λ on Γn.

This interaction model can be more easily understood by considering a set of
canonical local times Aij(t), defined for any oriented pair (i, j), i 6= j, (i, j) ∈
{1, . . . , n}2 which measure the collision time of two particles xi and xj when xi

approaches xj in positive trigonometric order xi > xj on the unit circle. The
ordering is nonambiguous because we are only interested in the circumstance when
the particles are close to each other. In this framework, we shall consider increasing
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sequences of Poisson events of intensity λ running according to the local times for
each oriented pair (i, j). These will be the “jump” times, or, more accurately, the
times of switching of labels. Two particles xi(t) and xj(t) with distinct labels i
and j will perform independent Brownian motions until they meet. Let τ be an
exponential time with intensity λ, independent from the process. We define the
stopping time tij = inft>0{Aij(t) > τ}. The two particles will bounce back from
each other according to a reflected Brownian motion. However, once the time tij is
reached, they exchange labels or, in other words, cross each other. This construction
repeats itself in the larger setting of the n particle process. The dynamics is that
of reflected Brownian motions until the first “jump” time occurs. The particles
will continue to perform a n-dimensional reflected Brownian motion until the next
exchange of labels. This evolution interpolates between the reflected Brownian
motion (λ = 0) and the independent case (λ = ∞). The diffusive scaling for the
present interaction model amounts to blowing up the parameter λ by a factor of N
to λN = Nλ.

The new scaled process, denoted by PN , allows us to calculate explicitly the
self-diffusion coefficient in nonequilibrium. In the equilibrium case the self-diffusion
coefficient can be expressed in terms of a variational formula for various interacting
particle systems, as in [8], [14], [16] and [17].

Let µ(s, dx) = ρ(s, x)dx for s > 0 be the solution to the heat equation, with
initial conditions (1.1). The next theorem is a version of the hydrodynamic limit
valid uniformly in time.

Theorem 2.2. For any smooth f : Γ −→ R and any t > 0

(2.5) lim
N→∞

EN sup
0≤s≤t

∣∣∣∣∣
1
N

n=Nρ̄∑

k=1

f(xN
k (s))−

∫ 1

0

f(x)µ(s, dx)

∣∣∣∣∣

2

= 0 .

The hydrodynamic limit of the system is identical to the macroscopic profile of
the independent Brownian motions (1.2). The symmetry of the boundary conditions
cancels out any trace of the switching of labels occurring microscopically.

The invariant measure of the process is the product uniform distribution on the
torus Γn. In equilibrium the macroscopic profile will be constant equal to ρ̄ and the
tagged particle process {xN

1 (t)}t≥0 converges weakly, as N → ∞, to a Brownian
motion with diffusion coefficient Dself (λ, ρ̄) = λ/(λ + ρ̄). This is the self-diffusion
coefficient for the local interaction (2.4) in the diffusive scaling. We can see that,
consistent with the intensity of the interaction,

(2.6) lim
λ→0

λ

λ + ρ̄
= 0 and lim

λ→∞
λ

λ + ρ̄
= 1 ,

the first case corresponding to the pure reflection setting, leading to a deterministic
profile (constant, in equilibrium) and the second case corresponding to the nonin-
teracting case, when Dself (λ, ρ̄) = 1 as in (1.3). The following theorem states the
main result concerning the tracer particle in nonequilibrium (see [2]).

Theorem 2.3. If the initial density profile µ(0, dx) has a bounded initial density
ρ0(x), i.e. µ(0, dx) = ρ0(x)dx and PN (xN

1 (0) = x1) = 1 is satisfied for all N > 0,
then the family of measures PN ◦ (xN

1 (·))−1 has a weak limit Qx1 as N → ∞ and
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Qx1 is the unique solution to the martingale problem given by

(2.7) At =
1
2

(
λ

λ + ρ(t, x)

)
d2

dx2
− 1

2

(
∂xρ(t, x)

2λ + ρ(t, x)
(λ + ρ(t, x))2

)
d

dx

starting at (0, x1).

