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Abstract. We prove a hydrodynamic limit for a system of N diffusions moving in an

open domain D ⊆ Rd undergoing branching when one particle reaches a certain subset

of the boundary. The particle at the boundary and another random neighbor are elimi-

nated and replaced with two new particles created instantaneously at a random point with

distribution γ(dx) in D. The mechanism represents a hybrid between the Fleming-Viot

branching and a mean-field version of the Bak-Sneppen fitness model where the absorbing

boundary represents the minimal configuration, seen as biologically not viable. The limit-

ing profile is the normalization of the solution of a heat equation with mass creation, which

is studied using its representation via an auxiliary measure-valued supercritical process.

Self-organized criticality is manifested by the emergence of a quasi-stationary distribution

a formal limiting profile under equilibrium.

1. Introduction

Let D ⊆ Rd an open domain with piecewise smooth boundary ∂D and a diffusion on

D generated by (L,D(L)), where L is strongly elliptic with smooth coefficients up to the

boundary and D(L) ⊆ C1
b (D̄) ∩ C2(D) is given by boundary conditions obtained by parti-

tioning ∂D = (∂D)r ∪ (∂D)a in a relatively open part (∂D)r, the regular component, and a

relatively closed part (∂D)a, the absorbing component. This is the underlying, or driving

diffusion. To fix ideas, we assume reflecting boundary conditions on (∂D)r. While D may

be unbounded, and the regular component may be taken empty, it will be assumed that the

hitting time τD of the absorbing component will have an exponential moment, i.e. there
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exits β1 > 0 such that

Ex[eβ1τ
D

] < +∞ , ∀x ∈ D .(1.1)

Alternatively, we could consider a diffusion killed at rate V (x) on D, where V is a non-

negative Borel measurable function. In that case (∂D)a may be empty. Since the interaction

considered here is of mean-field type, the soft obstacle V is easier to handle at the level

of the law of large numbers, more precisely the hydrodynamic limit, given in Theorem 1.

Other aspects of the model are non-trivial in that case, i.e. related to quasi-stationarity,

fluctuations, large deviations, and shall be pursued in other work.

We introduce the Bak-Sneppen Branching Diffusion (BDBD), a particle system with a

fixed number of individuals N , with dynamics described as a hybrid between the Fleming-

Viot (FV) particle system (e.g. [6, 10, 16, 7, 1]) and the Bak-Sneppen self-organizing fitness

model from [2, 3], explaining the name.

In genome population interpretation, the particles undergo mutation represented by a

diffusive term (Brownian), selection, represented by drift (in the probabilistic, not geneti-

cists’ sense) and recombination, represented by branching with redistribution at a random

point ∼ γ(dx) where the new mass is born. Genetic recombination can be seen as a repair

mechanism to damaged DNA. If artificial, it is under the effect of a catalyst, here seen as

contact with the absorbing boundary.

The main result is a hydrodynamic limit stated in Theorem 1. The motivation of the

model, and of this paper, is the the parallelism with the FV process. In a nutshell, as

N →∞, the FV process converges to the normalized density of the dissipative heat equation

(subcritical), whereas the BSBD converges to the normalized density of the accretive heat

equation (6.1)-(1.21) introduced in [13, 20], referred to as the heat equation with mass

creation, which is super-critical. This comparison is discussed in more detail in Subsection

1.4.

1.1. Conditions on the underlying diffusion. For a test function φ ∈ C1(D̄)∩C2(D),

we shall denote

(1.2) φ ∈ (BC)r if ∇φ(x) · n = 0 , x ∈ (∂D)r ,
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where n is the normal to the boundary (∂D)r, which will be prescribed for the underlying

diffusion, respectively

(1.3) φ ∈ (BC)a (∈ (BC)ac) if φ(x) vanishes (is constant) on x ∈ (∂D)a .

The boundary (∂D)a can be assimilated to the cemetery state b and a function φ ∈ (BC)ac

will take constant value φ(b) on (∂D)a, and that constant will be zero if φ ∈ (BC)a.

It is assumed that the underlying diffusion defines a strongly continuous Feller-Dynkin

semigroup in the sense of [17], Chapter III.6, that is, the transition probabilities satisfy

(1.4) SDt φ(x) = Ex[φ(xt)] =

∫
D
pD(t, x, dy)φ(y) ∈ Cb(D) , φ ∈ Cb(D) (Feller property)

and determine a C0 (i.e. strongly continuous) semigroup on C0(D), the space continuous

functions vanishing at infinity on D with the supremum norm.

The diffusion described solves the martingale problem (L,D(L)) with

D(L) = {φ ∈ C1
b (D̄) ∩ C2

b (D) |φ ∈ (BC)r ∩ (BC)a} ,(1.5)

where Cjb designates that all j derivatives are bounded. We mention that the set D(L) is

a class of test functions larger than the domain of the generator and even more so D(L)

includes C∞c (D), the set of infinitely differentiable functions with compact support.

When the boundary condition on (∂D)a is replaced by (BC)ac we denote the set Dc(L),

Dc(L) = {φ ∈ C1(D̄) ∩ C2(D) |φ ∈ (BC)r ∩ (BC)ac} .(1.6)

Additionally, we shall require that the heat kernel pD(t, x, y) be sufficiently smooth to

have

(1.7) SDt φ(x) , fD(t, x) ∈ C1,2
b ([t0,∞)× D̄) , φ ∈ Cb(D̄) , t0 > 0 .

and for any t0 > 0 there exists two positive constants c− and c+ such that

(1.8) c− ≤ pD(t, x, y) ≤ c+ , t ≥ t0 .

Remark.

1) Some of these conditions are redundant if D is bounded. Even for unbounded domains,

in most applications, if the coefficients of L are C∞b functions, then (1.7) and even stronger
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smoothness properties would immediately hold, with precise bounds on the heat kernel

when t→ 0 and x, y →∞.

2) Part of the interest is in examples with unbounded D, for example d ≥ 1 the upper

half-space D = {x ∈ Rd |xd > 0 , x = (x1, . . . , xd)}, (∂D)a = {xd = 0} and (∂D)r = ∅}.
It is sufficient to have a negative drift along the normal to the boundary to ensure (1.1).

Ornstein-Uhlenbeck processes, BM with drift, allow explicit formulas for the heat kernel.

In d = 1 we briefly discuss, right before (6.3), Brownian motion in D = (0, 1), killed at

x = 0 and reflected at x = 1.

The presence of a two boundary parts, reflecting and absorbing, is not essential, as

mentioned before, but is motivated by applications, e.g. the case d = 1 cf. (6.3) and also

[20], where the interest is to create the closest analogue to the classical Bak-Sneppen self-

organizing fitness model [2, 3]. This is revisited in the next subsection, where we discuss

the origin of the model.

In the same spirit, weaker regularity conditions on the coefficients of L as well as non-

smooth (Lipschitz) domains are easy to consider, as long as (1.7)-(1.8) hold, for instance

when L is in divergence form and heat kernel bounds are available (for instance, see [19]).

