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Abstract. In a bounded open region of the d dimensional Euclidean space we consider

a Brownian motion which is reborn at a fixed interior point as soon as it reaches the

boundary. It was shown that in dimension one coupled paths starting at different points

but driven by the same Brownian motion either collapse with probability one or never

meet. In higher dimensions, for convex or polyhedral regions the paths with positive

probability of collapse differ at start by a vector from a set of codimension one. The

problem can be interpreted in terms of the long term mixing properties of the payoff of a

portfolio of knock-out barrier options in derivatives markets.

1. Introduction

We denote by R a bounded open region in Rd with a piecewise smooth boundary of class

C2 satisfying the exterior cone condition and consider a fixed point in the interior, which will

be identified as the origin without loss of generality. Let (Ω,F , P ) be a probability space and

{w0(t, ω)}t≥0 a Brownian motion starting at the origin, adapted to the filtration {Ft}t≥0

on F . The d-dimensional family of Brownian paths indexed by the starting points x ∈ Rd,

denoted by wx(·, ω) = x + w0(·, ω) generates a family of coupled processes {zx(t, ω)}t≥0

on the Skorohod space D([0,∞),R), also indexed by the starting point x ∈ R according

to the following mechanism. A Brownian particle is killed upon reaching the boundary

and simultaneously a new particle is born at the origin which will perform a Brownian

motion until it reaches the boundary in its turn. The process is repeated indefinitely (with
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probability equal to one, the procedure cannot end in finite time). The rigorous definition

of the process is given in [4]. This paper completes and generalizes in higher dimensions

the results in d = 1 of [2] and [3], where {zx(t, ω)}t≥0 is referred to as Brownian motion

with rebirth.

The goal of this paper is to answer the question whether paths corresponding to the same

realization of the process, but starting at distinct initial points, will meet in finite time, or

collapse. If we had R = Rd, the motion would be Brownian motion and the paths would

simply be translates of each other with no possibility of collapse. The interesting feature is

that for the rebirth process we can isolate a (possibly empty) set called the grid G(R) of R
such that if the coupled paths start at x and y then the probability of collapse is positive

only if k = x − y belongs to G(R). Theorem 1, the main result of this paper, shows that

in many relevant cases, more specifically when R is either convex or a polyhedron, we can

describe the grid explicitly, being equal to the union of countably many d− 1 dimensional

hypersurfaces of positive surface area (thus having volume zero), each parallel to flat regions

of the facets of R, formally defined in (2.9).

Let the translation of a set A ⊂ Rd by a vector b ∈ Rd be denoted by A + b where

A+ b = {a+ b : a ∈ A}. We shall denote by λ(·) be the Lebesgue measure on smooth d− 1

dimensional surfaces in Rd. In dimension d > 1, the key observation leading to the notion

of grid is that at least one of the two sets (∂R± k)∩ ∂R must have positive surface area in

order to see the two paths collapse in one step, a consequence of Proposition 1. One would

expect to construct inductively a skeleton of the grid G′(R) even for arbitrary domains by

setting

G′
0(R) = {k ∈ Rd : λ((∂R± k) ∩ ∂R) > 0}

G′
n+1(R) = {k ∈ R : λ((∂R± k) ∩G′

n(R)) > 0}

with G′(R) = ∪n≥0G
′
n(R). Due to the geometry of the region R, this set is rather hard to

describe. The present work focuses on the case (ii) of the discussion below, which permits

a rigorous description of G′(R) ⊆ G(R) given in equation (3.2). In this particular case,

the grid G(R) is defined in (2.9) geometrically and not by induction, and the notion of

skeleton G′(R) will not be pursued in the rest of the paper. We can summarize the results

concerning path collapse as follows.

2



(i) in d = 1 the grid G(R) is the subset contained inR of the additive subgroup generated

by the endpoints of the interval R and the paths with x − y in the grid collapse with

probability one. This case is presented in [2] and [3].

(ii) in d > 1, if R is convex or an arbitrary polyhedron, then only paths with x− y in a

subset of the grid have positive probability of collapsing, and this probability is strictly less

than one. Example 1 shows that the grid may be nonempty yet there exist starting points

with difference in the grid which have probability zero of collapsing. On the other hand,

Corollary 1 illustrates a case in which if x− y belongs to the grid, then the probability of

collapse is always positive.