The condition that the initial profile have a bounded density is not technical,
as we shall explain later. Yet our interest is focused on the form of the diffusion
process Qx1 described in the theorem. The self-diffusion coefficient is consistent
with the prediction for the equilibrium case Dself (λ, ρ(t, x)) = λ/(λ+ ρ(t, x)). The
drift depends on the spatial derivative of the density (vanishes in equilibrium) and is
negative, reflecting the repulsive nature of the interaction. From a heuristic point of
view, as soon as we have determined the macroscopic density ρ(t, x) and Dself (λ, ρ)
we should be able to predict the drift term b(t, x) by solving the equation

(2.8) ρt = A∗t ρ
which yields exactly

(2.9) b(t, x) = −1
2

(
∂xρ(t, x)

2λ + ρ(t, x)
(λ + ρ(t, x))2

)
.

For any smooth test function φ(x) on Γ we know that

1
N

n∑

i=1

φ(xN
i (t)) ⇒

∫ 1

0

φ(x)ρ(t, x)dx

from (2.5). In the same time, if the particles decouple in the limit, the sum
(1/N)

∑n
i=1 φ(xN

i (t)) should converge to ρ̄EQµ

[f(ω(t)], where Qµ is the law of
the diffusion described in (2.7) starting from the initial distribution µ(0, dx). This
implies (2.8). For the simple exclusion model this is explained in [15]. The crucial
assumption we have made is that two distinct particles become independent in the
limit. The next theorem and (2.11) state the propagation of chaos for our model.

Theorem 2.4. Let (xN
1 (·), xN

2 (·)) be a pair of tagged particle processes with dis-
tinct labels. Assume that each starts at x1, respectively x2 on the unit circle, that
is PN (xN

1 (0) = x1) = 1 and PN (xN
2 (0) = x2) = 1 and that the initial profile

µ(0, dx) has bounded density ρ0(x). Let x1(·) and x2(·) be the two processes such
that xN

1 (·) ⇒ x1(·) and xN
2 (·) ⇒ x2(·), that is there exists a measure Q(x1,x2) on

Ω2 = C([0,∞), R2) such that

(2.10) PN ◦ (xN
1 (·), xN

2 (·))−1 ⇒ Q(x1,x2) .

Then x1(·) and x2(·) are independent with respect to Q(x1,x2), or equivalently
Q(x1,x2) = Qx1 ⊗Qx2 .

The dynamics controlled by the parameter λ provides an example of hydrody-
namic limit when the interaction is undetectable seen from the level of the marginals
at a given time t. This is further illustrated by the fact that both the fluctuation
field and the large deviations from the hydrodynamic limit behave identically as in
the case of independent Brownian motions. The self-diffusion detected already in
equilibrium shows that at the level of the path ω(·) ∈ Ω the amount of interaction
is visible. In that sense we can prove the next theorem.
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Theorem 2.5.

(2.11)
1
N

n∑

i=1

δxN
i (·) ⇒ ρ̄Qµ

where Qµ is the law of tagged particle process (2.7) averaged over the initial profile
µ(0, dx).

In equilibrium this law of large numbers is an immediate consequence of Theo-
rems 2.3 and 2.4. In nonequilibrium one cannot assume that the particles converge
to their limit uniformly with respect to their label. The proof is part of a work in
progress concerning the fluctuation field (2.13) which requires stronger estimates
than Theorem 2.3 and Theorem 2.4. For symmetric simple exclusion processes
Theorem 2.5 is proved in [12].

A way to point out the emergence of the interaction when we pass to the law of
large numbers (2.11) from the hydrodynamic limit (1.2) is to think of the multicolor
process. Theorem 2.3 derives the law of large numbers for the marginal at time
t of the tagged particle process whereas Theorem 2.5 must take into account any
finite collection of marginals at times t0 < t1 < . . . < tm, for any m ∈ Z+. We may
want to see what happens to just two consecutive times 0 ≤ s < t. We look at the
average

(2.12)
1
N

n∑

i=1

g(xN
i (s), xN

i (t))

as N → ∞, for an arbitrary g(·, ·) ∈ C∞0 (R2). Let’s consider that the particles
have the same color at time t = 0, say blue. Also, let’s pick A ∈ B(Γ). The particle
crossing the set A at time s will change color into green. Due to the Markov prop-
erty, proving the LLN for (2.12) is equivalent to finding the hydrodynamical limit
of the two color process. The interaction becomes apparent because the symmetry
(cancellations in the boundary conditions when averaging) is lost to the presence
of the two colors. The particles will not exchange freely their labels; it matters
where they come from, or, in other words, what is their history. See [10]. A large
deviations principle from Qµ for the empirical random measures in (2.11) for the
symmetric exclusion process is obtained in [11].