However, this direction is less illustrative for the main idea, which is the representation

(1.20) of the macroscopic profile of the system (1.13) based on a super-critical process (6.4)

and its corresponding diffusion with mass creation (6.1) .

1.2. The Bak-Sneppen branching diffusions (BSBD). We start with N ∈ N particles

moving independently according to (L,D(L)) until the first, say of index i, hits (∂D)a. We

then choose particle j 6= i, 1 ≤ j ≤ N uniformly, i.e. with probability 1/(N − 1). The

two particles instantaneously jump at the same random point chosen with distribution

γ ∈M1(D). It is important that

(1.9) γ does not charge the boundary, i.e. γ(D) = 1.

We emphasize that, as far as the empirical distribution is concerned, the construction

is equivalent in distribution to the killing of the pair (i, j) with instantaneous birth at the

new location of two new particles evolving independently from then on. This approach

is consistent to the birth and death dynamics, but we prefer a finite system with simpler

particle labelling for our purpose.
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The number of particles N did not change and the independent motion of the system

is restarted afresh until the next particle is killed, when the same branching mechanism

redistributes the N particle system inside the domain D and continues with a new iteration.

The resulting process

(1.10) (XN
t (ω))t≥0 , XN

t (ω) = (XN,1
t (ω), . . . , XN,N

t (ω))

is defined on a filtered probability space (Ω,F ,Ft, P ), ω ∈ Ω, where Ft satisfies the usual

conditions, and shall be called the Bak-Sneppen branching diffusion, or BSBD - process.

By construction, (XN
t (ω))t≥0 is a jump-diffusion on the Skorokhod space DN ([0,∞), DN )

of right continuous with left limits paths.

1.3. Non-explosive behavior. It is shown in [11], Subsection 4.2, that as long as the

underlying diffusion (L,D(L)) has a heat kernel (density) satisfying (i) a Doeblin recurrence

condition - for instance, guaranteed by the lower bound of (1.8); (ii) has an a.s. positive

lifetime τD with finite expectation, here stated in (1.1), and the redistribution/creation

distribution γ, i.e. does not charge the boundary, here required as stated in (1.9), then the

process is non-explosive and only one particle branches at a time, almost surely.

In the following we shall have the number of times particle i hits (∂D)a up to time t ≥ 0

(1.11) AN,it (ω) =

∫ t

0
1(∂D)a(XN,i

s− ) ds

and the average number of boundary hits

ANt (ω) =
1

N − 1

N∑
i=1

AN,it (ω) ,(1.12)

where the normalization constant (N − 1)−1 is chosen for convenience and asymptotically

consistent to the total number N of particles. These processes are naturally adapted to the

filtration Ft. We shall omit ω unless absolutely necessary.

1.4. Comparison with the Bak-Sneppen and Fleming-Viot models. In the cele-

brated Bak-Sneppen fitness model [2, 3], a system of N fitness columns on D = (0, 1), cor-

responding to N species, are re-sampled with distribution γ equal to unif(0, 1) at discrete

time intervals. It is done by picking the minimal value, together with its two neighbors.

One difference is that we look at one neighbor only, so the number of individuals branch-

ing is K = 2; that is not significant qualitatively, noting that the proofs would remain
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almost identical for a fixed number of neighbors K > 2. It is the random choice of the

“neighbor” that makes our current model mean-field, and as such, closable. Another impor-

tant difference is, of course, that instead of a dynamic value of the “minimum”, we trigger

branching only by contact with the boundary (∂D)a = {0}, an absolute minimum value.

Nonetheless, the most important feature of the Bak-Sneppen model remains present: self-

organizing criticality, in the sense that the relaxation limit (as t→∞) of the macroscopic

profile is equal to the quasi-stationary distribution of the supercritical branching system

described in the Appendix, Subsection 6.3. It is exactly the normalized resolvent kernel of

the underlying diffusion, calculated at a value α∗ > 0 (determined by K), the same critical

value described in Theorem 4, which depends only on the number of neighbors re-sampled.

This produces a particle representation of the resolvent of (L,D(L)). These aspects are

significant but not necessary for our proof. They are studied in detail in [13].

In the FV case [6, 10, 18, 16, 7, 1] the hydrodynamic limit is the normalization of the

solution to heat equation with Dirichlet boundary conditions, which is dissipative, mass

vanishing exponentially fast at rate eλ1t, with λ1 < 0. This is exactly the first eigenvalue

for the Dirichlet Laplacian when (L,D(L)) is BM killed at the boundary. In the BSBD

case, if K is the number of individuals re-sampled (here K = 2), the hydrodynamic limit is

the normalization of νt, a process accruing mass exponentially fast at rate eα∗t, where α∗

and logE[K] have the same sign, implying super-criticality in our case cf. [13]. Essentially,

we need a non-conservative process in either model.

While the dissipative case allows a representation with a single particle as in [10, 1], the

mass creation can be modeled stochastically using a Markov semigroup only as a measure-

valued process as in Theorem 3 in the Appendix. The Yaglom limit and quasi-stationarity

are also discussed in both sub- and super- critical cases in [13].

1.5. Main result. We prove a Law of Large Numbers for the time-dependent empirical

measure process

t −→ µNt (dy, ω) =
1

N

N∑
i=1

δ
XN,i
t (ω)

(dy) ∈ D([0,∞),M1(D)) ,(1.13)

or hydrodynamic limit, where D([0,∞),M1(D)) denotes the Skorokhod space of probability

measure - valued paths on D. To simplify notation, the random element ω will be omitted

unless absolutely necessary. We shall write 〈m,ψ〉 for the integral of any bounded function
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ψ against a finite measure m(dx) on D. Define the time-space set of test functions φ(t, x),

D = {φ ∈ C1,0
b ([0,∞)× D̄,R) |φ(t, ·) ∈ C1

b (D ∪ (∂D)r) ∩ Cb(D ∪ (∂D)a) ∩ C2
b (D)} .

(1.14)

For sufficiently small δ > 0, due to the smooth boundary of D, we denote

(1.15) Dδ = {x ∈ D | dist(x, (∂D)a) > δ} , δ > 0 .

We shall say that the process is regular near the absorbing boundary (∂D)a if there exists

δ > 0 such that

(C0) The operator L has bounded coefficients on D \Dδ .(1.16)

A separation condition (C1) between the three “boundaries” involved in the jump/branching

mechanism: (∂D)a, (∂D)r, and supp(γ), will also be needed.

Condition 1. Let q(dx) ∈ M1(D). We shall say that the absorbing boundary (∂D)a is

separated from (∂D)r and q(dx) if there exists da > 0 such that

(C1) dist((∂D)a, supp(q) ∪ (∂D)r) ≥ da ,(1.17)

where supp(q) is the topological support of q(dx).

Remarks.

1) Condition (C1) will be required for q(dx) = γ(dx) in Theorem 1. It is formulated more

generally, because it will be used several times, for other initial measures than γ(dx) in the

study of the tagged particle, an essential step in establishing tightness, e.g. in Lemma 2.