(iii) if d > 1 and the region R is not convex and has nonflat subsets of the boundary of

positive surface area (is not a polyhedron), it is expected that the grid will have codimension

higher than one. We do not pursue this case at this time, but would like to remark the

geometric character of the problem.

The path collapse for Brownian motion with rebirth can be used to study the long-term

behavior of the double knock-out barrier options in derivative markets, a special case of

lookback options, characterized by the property that the payoff depends not on the value at

a given time but on the path taken by the underlying asset process {S(t)}t≥0 (for reference,

see [1]). Usually S(t) is modeled as a geometric Brownian motion, which, if r(t) = log S(t),

is equivalent to

(1.1) dr(t) = r0dt +
√

a dw(t) ,

where w(t) is a standard Brownian motion,
√

a is the volatility and r0 is the adjusted

return rate of the market. The value of the double knock-out barrier options is driven by

the market dynamics according to (1.1) until it hits the boundary or, in other words, one

of the barriers, when its payoff is instantaneously reset to a fixed value (rebate). By a

standard change of measure, we can reduce the problem to the analysis of the Brownian

motion with rebirth. One can interpret the results as a characterization of the conditions

under which the value of a portfolio with more than one instrument (higher dimensional

case) remains positive on the long run.

The present analysis can be extended to diffusion process under general regularity prop-

erties (strong ellipticity, smooth coefficients, piecewise smooth boundary of the domain and

exterior cone condition).
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2. Notations and Results

Let A be an open region in Rd and x ∈ A. We shall use the notation

(2.1) Tx(A) = inf{t > 0 : wx(t, ω) /∈ A} ,

the exit time from the region A for the Brownian motion starting at x. Occasionally we shall

suppress either x or the set A if they are unambiguously defined in a particular context. In

general, if A is a bounded open set in Rd and pabs(t, x, y) denotes the absorbing Brownian

kernel, then

(2.2)
∫

A
pabs(t, x, y)dy = P

(
wx(t, ω) ∈ A , t < Tx(A)

)
.

Assume that A is a connected open and bounded set in Rd with piecewise smooth boundary

satisfying the exterior cone condition. We denote by U a subset of ∂A. If {wk(t, ω)}t≥0

is the d-dimensional Brownian motion starting at k ∈ A and Tk(A) will denote the first

hitting time of the boundary, then

(2.3) P
(
wk(Tk(A), ω) ∈ U

)
= u(k,A, U)

where u(k,A, U) is the harmonic measure centered at k ∈ A of the boundary ∂A. One

can prove directly or refer to more general results from [5] in order to show that under the

present conditions on the set A the harmonic measure u(k,A, du) and the Lebesgue surface

area measure λ(du) on the boundary ∂A are mutually absolutely continuous.

We shall call a facet of R any maximal smooth component of the boundary ∂R.

Let {τx
n}n≥0 be the ordered sequence of stopping times when the particle driven by

Brownian motion with rebirth starting at x reaches the boundary (in fact, the discontinuity

points of the path). The reader is referred to [4] and also [2] for the rigorous construction of

the process. With the notation Nx(t) =
∑∞

n=0 1{τx
n≤t}, one can write inductively for t ≤ τx

n

(2.4) zx(t, ω) = wx(t, ω)−
∫ t

0
zx(s−, ω)dNx(s, ω) ,

such that zx(t, ω) = 0 for all t = τx
n .

We are interested in the probability of collapse of two coupled paths zx(t, ω) and zy(t, ω),

starting at x and y in R. The coupling is understood in the sense that both processes are

driven by the same realization ω ∈ Ω of the standard Brownian motion w0(t, ω) on (Ω,F , P ).

For x 6= y, the union of increasing sequences of a.s. finite hitting times of the boundary
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{τx
n} and {τy

n} corresponding to x and y from R can be non-ambiguously rearranged in

increasing order as long as the boundary is not hit by the two paths simultaneously and

simply denoted by {τn}. Let Tc = inf{t > 0 : zx(t, ω) = zy(t, ω)} be the time of collapse,

which could possibly assume the value Tc = ∞. Since the paths are translates of each other

(parallel) between boundary hits by either of them, collapse may only occur at one of the

times {τn}. At each such hitting time, one of the paths will fall back to zero, while the

other one will be in R. If the boundary is hit by the two paths in the same time, the two

paths will collapse.