In the future one would also like to give a meaning to the random field on the
path space Ω of the fluctuations from the limit Qµ in equilibrium

(2.13) ζN =
1√
N

n∑

i=1

(δxN
i (·) −Qµ) .

We shall sketch the proof of Theorem 2.3 and Theorem 2.4.

3. Proof of Theorems 2.3 and 2.4

It is known (see [9]) from the definition of the process {xN (t)}t≥0 with the
filtration {Ft}t≥0, Ft = σ(xN (s) : 0 ≤ s ≤ t) that there exist n2 − n local times
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{Aij
N (t)}t≥0 for i 6= j in the set {1, 2, . . . , n} such that for any f ∈ C̄(Γn, F )

Mf (t) := f(xN (t))− f(xN (0))− 1
2

∫ t

0

∆f(xN (s))ds−

−
∑

i 6=j

∫ t

0

(
Djif(xN (s)) + (λN)[f ij(xN (s))− f ji(xN (s))]

)
dAji

N (s)

(3.1)

is a (P xN

, {Ft}t≥0) - martingale. More precisely,

Mf (t) =
n∑

k=1

∫ t

0

∂xk
f(xN (s))dβk(s) +

∑

i6=j

∫ t

0

[f ij(xN (s))− f ji(xN (s))]dM ji
N (s)

where {βk(t)} (k = 1, . . . , n) is a family of independent Brownian motions and
M ij

N (t), M ji
N (t) are the jump martingales corresponding to the interaction along

the boundary F ij such that [M ij
N (t)]2 − (λN)Aij

N (t) is also a martingale.
A direct attempt to write the stochastic integral equation for the tagged particle

{x1(t)}t≥0 leads to

(3.2) x1(t)− x1(0)−
∑

k 6=1

[
A1k

N (t)−Ak1
N (t)

]
= β1(t)

for the function f1(x) = x1. The term
∑

k 6=1 [A1k
N (t)−Ak1

N (t)] is very hard to
evaluate.

Let ν : R −→ R be the periodic extension on the real line of the function
ν(x) = x on [0, 1]. For two points x′ and x′′ on the unit circle ν(x′ − x′′) is the
distance between the two in positive trigonometric sense.

In general, the process {((xN
2 (t)− xN

1 (t)), . . . , (xN
n (t)− xN

1 (t)))}t≥0 is called the
environment process for the tagged particle {xN

1 (t)}t≥0. We generate a martingale
with respect to the filtration {Ft}t≥0, Ft = σ(xN (s) : 0 ≤ s ≤ t) and the measure
PN denoted by

(3.3) zN
1 (t) := xN

1 (t) +
1

λ + ρ̄
· 1
N

∑

k 6=1

ν(xN
k (t)− xN

1 (t))

as a linear combination of the two. There are several steps to follow.

3.1. Step 1: The asymptotic average collision time per particle. The qua-
dratic variation of the martingale zN

1 (t) is

(3.4) σ2(N, λ)t +
1

(λ + ρ̄)2
( λ

N

) ∑

k 6=1

(
A1k

N (t) + Ak1
N (t)

)

where

σ2(N,λ) =
[
1− n− 1

N(λ + ρ̄)

]2

+
1

(λ + ρ̄)2
· (n− 1)

N2
.

The average interaction local time per particle

(3.5) A1
N (t) :=

1
N

∑

k 6=1

(
A1k

N (t) + Ak1
N (t)

)

is the main quantity to evaluate in the limit.
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Theorem 3.1. For any initial profile µ(0, dx)
1) the average interaction local time per particle {A1

N (·)}N is tight and
2) dA1

N (t) is asymptotically equal to ρ(t, xN
1 (t))dt, i.e. ∀ t ≥ 0

(3.6) lim
N→∞

EN

∣∣∣∣A1
N (t)−

∫ t

0

ρ(s, xN
1 (s))ds

∣∣∣∣ = 0 .

The hardest part of the proof of theorem 2.3 is to establish (3.6).