2) Condition (C0) is used in (3.6). It is not restricting models with unbounded drift like

the Ornstein-Uhlenbeck process in d = 1 (or along a certain direction in higher dimensions),

provided the absorbing boundary is not extending to infinity, like in an exterior domain.

Definition 1. A sequence of processes (Y N
· )N>0 on a Polish space (X, || · ||) converges in

probability to (Y·), uniformly in finite time, if

(i) For any t ≥ 0, (Y N
t )N>0 is a tight family and

(ii) For any T > 0, the process t→ (Y N
t )t≥0 satisfies

∀ε > 0 lim
N→∞

P
(

sup
t∈[0,T ]

||Y N
t − Yt|| > ε

)
= 0 .(1.18)
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Definition 2. The process (µN· )N>0 converges weakly in probability to (µ·) if for any

test function φ ∈ Dc, the process t → 〈µNt , φ(t, ·)〉t≥0 converges in probability to t →
〈µt, φ(t, ·)〉t≥0 in the sense of the Definition 1.

Remark. If D is bounded, condition (i) and the boundedness of the test functions are

redundant. Condition (ii) can be stated equivalently using only smooth functions with

compact support depending only on the space variable.

Assume µ0(dx) is a non-random measure in M1(D) and the initial condition

µN0 converges weakly in probability to µ0 as N →∞ .(1.19)

Remark.

1) Theorems 3 and 4 from [13], are presented in the Appendix, because they are an

essential part of understanding the hydrodynamic limit µ· from Theorem 1, and for keeping

this paper self-contained.

2) It is important to point out that the Appendix has the unique role of explaining the

solution of the pde satisfied by the hydrodynamic limit (1.22). In spite of its probabilistic

representation (6.5), there is no overlap between the proofs in [13] and the results on the

BSBD particle process studied in the present paper, beyond the existence, uniqueness and

smoothness of the solution to the pde.

3) Conditions (1.4), (1.5), (1.7), (1.8) from Subsection 1.1 are sufficient for Theorems 3

and 4.

Let νt be the unique solution to the heat equation with particle creation (6.1)-(1.21) and

initial value ν0 = µ0. Write nt = 〈νt, 1〉 for its total mass and set the notations

µt =
νt
〈νt, 1〉

, lnnt = At =

∫ t

0
asds .(1.20)

For φ with φ(t, ·) ∈ Dc, t > 0, define the condition

φ(t, ·) ∈ Dc(L) and 2〈γ, φ(t, ·)〉 − φ(t, b) = 0 .(1.21)

Theorem 1. Assuming (C0) and (C1) for the measure γ(dx), together with the initial

condition (1.19), the empirical measure process (1.13) converges weakly in probability, as

N → ∞, to the deterministic trajectory µ· ∈ C([0,∞),M1(D)), and AN· converges in

probability to A· from (1.20). The trajectory µ· is unique, having all the regularity properties
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inherited from Theorem 3, being absolutely continuous for t > 0 with density ρ(t, x) and

continuous for t ≥ 0 in the topology of convergence in distribution. For any φ ∈ Dc with

the boundary condition (1.21) and t ≥ 0, it satisfies

〈µt, φ(t, ·)〉 = 〈µ0, φ(0, ·)〉+

∫ t

0
〈µs,

∂

∂s
φ(s, ·) + Lφ(s, ·)− asφ(s, ·)〉 ds .(1.22)

Remark. When the asymptotic profile is a function, i.e.µt(dy) = ρ(t, y)dy, it satisfies the

forward equation ∂tρt +L∗ρ− asρ = 0, where L∗ is the formal adjoint of L. See in example

(6.3) how the concrete conjugate boundary conditions look like when the redistribution

measure is a delta function.

2. The Martingale Characterization of the BSBD - process and Ito’s

formula

Let CN = C1,2((0,∞) ×DN ,R) ∩ C0,1([0,∞) × D̄N ,R) be the class of N - dimensional

time-space test functions F (t, x) continuous up to the boundary and, by analogy to (1.6)

DNc = {F |F ∈ CN , F (t, ·)|xi ∈ (BC)r ∩ (BC)ac , 1 ≤ i ≤ N , t > 0} ,(2.1)

where F|xi is the marginal function when all but component xi are fixed and the boundary

conditions are described in the paragraph containing the definition (1.5).

Denote L⊗N the direct sum of the one variable operator L, and by F ij (defined precisely

below) the configuration under F after redistribution of the particle i.

This is obtained as particle i has reached ∂D, has chosen particle j 6= i uniformly, and

both are created anew at the same random point with distribution γ(dx). Using the vector

notation X = (x1, x2, . . . , xN ),

L⊗NF (s,X) =

N∑
i=1

LxiF (s, . . . , xi, . . .)(2.2)

F ij(s,X) = 2

∫
D

∫
D

1(xi = xj)F (s, . . . , xi, . . . , xj . . .)γ(dxi)γ(dxj) ,(2.3)

where the identical entries are on position i and j.

Let AN,it be the number of hits of particle i to the absorbing boundary (∂D)a from

(1.11). Notice that XN,i
t− = b if and only if the counting process AN,it has a discontinuity,

with probability one.
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The joint set of interacting processes (XN,i
t , AN,it )t≥0, for 1 ≤ i ≤ N , was defined con-

structively in Section 1, based on the strong Markov property, the fact that there are no

simultaneous boundary hits. For a similar construction in more detail, more details, see

[10].

We also denote by MF
t , for each F ∈ CN the processes

MF
t = F (t,XN

t )− F (0, XN
0 )−

∫ t

0
L⊗NF (s,XN

s ) ds(2.4)

−
N∑
i=1

∫ t

0

( 1

N − 1

∑
j 6=i

F i,j(s,XN
s−)− F (s,XN

s−)
)
dAN,is .(2.5)

Set F (t, x) = 1
N

∑N
i=1 φ(t, xi), for φ(t, ·) ∈ Dc(L) Then, the expressions (2.4) (which will

be shown to be martingales) read

Mφ
t = 〈µNt , φ(t, ·)〉 − 〈µN0 , φ(0, ·)〉 −

∫ t

0
〈µNs , Lφ(s, ·) ds(2.6)

−
∫ t

0

[
(2〈γ, φ(s, ·)〉 − φ(s, b))− 〈µNs−, φ(s, ·)〉

]
− 2

N
〈γ, φ(s, ·)〉 dANs .(2.7)

Proposition 1. The processes (MF
t ) are Ft - martingales with continuous and jump com-

ponents MF
t =MF,c

t +MF,J
t , such that N F,c

t , respectively N F,J
t are also Ft - martingales,

where

NF,c
t = (MF,c

t )2 −
N∑
i=1

∫ t

0
(LxiF

2 − 2〈F,LxiF 〉)(s,XN
s )ds(2.8)

NF,J
t = (MF,J

t )2 −
N∑
i=1

∫ t

0

1

N − 1

∑
j 6=i

(F i,j(s,XN
s−)− F (s,XN

s−))2 dAN,is .(2.9)

Moreover, theres exists a constant C(γ), independent of t and N but dependent on the

initial limiting profile µ0, such that, for all t ≥ 0 and N ∈ Z+,

E[

N∑
i=1

AN,it ] ≤ C(γ)Nt .(2.10)

Remark. As Step 1 below shows it, it is not hard to see that the processes in the

statement are local martingales. In fact, all the processes in Proposition 1 are proper

martingales, which is equivalent to showing that E[AN,it ] <∞ for all components 1 ≤ i ≤ N
and t ≥ 0.
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Proof. Step 1. The process (XN
t ) is non-explosive, as shown in Subsection 4.2 in [11].