These considerations allow us to define a spatially inhomogeneous Markov chain {Yn(ω)}n≥0

such that Y0(ω) = 0 if τ0 = Tc and Y0(ω) = zr(τ0, ω), where r is either x or y in such a

way that zr(τ0, ω) is the point which is not situated at zero at time τ0 as long as τ0 < Tc.

Inductively, Yn(ω) = 0 if τn ≥ Tc and Yn(ω) = zr(τn, ω), where r is either x or y in such a

way that zr(τn, ω) is the point which is not situated at zero at time τn as long as τn < Tc.

Proposition 1. Assume d > 1. The chain {Yn(ω)} has a time homogeneous transition

probability, defined for any m ∈ Z+, k ∈ R and any Borel set A ∈ B(R),

(2.5)

P (Ym+1 ∈ A |Ym = k) = u(0, (R− k) ∩R, (A− k) ∩ ∂R)

+ u(0, (R− k) ∩R, A ∩ (∂R− k))

+ u(0, (R− k) ∩R, (∂R− k) ∩ ∂R) · 1{0}(A) .

Remark 1. The transition probability is supported on the sets ∂R± k and {0}. Since the

harmonic measure is absolutely continuous with respect to the Lebesgue surface area of the

boundary, we do not need to write A \ {0} in the first two lines of (2.5). Furthermore, the

origin is an absorbing state.

Remark 2. Also note that (∂R− k) ∩ R, (R− k) ∩ ∂R, (∂R− k) ∩ ∂R is a partition of

the boundary of (R− k) ∩R. Since A ⊆ R, the exit sets on the first two lines of (2.5) can

be written (A− k) ∩ ∂R = (A− k) ∩ (R− k) ∩ ∂R and A ∩ (∂R− k) = A ∩ (∂R− k) ∩R,

respectively.

Proof. We shall refer to the event that the particle which was situated at the origin at

time τm hits the boundary strictly before the particle that was at k hits the boundary

as {0 hits the boundary before k does} and analogously, the event that the particle which

was situated at k at time τm hits the boundary strictly before the particle that was at
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0 hits the boundary as {k hits the boundary before 0 does}. When the two particles hit

the boundary at the same time, we get Ym+1 = 0. In view of the remark following the

statement of the proposition, the three distinct cases are represented by the events of the

boundary hits taking place at points belonging to each of the sets of the partition.

The transition probability P (Ym+1 ∈ A |Ym = k) can be decomposed into

P (Ym+1 ∈ A |Ym = k) =

P (Ym+1 ∈ A , {0 hits the boundary before k does} |Ym = k) +

P (Ym+1 ∈ A , {k hits the boundary before 0 does} |Ym = k) +

P (Ym+1 ∈ A , {0 and k hit the boundary simultaneously}|Ym = k) .

We write

(2.6)

P (Ym+1 ∈ A , {0 hits the boundary before k does} |Ym = k) =

P (wk(Tk((R+ k) ∩R, ω) ∈ (∂R+ k) ∩R ∩A) =

u(k, (R+ k) ∩R, (∂R+ k) ∩R ∩A) =

u(0, (R− k) ∩R, (A− k) ∩ (R− k) ∩ ∂R) .

The last equality in (2.6) is due to the translation invariance of the Wiener measure. The

exit set (∂R + k) ∩ R ∩ A is a subset of (∂R + k) ∩ R. In this case, it is true pathwise

that the particle originally situated at 0 must hit the boundary first, otherwise the particle

originally situated at k would have reached ∂R before. Finally, the set A ⊆ R allows us to

simplify (2.6) to the first line of (2.5). Analogously

(2.7)

P (Ym+1 ∈ A , {k hits the boundary before 0 does} |Ym = k) =

P (w0(T0((R− k) ∩R, ω) ∈ (∂R− k) ∩R ∩A) =

u(0, (R− k) ∩R, (∂R− k) ∩R ∩A) .

Lastly

(2.8)

P (Ym+1 ∈ A , {0 and k hit the boundary simultaneously}|Ym = k) =

P (w0(T0((R− k) ∩R, ω) ∈ (∂R− k) ∩ ∂R) · 1{0}(A) =

u(0, (R− k) ∩R, (∂R− k) ∩ ∂R) · 1{0}(A) .