3.2. Step 2: The tightness. Theorem 3.1 shows that zN
1 (t) is tight. At time

t = 0 the martingale zN
1 (t) takes values in a bounded set [0, 2]. Doob’s inequality

and the asymptotic estimate (3.6) take care of the rest. The idea underlying the
proof of tightness for the tagged particle process xN

1 (t) is that for s < t the quantity

|zN
1 (t)− zN

1 (s)|(3.7)

=

∣∣∣∣∣∣
xN

1 (t)− xN
1 (s) +

1
λ + ρ̄


 1

N

∑

k 6=1

(ν(xN
k (t)− xN

1 (t))− ν(xN
k (s)− xN

1 (s)))




∣∣∣∣∣∣
must be large if |xN

1 (t)− xN
1 (s)| is large. This will show that if zN

1 (t) is tight, then
xN

1 (t) is tight as well.

3.3. Step 3: The connection between the martingale zN
1 (t) and xN

1 (t). It
is important to remark that both Step 1 and Step 2 of the proof make no use of
the assumption that µ(0, dx) = ρ0(x)dx for ρ0(x) bounded. Let’s denote the path
space {ω(·) : ω ∈ C([0, T ])} by Ω. The mapping Θ : Ω −→ Ω

(3.8) Θ(ω)(t) := ω(t) +
1

λ + ρ̄

∫ 1

0

ν(y − ω(t))ρ(t, y)dy

is one-to-one and onto if ρ0(x) is bounded. We want to have

lim
N

EP N

∣∣∣∣∣
(
xN

1 (t) +
1

λ + ρ̄

1
N

∑

k 6=1

ν(xN
k (t)− xN

1 (t))
)

(3.9)

−
(
xN

1 (t) +
1

λ + ρ̄

∫ 1

0

ν(y − xN
1 (t))ρ(t, y)dy

)∣∣∣∣∣ = 0 .(3.10)

This is done by extending the hydrodynamic limit (1.2) to functions with a finite
number of discontinuities like ν(x) and introducing xN

1 (t) as a parameter. There
are many details to fill in, but in the end (3.9) implies that, if x1(·) is a limit point
for the tight processes {xN

1 (·)}N>0, as well as z1(·) is a limit point for {zN
1 (·)}N>0,

then

(3.11) z1(·) = Θ(x1(·)) a.s. .

For every t ∈ [0, T ] the function

z = F (t, x) = x +
1

λ + ρ̄

∫ 1

0

ν(y − x)ρ(t, y)dy

has an inverse G(t, z). With this notation, the asymptotic behavior of A1
N (t) proves

that the martingale zN
1 (·) converges to a diffusion with generator

(3.12) Az
t =

1
2

λ(λ + ρ(t, x))
(λ + ρ̄)2

d2

dz2
.
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However, we know z1(·) from (3.12). It is sufficient to show that if two processes
supported on Ω are related as in (3.11) then the tagged particle process x1(·) is a
diffusion with generator (2.7). This fact is shown in the next lemma.

Lemma 3.2. We assume that the martingale problem is well posed for the pair
(a(t, y), b(t, y)), i.e. for any (t, y) ∈ [0, T ]×R there is a measure P (s,y) on the path
space Ω = C([0, T ], R) such that if y(·) denotes an element of Ω and

Lt :=
1
2
a(t, y)

d2

dy2
+ b(t, y)

d

dy

then
1)P (s,y)({y(s) = y}) = 1 and
2) ∀f(·, ·) ∈ C∞0 ([0, T ], R) the expression

f(t, y(t))− f(s, y(s))−
∫ t

s

(∂u + Lu)f(u, y(u))du

is a (P (s,y),Ft)-martingale, where Ft = σ(ω(s) : 0 ≤ s ≤ t).
Suppose Θ : [0, T ]×R → R is a C2 mapping such that
1) (t, Θ(t, x)) = (t, y) and
2) 0 < c1 ≤ ∂xΘ(t, x) ≤ c2 < ∞ for any (t, x). Then x → Θ(t, x) has an

inverse y → Ψ(t, y) for any fixed t ≥ 0. If we define a mapping on the path space
Ξ : Ω → Ω by [Ξ(y)](t) := Ψ(t, y(t)) = x(t), then P̂ (s,x) := P (s,Θ(s,x)) ◦ Ξ−1 solves
the martingale problem (â(t, x), b̂(t, x)) with

(3.13) â(t, x) = [a · (∂yΨ)2] ◦ (t, Θ(t, x))

and

(3.14) b̂(t, x) :=
[
(∂tΨ) +

1
2
a · (∂yyΨ) + b · (∂yΨ)

]
◦ (t,Θ(t, x)) .