We then know that limt→∞A
N,i
t = +∞ a.s., which implies, due to the boundedness of

all integrand terms in the martingales, that setting Tm, m ≥ 1 the first hitting time of

the positive integer m by the sum
∑N

i=1A
N,i
t , the processes (2.4), (2.8), (2.9) are local

martingales by setting t→ t ∧ Tm, in other words with localization sequence Tm.

Step 2. We prove the processes are martingales. Set F (t,X) = 1
N

∑N
i=1 φ(xi) for a

function φ ∈ (BC)a, 0 ≤ φ ≤ 1 with cγ = 2〈γ, φ〉−1 > 0. Such a function exists since γ has

integral one and φ can be taken as a smooth function approximating the indicator function

of a compact set in D. In that case, the integrand of the dANt term in (2.6) is greater or

equal to cγ , so we obtain, almost surely,

cγA
N
t∧Tm ≤ −M

F
t∧Tm + F (t ∧ Tm, XN

t∧Tm)− F (0, XN
0 )−

∫ t∧Tm

0
L⊗NF (s,XN

s ) ds .(2.11)

Taking the expected value, we see that there exists a constant C(γ), independent of t and

N because it is simply a uniform bound on the function φ and its derivatives, such that

E[ANt∧Tm ] ≤ C(γ)t. Since limm→∞ Tm = +∞ a.s. we obtain by dominated convergence the

same bound for E[ANt ], proving the proposition. �

3. Tightness

We start with two lemmas. One shows that the number of particles near the absorbing

boundary remains small, uniformly in N , provided that it was small at time zero. The other

one shows that even though the particles are not independent, the duration between visits

to the absorbing boundary cannot be very short, provided the starting point is, in some

sense, distributed away from the boundary, like is the case with the point with distribution

γ(dx). Since the time of return is controllable, uniformly in N , there cannot be too many

boundary visits in a short time interval.

Given a small δ > 0, let UNt (δ) be the number of particles within distance δ from the

absorbing boundary at time t, νN ⇒ ν denote the convergence in distribution for a sequence

(νN ) ∈M1(D).

Lemma 1. Assume µN0 converges weakly in probability to µ0 ∈ M1(D) as N → ∞. Let

T > 0 and 0 < t0 < T . Then, there exists a constant C(t0, T ), depending on t0, T but
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independent of N , such that, for any g ∈ C(D̄),

lim sup
N→∞

sup
t∈[t0,T ]

E[〈µNt , g〉] ≤ C(t0, T )

∫
D
g(y)dy .(3.1)

As a consequence, we have the convergence, uniformly in time,

lim
δ→0

lim sup
N→∞

sup
t∈[t0,T ]

E[
UNt (δ)

N
] = 0 .(3.2)

Remark. In fact, C(t0, T ) ≤ c(t0)eλ∗T (cf. [13]), where c(t0) depends only on t0 and λ∗

is the growth rate of the total mass of the auxiliary process (ζt) in Theorem 3.

Proof. Let g be a smooth function and v(t, x) = Ex[〈ζt, g〉] as in the representation stated

in Theorem 3. For a fixed t > 0, the function v̄(s, x) = v(t − s, x), s ∈ [0, t], satisfies the

backward equation ∂sv̄ + Lv̄ = 0 with terminal condition v̄(t, x) = g(x) and the boundary

conditions (BC)r from (1.5), together with 2〈γ, v̄(s, ·)〉 = v̄(s, b) from (1.21).

Setting v̄ → φ in (2.6) we obtain that s → 〈µNs , v̄(s, ·)〉 is a super-martingale. The

expected values at s = 0 and s = t give the inequality

E[〈µNt , g〉] ≤ E[〈µN0 , v(t, ·)〉] = E[

∫
D
v(t, x)µN0 (dx)] = E[EµN0

[〈ζt, g〉]](3.3)

First, we recall that for t ∈ [t0, T ],

EµN0
[〈ζt, g〉] =

∫
D

∫
D
vx(t, y)g(y)µN0 (dx)(3.4)

≤
(

sup
t∈[t0,T ],x,y∈D

|vx(t, y)|
)∫

D
g(y)dy ≤ C(t0, T )

∫
D
g(y)dy ,

where we used (6.2). Taking the supremum over t ∈ [t0, T ] in both (3.3) and then (3.4) we

obtain (3.1).

The last assertion follows from taking a smooth approximation of the indicator function

of the complement of the compact set D̄2δ, as in (1.15), which is well defined since D has

smooth boundary. �

The underlying process with generator L is a one-particle process and its hitting time of

the absorbing boundary τD is introduced in (1.1). In the following, we shall need the same

hitting time τDX for the tagged particle process (XN,i
t )t≥0, i.e. the process with fixed label

1 ≤ i ≤ N . For simplicity, we suppress the index i, since in Lemma 2 and in its applications

the label will never change, and it would be redundant.
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Lemma 2. Assume conditions (C0) and (C1) are satisfied for a probability measure q(dx).

Let 1 ≤ i ≤ N be a fixed index of one of the particles. We assume the N - component vector

process XN
t starts at a finite stopping time τ from a configuration with marginal distribution

of particle i equal to q(dx) ∈M1(D). Then there exists a constant c(q), dependent only on

q(dx) only, and a fortiori independent of N , such that, for any η > 0

PXN
τ

(τDX ≤ τ + η) ≤ c(q)η .(3.5)

Remarks. 1) Inequality (3.5) is valid pointwise, holding simply due to the distribution

γ(dx) of the tagged particle.

2) This lemma will be applied twice, once for τ = 0 and q equal to the distribution of

XN,i
0 , in order to prove tigtness for the tagged particle, and another time with τ a time

when XN,i
τ− ∈ (∂D)a and q = γ. In the second case it will be essential that q(dx), and

consequently c(q), do not depend on τ , N or the index i.

3) Lemma 2 is the only place where the condition that supp(γ) (the topological support

of the redistribution measure) is at a positive distance from the absorbing boundary.

Proof. We construct a coupling between two processes, one without jumps, and then use a

small ball estimate based on Doob’s maximal inequality.