We conclude with the remark that in dimension d > 1 the event that Ym+1 = 0 due to the

fact that one particle is at the origin at the exit time of the other one has zero probability,

since it is equal to the harmonic measure of a single point from ∂R. ¤
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From now on we will assume that our domain R is either convex or a polyhedron. We

shall define a set G(R), called the set of grid points of R, in the following manner. By

planar or flat set we shall understand a subset of a hyperplane in Rd with positive surface

measure. If R has at least one facet with a planar subset we shall denote by n1, . . . ,nd(R),

all the possible normals to these planar subsets, without repetitions (we do not distinguish

between n and −n). For each j from 1 to d(R), we denote by Fj the set F j
1 , . . . , F j

m(j) of

all flat subsets of ∂R with normal nj . Let Aj = {aj
k}1≤k≤m(j) be the set of intersection

points of the hyperplanes containing F j
k with the line with direction nj passing through

the origin. We also denote by Zj the additive subgroup of R generated by the family of

numbers nj ·Aj .

Definition 1. Let {nj}1≤j≤d(R) be the set of all the possible normal vectors to the flat

subsets Fj of the boundary ∂R of the region R which is assumed to be either convex with

piecewise smooth boundary or a polyhedron. The set G(R) of grid points of R is defined as

(2.9) G(R) =
{

k ∈ Rd : ∃ j nj · k ∈ Zj
}

,

and we define the set N(R) of all nodes of the grid G(R), namely

(2.10) N(R) =
{

k ∈ Rd : ∃ j′ 6= j′′ nj′ · k ∈ Zj′ and nj′′ · k ∈ Zj′′
}

.

Remark. The nodes defined at (2.10) may not be points as the name suggests, but unions

of surfaces of codimension 2. Also we observe that the set G(R) of the grid points is an

empty set if the boundary ∂R has no points of zero curvature. More generally, if for any

vector k, ∂R∩ (∂R+ k) has Lebesgue surface measure zero, then there exists no grid.

We are ready for the main result of the paper.

Theorem 1. Let R be a region in Rd with piecewise smooth boundary satisfying the exterior

cone condition. If R is either convex or an arbitrary polyhedron and x and y are two points

in R, then the probability that the two paths {zx(t, ω)}t≥0 and {zy(t, ω)}t≥0 collapse is

strictly less than one. If x− y ∈ R \G(R), the probability to collapse is zero.

Remark 1. This is a necessary condition theorem. In d > 1 there exists no pair of points

x and y which ensure collapse a.s. while the positive probability of collapse is still valid

only for a subset of volume zero - the grid G(R). It even may turn out that the geometry of

the set will prohibit the collapse in spite of the relative position of the initial points being
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on the grid. One such case is presented in Example 1. However, in some special cases we

can make precise the sufficient condition on the set of x − y which permits the paths to

collapse, as seen in Corollary 1.

Remark 2. The set of grid points G(R) corresponds in d = 1 to the family of linear

combinations with integer coefficients of the endpoints of the interval (a, b), denoted by

Za,b. In that case it is known from Theorem 1 in [3] that all such points will collapse almost

surely to the origin.

Corollary 1. If R is a d dimensional parallelepiped, then for all x− y ∈ G(R), the paths

collapse with positive probability strictly less than one.

We shall prove right away the corollary.

Proof. The key observation is that any k = y − x with x, y ∈ R can be translated along

a Brownian path contained in the region all the way to the boundary. Since at least one

coordinate of the vector k is in the grid, it follows that without loss of generality the

hyperplane it is parallel to can be assumed horizontal (xd = 0). It is a consequence of the

d = 1 result stated in Theorem 1 in [3] that, conditional on the event that we hit a number

of times in a row the opposite parallel horizontal facets of the parallelepiped (which can be

done with positive probability) we shall reach a state k′ with k′d = 0 almost surely. With

positive probability we can hit one of the horizontal boundaries once again, when both

endpoints of k must collapse. ¤

Example 1. If d > 1 and R is the d-dimensional sphere containing the origin, then the

probability that any two coupled paths starting at different points collapse in finite time

is zero. Also, if R is the intersection of the d-dimensional sphere containing the origin

with a half-space determined by a hyperplane perpendicular on a diameter at a distance

strictly larger than half the radius, then there exist points x, y in R with the property that

x− y ∈ G(R) and zx(·, ω), zy(·, ω) collapse with probability zero.