4. Relaxing the initial conditions

The mapping Θ defined in (3.8) is not well defined for singular measures on the
circle. The limit

lim
t→0

(Θω) (t) = lim
t→0

[
ω(t) +

1
λ + ρ̄

∫

[0,1]

ν(y − ω(t))ρ(t, y)dy

]

does not exist for paths starting at ω(0) = x1 if the µ(0, {x1}) > 0. The tagged
particle moves both due to the Brownian character of the evolution and the in-
teraction with the environment process. For t > 0 the density ρ(t, x) is smooth
for an arbitrary initial profile, which, by Theorem 3.1, grants its uniqueness for
t′ > t. This suggests that the uniqueness of the whole process must be exclu-
sively dependent on the outlook of the environment at time t = 0, that is on
((xN

2 (0) − xN
1 (0)), . . . , (xN

n (0) − xN
1 (0))) at time t = 0. A tracer particle will be

pushed away from the direction which carries more weight in the interaction, that
is, where there is a larger number of particles per volume. Hence we must know the
amount of mass on both sides of x1, even though we already know the total mass
piling up at this point, namely µ(0, {x1}). A way of making these considerations
precise is the assumption stated in equation (4.3).
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We define two periodic functions of period one on R. On the unit interval [0, 1)
they are equal to

(4.1) φε(x) = x, if x ∈ [0, 1− ε], x− 1, if x ∈ [1− ε

2
, 1] and smooth on [0, 1)

and

(4.2) gε(x) = ν(x)− φε(x) .

If µ({x1}) := π(x1) > 0 we assume that there is a number π−(x1) in the interval
[0, π(x1)] (clearly π−(x1) = 0 if µ({x1}) = 0) such that

(4.3) lim
ε→0

lim sup
N→∞

EN

∣∣∣∣∣∣
1
N

∑

k 6=1

gε(xN
k − xN

1 )− π−(x1)

∣∣∣∣∣∣
= 0 .

For any x0 let Ωx0 = {ω : ω ∈ Ω and ω(0) = x0}. The mapping Θ (3.8) will be
altered at the starting point. We write the function F (t, x)

(4.4) F (t, x) = x +
1

λ + ρ̄

∫ 1

0

ν(y − x)ρ(t, y)dy

for t > 0 and equal to the constant

(4.5) z1 := x1 +
1

λ + ρ̄

∫

[0,1]\{x1}
ν(y − x1)µ(dx) +

1
λ + ρ̄

π−(x1)

for (0, x1). This makes

Θ(ω)(t) = F (t, ω(t)) for t > 0 and Θ(ω)(0) = z1

a mapping from Ωx1 into Ωz1 . The point z1 will be the “adjusted” starting point
for (3.3). The main result concerning uniqueness is the following theorem, from [3].
The infinitesimal generator At of the process has been defined in (2.7).

Theorem 4.1. Under (1.1) and (4.3), provided that PN (xN
1 (0) = x1) = 1 for all

N > 0, we have
1) If µ(dx) is continuous at x1, i.e. µ({x1}) = 0 then the tagged particle process

starting at x1 is unique.
2) If µ({x1}) = π(x1) > 0, then the family of limit points of the tight family of

processes {PN ◦ (xN
1 (·))−1}N is infinite and there is a unique such limit for each

value of π−(x1) ∈ [0, π(x1)] denoted for simplicity by Qx1 .
3) Qx1 can be characterized as the unique measure on Ωx1 with the properties

(i) For any smooth f(t, x) with supp(f) ⊆ (0,∞)×R the expression

f(t, x1(t))− f(0, x1(0))−
∫ t

0

(∂uf +Auf)(u, x1(u))du

is a (Qx1 , {Ft}t≥0) - martingale and

(ii) Qx1({ω ∈ Ωx1 : Θω ∈ Ωz1}) = 1.
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