Step 1. Let ψ ∈ C2(D̄,R) be a test function with the properties

1) 0 ≤ ψ(x) ≤ 1,

2) ψ(x) = 1 on supp(γ) and ψ(x) = 0 if and only if x ∈ (∂D)a,

3) There exists 0 < δ < da
2 ∧ 1, such that ψ(x) = dist(x, (∂D)a) on D \Dδ.

4) ψ ∈ (BC)r

Define yt = ψ(XN,i
t ), t ≥ τ . Notice that by construction, at any τ ′, a jump time of XN,i

t ,

yt jumps yτ ′ − yτ ′− ≥ 0, a non-negative jump. This is because the values on the support

of γ, where it jumps, are guaranteed to equal the maximum value of ψ over the full set

D̄. We notice that (yt) ∈ [0, 1] is a semi-martingale, adapted to (Ft∧τ ), driven by the full

process (XN
t ), not just the particle i, due to the jumps it undergoes at times when XN,i

t

is chosen randomly by another particle hitting the absorbing boundary, in addition to its

own jumps triggered by hitting the absorbing boundary. This process will be coupled with

a new process denoted (zt)t≥τ , with the same initial value, driven by the same equations

13



between jumps, only with all jumps suppressed. Then

0 ≤ zt ≤ yt ≤ 1 a.s.

and (zt)t≥τ is an Ito process dzt = αtdt+ βtdwt, with coefficients given by

dzt = Lψ(XN,i
t )dt+ (∇ψ)(XN,i

t ) · [σ(s,XN,i
t )dwt] , z0 = y0 = ψ(XN,i

τ ) ,

if the underlying diffusion is given by Lφ =
∑
bk∂kφ + 1

2

∑
(σ∗σ)kl∂klφ and Bt is the d -

dimensional Brownian motion used in the construction of (XN
t ). We can see that the times

to hit zero are ordered a.s. for the three processes τ0z ≤ τ0y ≤ τDX , where τDX is the hitting

time of the absorbing boundary by the process XN,i
t .

Here is where condition (C0) is used. Let α0 ≥ 0 and β0 ≥ 0 be bounds for the coefficients

(3.6) α0 = sup
x∈D
|Lψ(x)| , β20 = sup

x∈D
||σ∗σ|| ||D2ψ(x)||

where the norms are the sum of the maximum of all elements of a matrix/vector, depending

on ψ and its derivatives, and L.

It remains to evaluate, for an initial value XN,i
τ as prescribed in the lemma, the sequence

of upper bounds

P (τDX ≤ τ + η|XN,i
τ ) ≤ P (τ0z ≤ τ + η|XN,i

τ ) ≤ P ( inf
t∈[τ,τ+η]

zt ≤ 1− da|zτ = 1)

≤ P ( sup
t∈[τ,τ+η]

|zt − 1| ≥ da|zτ = 1)

≤ P ( sup
t∈[τ,τ+η]

|
∫ t

τ
βsdws| ≥ da − α0η) ≤

(
β0

da − α0η

)2

η ≤ 4β20
d2a

η

as soon as 0 < η < β0
2α0 . Taking c(q) = 2α0

β0 ∨
4β2

0
d2a

we conclude the proof. �

We move on to prove the tightness for both the empirical measure and the number of

boundary hits. Additionally, we shall prove that for each fixed index i, AN,it is tight.

Naturally AN,it (ω), 1 ≤ i ≤ N and their average ANt (ω), ω ∈ Ω, are random variables for

all t ∈ [0,∞) and we omitted the sample space element ω to simplify notation. If (3.7)-

(3.8) are satisfied, then a limit point (At(ω))t≥0 is a stochastic process with almost surely

continuous paths. We can also verify that in this particular case, it is non-decreasing.

14



Proposition 2. Assume µN0 ⇒ µ0 and µ0 ∈ M1(D). Then, for any arbitrary but fixed

T > 0,

lim sup
N→∞

E[ANT ] < +∞(3.7)

lim
η→0

lim sup
N→∞

sup
t∈[0,T ]

P (ANt+η −ANt > ε) = 0 .(3.8)

Remarks. 1) Evaluating (3.8) is based on the argument from line (3.10), which is a form

of Wald’s theorem for non-iid random variables (τDX )i, i ≥ 1, the waiting times between

visits to the absorbing boundary. Independence is replaced by the condition in Lemma 2

and the strong Markov property.

2) Condition (3.8) is stronger than Aldous’s criterion. It says cf. [14] that (AN· ) is C

- tight in the Skorokhod space, i.e. tight and that any limit point is continuous in time.

Alternatively, if tightness is shown in the Skorokhod space, we recall that the maximum

jump size JT (ω(·)) of a path in D is a continuous functional in the Skorokhod J1 - norm

(not the same as the notation used below for the first jump). Since the jumps of AN· are at

most of size 1/N , it follows that a limit point A· is continuous. This approach would prove

immediately that µ·(dx) is also continuous in time.

Proof. Let t ∈ [0, T ], η > 0 and J1 < J2 < . . . be the ordered jump times after t. Then

AN,it+η −A
N,i
t = [1 +mγ(J1, t+ η)]1{J1≤t+η} ,(3.9)

with mγ(s, t) denoting the number of episodes when Xi
· travels from the redistribution

point with distribution γ to the absorbing boundary, observed in the time interval (s, t],

0 ≤ s ≤ t. Recall that τD is the hitting time of the boundary at x = 0 by the underlying

diffusion process. Applying the Markov property, we can start at the vector configuration

XN
t .

E[AN,it+η −A
N,i
t ] =

∞∑
k=1

P (AN,it+η −A
N,i
t ≥ k)

≤ E[PXN
t

(τDX ≤ η)] +

∞∑
k=1

E[PXN
J1

(mγ(J1, t+ η) ≥ k)] .

Notice that {XN,i
J1
∼ γ} has probability one. We condition on this event in order to

emphasize the label i that undergoes a jump. The general term of the infinite sum can be
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bounded

(3.10) PXN
J1

(mc(J1, t+ η) ≥ k |XN,i
J1
∼ γ) ≤ PXN

J1

((τDX )1 + . . . (τDX )k ≤ η |XN,i
J1
∼ γ)

≤ PXN
J1

( max
1≤l≤k

(τDX )l ≤ η |XN,i
J1
∼ γ) ≤ PXN

J1

((τDX )k ≤ η | Ak−1)PXN
J1

(Ak−1) .

where Ak−1 = {max1≤l≤k−1(τ
D
X )l ≤ η}. In our count, J2 − J1 = (τDX )1, ending with the

k-th episode between jumps Jk+1 − Jk = (τDX )k. Taking the expectation under the initial

condition XN
t and using the strong Markov property recursively, we get the further bound

(3.11) EXN
t

[Πk
l=1PXN

Jl

((τDX )l ≤ η)] ≤ [c(γ)η]k ,

This is due to the fact that XN,i
Jl

, l ≥ 1 starts with distribution γ, which allows using Lemma

2 recursively. Summarizing (3.10)-(3.11) we see that independently of the configuration XN
t ,

(3.12) PXN
t

(mc(J1, t+ η) ≥ k) ≤ [c(γ)η]k , k ≥ 1 .