Proof. This is a consequence of Proposition 4. There is no grid for the sphere, a convex

region. In the case of the sectioned sphere, the grid is represented by parallel planar regions

parallel to the planar section - among them one through the origin. If the origin is situated

very close to the section it is easy to pick two points x, y ∈ R such that k = y−x is parallel
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to the grid yet ‖k‖ exceeds the largest of the diameters of the grid. Collapse in one step

becomes impossible and the probability to hit a non-grid point at exit is one. ¤

3. Proof of Theorem 1.

Let n be an arbitrary unit vector in Rd. We construct a subdomain S0(n) ⊆ R, called a

solid radial domain of direction n in the following manner. Since the origin is an interior

point of R there exists a sufficiently small r > 0 such that a cube C(0) of side length r

will be contained in R and one pair of facets of C(0) are perpendicular to n. Informally,

the cube can be extended in the direction +n by removing the face with projection +r

onto n. The infinite half-cone intersected with ∂R is S0(n). Formally, let H(n) be the

hyperplane with normal n passing through the origin and ΠH(n) the projection operator

onto the hyperplane. Let Cd−1(r) be a d− 1 dimensional cube of side 2r in H(n) centered

at 0. We define

(3.1) S0(n) = {x ∈ R : ΠH(n)(x) ∈ Cd−1(r) , x · n ≥ −r} .

Proposition 2. Let S be the intersection of a convex region of Rd with piecewise smooth

boundary, containing the origin as an interior point with the region R, having a nonempty

intersection with ∂R of positive surface area. For any given k ∈ R consider the Markov

chain {Yn}n≥0 from (2.5) derived from the Brownian motion with rebirth starting from k.

Then the probability for the Markov chain Yn to reach S in finite time is positive.

Proof. Algorithm to transfer k to S with positive probability.

For an arbitrary unit vector n ∈ Rd we construct a solid radial domain S0(n) with a

sufficiently small r > 0 such that S0(n) ⊆ S. We recall that S0(n) is “oriented” in the

sense that {x ∈ S0(n) : x · n ≤ 0} is included in R.

Let S0(n) + k be the translation of S0(n) by the vector k ∈ Rd. We are in a position to

move the Brownian path inside S0(n) at the endpoint containing O and inside S0(n)+k at

the endpoint containing k such that, with positive probability, we either hit the boundary

∂R first with the endpoint which was situated at k originally, in which case we are done,

or we first hit the boundary ∂R with the endpoint which was situated at O originally, in

which case we have moved a strictly positive distance in the direction n. To make this

more precise, the distance in the sense of projection onto the oriented vector +n of the

difference between the new position and the position at start has a lower bound. This
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is the minimum of the projections onto n of S0(n) ∩ ∂R. For sufficiently small r, by

continuity of the boundary surface, we can ensure that the lower bound is |a|/2 where a

is the intersection point of the straight line going through the origin in +n direction with

the boundary ∂R. By repeating the procedure, since the region R is finite, we shall hit the

boundary with the endpoint which was originally at k with positive probability. This will

bring k inside S with positive probability in a finite number of steps. ¤

Proposition 3. Let n′ be an arbitrary unit vector in Rd. Then, there exist r > 0 and a

unit vector n ∈ Rd such that the solid radial domain S0(n) intersects the boundary over a

smooth connected subset F which is not normal to n′ in the sense that λ
(
H ∩ F

)
= 0 for

any hyperplane H with normal parallel to n′, where λ(·) is the Lebesgue surface measure.

Proof. For (r, x) ∈ (0,∞) × ∂R we define the solid radial domain of direction n = x/‖x‖
of size r. For sufficiently small r > 0 this is a proper radial domain in the sense that it

will intersect the boundary of the region on only one side of the half-parallelepiped. The

boundary ∂R contains points x such that either a small neighborhood Fx of x intersected

with ∂R is nonplanar or is planar but has a different normal direction. The second fact is a

consequence of the finiteness of R, which cannot have only one direction for the boundary.