We obtained

E[AN,it+η −A
N,i
t ] ≤ E[PXi

t
(τD ≤ η)] +

c(γ)η

1− c(γ)η
.(3.13)

After summation and division by N − 1,

E[ANt+η −ANt ] ≤ 1

N − 1

N∑
i=1

E[PXi
t
(τD ≤ η)] + (

N

N − 1
)

c(γ)η

1− c(γ)η
(3.14)

To prove (3.7) we pick η = [2c(γ)]−1. Then we put back to back at most [Tη ]+ 1 intervals

of length η to see that

E[ANT ] ≤ 2(
N

N − 1
)([
T

η
] + 1) ≤ 8c(γ)T .(3.15)
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We now turn to (3.8). Let δ > 0 be an arbitrary number not exceeding da/2. Working

on the first term

1

N

N∑
i=1

E[PXi
t
(τD ≤ η)](3.16)

≤

 sup
dist(XN,i

t ,(∂D)a)≥ δ2

PXN
t

(τDX ≤ η)

E[1−
Ut(

δ
2)

N
] + E[

Ut(
δ
2)

N
]

≤ c(δ)η + E[
Ut(

δ
2)

N
] ,

where c(δ) refers to the constant corresponding to an initial value away from the absorbing

boundary at least by δ.

To finalize the proof, we turn to (3.8). Let 0 < η0 < η, momentarily fixed. We split the

interval [0, T ], to calculate

sup
t∈[0,η0]

E[AN,it+η −A
N,i
t ] ≤ E[AN,i2η0

−AN,i0 ] = E[AN,i2η0
](3.17)

≤ 1

N − 1

N∑
i=1

E[PXi
0
(τD ≤ 2η0)] + (

N

N − 1
)

c(γ)(2η0)

1− c(γ)(2η0)

and

sup
t∈[η0,T ]

E[AN,it+η −A
N,i
t ] ≤ sup

t∈[η0,T ]

(
1

N − 1

N∑
i=1

E[PXi
t
(τD ≤ η)]

)
+ (

N

N − 1
)

c(γ)η

1− c(γ)η

(3.18)

The first term on the right-hand side of these inequalities is reduced to a bound on the

number of particles within δ > 0, for (3.17), respectively δ′ > 0 for (3.18), as we did in

(3.16). Taking ηc(γ) < 1
2 and N ≥ 2, we obtain

sup
t∈[0,T ]

E[AN,it+η −A
N,i
t ] ≤ sup

t∈[0,η0]
E[AN,it+η −A

N,i
t ] + sup

t∈[η0,T ]
E[AN,it+η −A

N,i
t ](3.19)

≤ [4c(γ) + 2c(δ′)](2η0) + 2E[
U0(

δ′

2 )

N
] ,

+ [4c(γ) + 2c(δ)]η + 2 sup
t∈[η0,T ]

E[
Ut(

δ
2)

N
] .

Lemma 1 (3.2) concludes the proof, by having the limits over N → ∞, η → 0, δ → 0,

η0 → 0, and finally δ′ → 0, in this order. �
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In fact, we can prove more than (3.7).

Proposition 3. For any T > 0, β > 0

M(β, T ) = lim sup
N→∞

E[eβA
N
T ] <∞ .(3.20)

Proof. From Hölder’s inequality we see that it is sufficient to prove the exponential bound

for each tagged particle, where i ≤ N is fixed, i.e.

Mi(β, T ) = lim sup
N→∞

E[eβA
N,i
T ] <∞ .(3.21)

Let η > 0 be such that η < (c(γ)eβ)−1. Assume, for a moment, that there exists a number

M̄(β, η) > 0, independent of N , such that for any t ≥ 0, independently of XN
t ,

EXN
t

[eβA
N,i
η ] ≤ M̄(β, η) .(3.22)

The uniformity in the initial condition is inherited from (3.12), which, in its turn, comes

from Lemma 2.

The Markov property shows that

E[eβA
N,i
T ] = E[E[eβ(A

N,i
T −A

N,i
T−η) | FT−η]eβA

N,i
T−η ]

= E[EXN
T−η

[eβA
N,i
η ]eβA

N,i
T−η ] ≤ M̄(β, η)

[T
η
]+1

<∞ ,

an upper bound independent of N , proving that Mi(β, T ) <∞. It remains to show (3.22).

Recall that (3.12) holds uniformly in the initial state XN
t . Since

PXN
t

(
AN,iη >

ln s

β

)
≤ (c(γ)η)

[ ln s
β

] ≤ (c(γ)η)
ln s
β
−1 ≤ (c(γ)η)−1sβ

−1 ln(c(γ)η)

that

EXN
t

[eβA
N,i
η ] =

∫ ∞
1

PXN
t

(
AN,iη >

ln s

β

)
ds ≤ (c(γ)η)−1

∫ ∞
1

s
−β−1 ln( 1

c(γ)η
)
ds < +∞ ,

due to the choice of η. �

Theorem 2. Under the same conditions of Theorem 1, the pair (µN· , A
N
· )N>1 is C - tight

on D([0,∞),M1(D)× R+), i.e. is tight and the limit is continuous in time.

Proof. We can apply (2.6) for φ ∈ Dc for two times t, t′ in [0, T ] with 0 < t′ − t < η.

There exist constants K(c, φ), K(J, φ), independent of t, N such that the squares of the

martingales are bounded by N−1K(c, φ)T for the continuous part and N−1K(J, φ)ANT for
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the jump part. In similar fashion, the integrands of dt and dANt parts are bounded by

K(c, φ)η, respectively K(J, φ)(ANt′ − ANt ). Due to Proposition 2, part (ii) of Definition 1

is satisfied. To obtain (i) we turn to (3.1) for g a smooth approximation of the indicator

function of the complement of a compact set in D. The bound we need to prove is pointwise

in t, due to the rcll property and the compactness of [0, T ]; in that sense, less than (3.1)

is needed, more precisely (3.3) is sufficient. All measures are concentrated, within ε > 0

error, on a compact set, if the same is true at time t = 0. This is true simply because µ0

charges D and not the boundary. The C - tightness is true because the criterion we used

(i), (ii) in Proposition 2 implies C - tightness. �

4. Identification of the limit as the solution to the weak heat equation

Proposition 4. The pair (νN· , n
N
· ), obtained by the transformation

νNt = eA
N
t µNt , nNt = eA

N
t

is C - tight and has hydrodynamic limit, in the sense of Definition 2, componentwise, the

solution ν· to (6.1)-(1.21), respectively its total mass n· from Theorem 4.

Proof. We write Ito’s formula for semi-martingales [14]. Tightness follows from the tightness

of the pair (µN· , A
N
· ) (Theorem 2); the exponential will also remain bounded in expectation

due to the fact that all possible integrands in (2.6), including in the quadratic variations

of the martingales, are dominated by constant multiples of expANT or ANT expANT , both

bounded above by exp 2ANT , guaranteed by Proposition 3. Denote a generic element of

D([0,∞),MF (D)) by σ. Given any φ satisfying (1.21), using the notation σs ∈MF (D) for

the value at time s ∈ [0,∞), define the functional Φ : D([0,∞),MF (D))→ R

Φ(σ·) := sup
t∈[0,T ]

∣∣∣〈σt, φ(t, ·)〉 − 〈σ0, φ(0, ·)〉 −
∫ t

0
〈σs,

∂

∂s
φ(s, ·) + Lφ(s, ·)〉 ds

∣∣∣ .(4.1)

The exponential bounds obtained above will show that Φ is bounded and continuous, prac-

tically following steps 2-4 of Proposition 2 in [10].

Assuming that, the same bounds on the integrands, together with Doob’s maximal in-

equality applied to the martingale part will show that

lim
N→∞

E[Φ(νN· )] = 0 .(4.2)
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Let (ν·, n·) be a limit point of the tight pair of transformed processes. Since (νN· , n
N
· ) ⇒

(ν·, n·) and Φ is continuous and bounded, we obtained that

E[Φ(ν·)] = 0 and then Φ(ν·) = 0 a.s.(4.3)

It is sufficient to remark that, being C - tight, the limit is continuous in time. It follows that

we can pick a set of measure zero, common to all t ∈ [0, T ], and as a consequence, common

for all t ∈ [0,∞) by choosing T = r, r ∈ N, so that Φ(ν·) = 0 on its complement. We proved

that ν· solves (6.1)-(1.21). By uniqueness, we are done with the claim on νNt . When D is

bounded, it is sufficient to integrate against the constant 1. A variation of the argument

with approximations of indicator functions of a sequence of nested compacts will prove the

same if D is unbounded. We see that since nNt = 〈νNt , 1〉 = exp(ANt ), then nN· ⇒ n·.

Finally, since the convergence is uniform in t over [0, T ], and the limit is a delta function

(i.e. delta concentrated at the unique deterministic solution), we have that convergence in

distribution implies convergence in probability. �

4.1. Proof of Theorem 1. At this point we have to reverse the transformation from

Proposition 4. We notice that trivially both nNt ≥ 1 and nt ≥ 1 and such have a lower

bound away from zero. This allows to derive that (i), (ii) of Definition 1, in particular (1.18)

is satisfied for Y N
t = 〈µNt , φ〉 and its limit Yt = µt, φ〉 as soon as it is satisfied for 〈νNt , φ〉,

with its limit 〈nt, φ〉. The same is true for Y N
t = AN = lnnNt , with its limit lnnt = At,

since x → lnx is uniformly Lipschitz on x ∈ [1,∞). Theorem 4 gives the explicit partial

differential equation (1.22). �

5. Sketch of the tagged particle limit

The material proved in Sections 3 and 4 allows to develop the scaling limit of the tagged

particle. We do not prove the result here, leaving it to an upcoming paper. However, we

formally identify the limit in Subsection 5.2. The technical steps are outlined in a result

we obtained in [12].

Fix the particle tag i and consider N ≥ i or simply take i = 1. We are interested in

proving

(5.1) XN
· ⇒ X·
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and identifying the limit Xt as a stochastic process indexed by t ≥ 0. These results require

both convergence in distribution of µN0 ⇒ µ0 and XN,1
0 ⇒ X1

0 .

5.1. Tightness. To prove the tightness of each individual particle’s number of visits to the

absorbing boundary (AN,it ), which is well defined for N ≥ i, but of course is not continuous,

even in the limit, we turn to the tightness criterion for processes in the Skorokhod space.

Proposition 5. Let i ∈ N fixed and assume XN,i
0 ⇒ Xi

0 with P (Xi
0 ∈ dx) ∈M1(D). Then,

(AN,it ) is tight, verifying, for any T > 0

sup
N≥1

E[AN,iT ] < +∞(5.2)

lim
η→0

lim sup
N→∞

sup
t∈[0,T ]

P (w′AN,i(η) > ε) = 0 .(5.3)

Proof. Being a counting process, it follows that the only way the modulus of continuity

w′
AN,i

(η) in the Skorokhod J1 - topology would exceed ε > 0 is that it is at least one. More

precisely, the union of the hitting times and the initial t = 0 must contain at least two

elements within distance η. Otherwise, we can always optimize the partition of mesh η as

to include that times and in that case w′
AN,i

(η) = 0. Then, either

(i) there are at least two hits to the boundary in [t, t+ η], or

(ii) there is exactly one hit, but within η from t = 0.

In case (i), the particle is redistributed, meaning that {τDX ≤ η} is a sub-event, fitting

the exact conditions of Lemma 2 with q(dx) = γ(dx).

In case (ii) {τDX ≤ η} is a sub-event as well. We split

P (τDX ≤ η) = E[PXN
0

(τDX ≤ η , dist(X
N,i
0 , (∂D)a) ≥ δ)]

+E[PXN
0

(τDX ≤ η , dist(X
N,i
0 , (∂D)a) ≥ δ)] ≤ c(δ)η + P (dist(XN,i

0 , (∂D)a) < δ) ,

because the first term in the upper bound fits the exact conditions of Lemma 2 as, for

example, it was applied in (3.16), while the second term will be vanishing due to the

continuity theorem and the assumption that the initial point converges in distribution to a

value that does not charge (∂D)a. �

Using Propositions 2 and 5 we write the differential equation for the test function corre-

sponding to the tagged particle, i.e. of the form F (X) = φ(X1), φ ∈ C2(D̄). All integrands

are bounded, and the integrators in time are either the Lebesgue measure dt or one of the
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counting measures ANt or AN,1t . It follows that (XN,1)N>1 is tight. Moreover, it satisfies

the following martingale problem, defining a Markov process which is time inhomogeneous.

We know from Theorem 2 and Theorems 3 and 4 in the Appendix that AN· converges in

probability to the deterministic, continuous, increasing function A·, defining an absolutely

continuous measure dAt = atdt. This measure induces a non-homogeneous Poisson measure

α(t) with jumps at times A−1(θ), where θ are the jumps of a Poisson process of intensity one.

By construction, this process can be independent from a countable sequence of mutually

independent diffusions (L,D(L)), which will serve as building blocks between jumps.

5.2. The law of the tagged particle. The tagged particle process (X1
t )t≥0 starts at X1

0 .

It moves according to the diffusion (L,D(L)) until the minimum of either the first arrival in

α(t) or the first hitting time of the absorbing boundary. At such times, it instantaneously

redistributes to a random point with distribution γ(dx) and continue until the next jump

time, dictated by the minimum described above. The process is well defined because no

two jumps are simultaneous, and visits to the boundary are sufficiently far apart due to the

tightness argument on AN,1· ⇒ A1
· . The limit A1

· is the number of visits to the absorbing

boundary by the tagged particle (X1
t )t≥0, but its total average number of jumps is α(t) +

A1(t).