The first fact means that the intersection of Fx with any hyperplane has surface area zero.

We shall take n = x/‖x‖ and r sufficiently small such that the intersection of S0(n) with

∂R be a subset of Fx, setting F = Fx. ¤

If Tx and Ty are the first hitting times of the boundary for the Brownian motion starting

at x, y ∈ R , we define

(3.2)
K1 =

{
k ∈ Rd : ∃x, y ∈ R with k = y − x and P (Tx = Ty) > 0

}

Kn =
{

k ∈ Rd : P (Yn = 0 |Y0 = k) > 0
}

.

Proposition 4. If the region R is convex, d > 1 and k ∈ K1 then k is parallel to one of

the planar subsets of ∂R.

Proof. We want to show that two paths zx(t, ω) and zy(t, ω), starting at x, y ∈ R, respec-

tively, collapse in one step or at the first boundary hit with positive probability only if

y− x = k is parallel to one of the flat subsets of the boundary. This is a necessary but not

sufficient condition, as Example 1 shows.
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If P (Tx = Ty) > 0 then λ
(
(∂R ± k) ∩ ∂R

)
> 0 (from Proposition 6) which implies that

there exists a point x0 ∈ ∂R and a ball B(x0, δ) with δ > 0 such that F0 = B(x0, δ) ∩ ∂R
has the property λ

(
F0

)
> 0 and F0 ± k ⊆ ∂R. To fix ideas let’s assume F0 + k ⊆ ∂R. We

can take x0 in the interior of a smooth component of the boundary and δ sufficiently small

such that F0 be smooth. By convexity we have R0 = {x + α k : α ∈ (0, 1) , x ∈ F0} ⊆ R.

We want to show that F0 is a subset of a hyperplane. Suppose this is not true. We pick

a point x0 in the interior of F0 and consider the tangent hyperplane to R at both x0 and

x0 +k. The two hyperplanes must coincide, otherwise convexity would be violated. We can

take another point x1 arbitrarily close to x0 and repeat the argument. If the neighborhood

of x0 contained in F0 is not contained in a hyperplane, one of the pairs of tangent planes

must be distinct, bringing a contradiction.

There are two possibilities left: either F0 and F0+k are included in the same hyperplane,

or in distinct parallel hyperplanes. We show that the second case is impossible.

Assume F0 is included in H1 and F0 + k is included in H2 and H2 = H1 + k. Since

λ
(
Hi ∩ ∂R

)
> 0 for both i = 1, 2, again by convexity, the region R is on only one side of

H1 and on only one side of H2. To collapse when the path reaches F0 the starting points

x, y with y−x = k must be located in the interior of the region. It follows that the segment

[x, y] is contained in int(R) and so there exist x′, y′ in int(R) with y′−x′ parallel to k such

that ‖y′ − x′‖ > ‖k‖. This is impossible for the set situated between the two hyperplanes.

We obtain a contradiction. The only possibility remains that F0 and F0 + k be subsets of

the same hyperplane. This concludes our proof. ¤

Proposition 5. If the region R is convex or a polyhedron, then Kn ⊆ G(R).

Proof. Proposition 4 proves the case n = 1 because in the case of a polyhedron the statement

is trivial. We shall proceed inductively over n ∈ Z+ to prove the statement. We denote

P (k → dk′) = P (Ym+1 ∈ dk′ |Ym = k), the transition probability of the chain Yn(ω).

Assume Proposition 5 is true for n = 1, 2, . . . m and we want to show it for n = m + 1.

Then
{

k : P (Ym+1 = 0 |Y0 = k) > 0
}

=
{

k :
∫

R
P (k → dk′)P (Ym+1 = 0 |Y1 = k′) > 0

}

=
{

k :
∫

R
P (k → dk′)P (Ym = 0 |Y0 = k′) > 0

}
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by the Markov property. The integral can be positive only if the integrand P (Ym = 0 |Y0 =

k′) is positive, which implies that k′ ∈ Km. A necessary condition that an integral of a

nonnegative function f with respect to a measure µ be positive is that µ(supp(f)) > 0. In

this case, Km is a closed set and P (k → Km) > 0. We have shown that

Km+1 ⊆
{

k : P (k → Km) > 0
}
⊆

{
k : λ

(
(∂R± k) ∩Km

)
> 0

}
.