6. Appendix

Theorem 1, the main result of the paper, uses a partial differential equations result proven

in detail in [13]. To keep this paper self-contained, we reproduce the two theorems we need.

It is straightforward to verify that the conditions on the underlying process (L,D(L)) stated

in Subsection 1.1 imply the conditions required in [13] to proveTheorems 3 and 4.

6.1. The heat equation with mass creation. We shall say that νt(dy) ∈ C([0,∞),M1(D))

is the weak solution to the heat equation for (L,D(L)) with mass creation at γ and initial

value ν0 if

〈νt, φ(t, ·)〉 = 〈ν0, φ(0, ·)〉+

∫ t

0
〈νs,

∂

∂s
φ(s, ·) + Lφ(s, ·)〉 ds(6.1)

for any test function φ ∈ D satisfying the boundary conditions (1.21) from Theorem 1 in

Subsection 1.1.
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Notice that the strong version of the equation satisfied by m is the forward equation,

i.e. the time homogeneous heat equation for L∗, the formal adjoint of L, with boundary

conditions obtained from (1.21).

Theorem 3 (from [13]). For any ν0 ∈ M1, equation (6.1) has a unique weak solution

ν· ∈ C([0,∞),MF (D)), where time continuity is defined in the topology of finite measures.

This is a strong solution for t > 0 in the sense that νt(dy) = v(t, y)dy, t > 0 with v ∈
C1,2((0,∞) ×D). The solution admits the representation 〈νt, φ〉 = Eν0 [〈ζt, φ〉], t ≥ 0, for

any φ ∈ D. Here (ζt)t≥0 is the auxiliary measure-valued process (ζt)t≥0 defined in Section

6.3.

Theorem 4 (from [13]). When ν0 = δx, the solution is denoted vx(t, y) for t > 0, and for

any 0 < t0 < T there exists a constant C(t0, T ) > 0 such that

sup
t∈[t0,T ],x,y∈D

vx(t, y) = C(t0, T ) <∞ .(6.2)

If, in addition, ν0 = v0(y)dy, v0 ∈ C(D̄), then v ∈ C([0,∞) × D̄) ∩ C1,2((0,∞) × D).

The total mass nt = 〈νt, 1〉 is positive, strictly increasing and there exists a constant c(η0)

depending only on the initial value and λ∗ > 0 such that 0 < nt < c(ν0)e
λ∗t, for any t ≥ 0.

We conclude with a concrete example.

6.2. Case d = 1. Let D = (0, 1), (∂D)r = {1}, (∂D)a = {0}, γ = δc, c ∈ (0, 1) and

L = 1
2
d2

dy2
with ν0(dx) = v0(x)dx. Then L = L∗, νt(dy) = v(t, y)dy with v(0+, ·) = v0(·)

and v has continuous time derivative. In addition, one can verify directly that for any t > 0,

v is smooth in (0, c) ∪ (c, 1) and satisfies the boundary conditions

v(t, c−) = v(t, c+) , v′(t, 1) = 0 , v(t, 0) = 0(6.3)

(v′(t, c+)− v′(t, c−)) + 2v′(0) = 0 .

This case is studied in [20] with some additional considerations on the quasi-invariant

measure.

6.3. The auxiliary processes Zt and ζt. In this section, we outline the construction of a

particle system Zt having a random total number of particles Nt, which is a counting process

as a result of branching. In that sense, our dynamics, including the conservative process

(XN
t ) given in (1.10), is intimately related to super-critical behavior. See the comments in
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Subsection 1.4. This states that the expected value of the empirical measure, seen as finite

measure-valued random trajectory, is the solution to (6.1)-(1.21). The formal construction,

definition, and proof of the regularity properties of this process, as well as related questions

to its evolution semigroup, are done in [13].

At t = 0, a single particle is placed at a random point with distribution m0(dx) ∈
M1(D). The particle, starts moving according to (L,D(L)), until it reaches (∂D)a, when it

dies. Instantaneously, two particles are born at the same random point in D chosen with

distribution γ. All particles start afresh and continue an independent motion in D until

the first one dies and the branching is repeated. We note that particles depend on each

other only through ancestry, and not through their motion.

We shall make the convention that a particle hitting the absorbing boundary jumps,

instead of being killed upon contact, which makes particle labelling easier. Then each

particle has a Markovian motion once it is born, namely the Brownian motion with rebirth

introduced in [8], also studied in [9, 4, 5]. Under (1.1), the particle system is well defined,

having a constant number of particles between branchings. The branching times for a

strictly increasing sequence, since they never coincide; all with probability one. We assume

it is defined on a filtered probability space, and built constructively, up to the limit of the

strictly increasing sequence of branching times, denoted by τ∗, a stopping time in [0,+∞].

The model can be easily generalized to have a random number K of offspring created at

the recombination point, including a smaller number than one, leading to the possibility

of dissipation of mass (e.g. K may be Poisson distributed), but we shall only consider a

number of exactly K = 2 for our purpose of representing the solution of (6.1)-(1.21).

The first particle is denoted Z1
t , the second Z2

t , and so on. Let the number of particles

at time t be denoted Nt, which, only in this special case, coincides with the number of

branchings - a feature that while convenient, is not essential to the construction.

In principle, τ∗ could be finite with positive probability, in which case the system is

said explosive. In [13] it is shown that this is not the case. Moreover, Nt has exponential

moments up to a critical value λ∗ > 0, depending only on (L,D(L))) and the distribution

of the number of offspring K. The constant is the same as the one given in Theorem 4,
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from [13]. Denote the empirical measure

ζt =

Nt∑
i=1

δZt .(6.4)

This is a finite measure-valued Markov process, i.e. living on D([0,∞),MF (D)).

Based on the estimate on Nt from [13], we define the expected value νxt (dx) of the

empirical measure of the process (Zt)t≥0 starting with one particle at x. Technically, we

should denote this initial point by the non-random delta measure δx, for consistency with

the measure valued setup. We can see that x → νxt (dx) is continuous in the topology of

weak convergence and then the second integral in (6.5) is well defined.

For a bounded test function φ and a probability measure ν0(dx) = v0(x)dx ∈M1(D), we

put

〈νxt , φ(t, ·)〉 := Ex[

Nt∑
j=1

φ(t, Zjt )] , νv0t =

∫
D
v0(x)νxt dx .(6.5)

It is part of the statement of Theorem 3 that the function νv0t is the stochastic represen-

tation of the unique weak solution νt of the heat equation with particle creation at γ(dx),

i.e. they are equal, hence satisfies (6.1)-(1.21).

The solution has the regularity properties of Theorem 3. Moreover, Theorem 4 shows

that if nt := 〈νt, 1〉, then nt > 0, t ≥ 0, is differentiable with continuous derivative. Putting

lnnt =
∫ t
0 asds, then, for any test function φ ∈ D with boundary conditions (1.21), the

normalized solution µt = νt/nt satisfies (1.22). Relation (1.22) is obtained by an elementary

calculation with ut = vt/nt.
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