We shall conclude the proof if we notice that in order to have λ
(
(∂R ± k) ∩ Km

)
> 0,

given that Km ⊆ G(R), the vector k will be the difference between points situated in two

parallel hyperplanes with direction nj for a given j ≤ d(R) from Definition 1. Recall that

n1, . . . ,nd(R) are all the possible normals to the planar subsets of the boundary ∂R defined

previously. In other words, there exists a direction nj such that nj · k ∈ Zj . Therefore

k ∈ G(R). Without loss of generality, we can choose only one such direction nj due to

the fact that the surface area of sets corresponding to more than one direction is zero

(codimension greater or equal to 2 in Rd). ¤

Proposition 6. Let R be a bounded open region in Rd with piecewise smooth boundary.

Let x, y two points in R and k = y−x. Then, the probability that the two paths zx(·, ω) and

zy(·, ω) of the coupled process of Brownian motion with rebirth collapse at the first hitting

time of the boundary T = min(Tx, Ty) is

(3.3) P
(
Tx = Ty

)
= u(x, (R− k) ∩R, (∂R− k) ∩ ∂R)

where u is given by (2.3) with A = (R− k) ∩R and U = (∂R− k) ∩ ∂R.

Remark. The probability given in (3.3) can be expressed in a symmetric fashion by

considering the shift by k′ = x− y. Note that U = (∂R− k)∩ ∂R ⊂ ∂((R− k)∩R) = ∂A.

Proof. There are two ways to collapse in one step (at the first boundary hit). The first is to

hit the boundary simultaneously with the two paths and the second is to hit the boundary

with one path while the other is at zero. The second case implies that zx(t, ω) reaches x−y

or y − x and at least one of them belongs to the boundary. We have to calculate (2.3) for

a set U = {±k} over the region R, which is zero in d > 1. The d = 1 case is treated in [2],

[3]. This reduces the problem to the first case, when the probability of collapse in one step

is given by (3.3). ¤
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Proof of Theorem 1. We have to prove three facts: 1) that if two paths collapse with

positive probability, then their relative distance must enter the set of grid points G(R)

after a finite number of steps, 2) that the probability to collapse is zero if the initial points

were such that x− y /∈ G(R) and 3) that the probability that starting at points x, y in R
with x−y = k ∈ G(R), the chain {Yn}n≥0 from (2.5) with Y0 defined as the position of the

particle which did not hit the boundary in one step, will exit the set G(R) in finite time

with positive probability.

1) This is a consequence of Proposition 4 and Proposition 5.

2) In view of 1) it is clear that it would be enough to show that the probability that

starting from k ∈ R\G(R) we enter G(R) in one step is zero. Assume the contrary. From

the definition (2.5) it follows that

P
(
Yn+1 ∈ G(R) |Yn = k

)
= u(0, (R− k) ∩R, (G(R)− k) ∩ (R− k) ∩ ∂R)

+ u(0, (R− k) ∩R, (∂R− k) ∩R ∩G(R))

+ u(0, (R− k) ∩R, (∂R− k) ∩ ∂R) · 1{0}(G(R)) > 0 .

Since k ∈ R \G(R), λ((∂R− k) ∩ ∂R) = 0. Hence u(0, (R− k) ∩R, (∂R− k) ∩ ∂R) = 0.

Also we notice that both sets (G(R) − k) ∩ ∂R and (∂R− k) ∩G(R) are the intersection

of two surfaces, hence of measure zero unless at least one subset of positive area coincides.

According to Propositions 4, 5 and 6, this can only happen if the subset is included in

a hyperplane parallel to one component of G(R). That makes the vector k to be the

difference of elements of two parallel planes contained in the grid G(R) which implies that

its projection on the common normal, say nj to the planes is in Zj . This is the definition

of k ∈ G(R).

3) We notice that k ∈ G(R) is equivalent to k ·nj ∈ Zj for a subset of normal directions

nj . First we notice that if we start with a node we shall enter G(R) \ N(R) in one step

with positive probability, due to the codimension two of the set allowing it to remain a

node. Assume that k ·ni /∈ Zi for a given normal direction ni, or that there exist nonplanar

subsets on the boundary with positive area (in the convex but non polyhedral region case).

We want to show that, with positive probability, we can determine an evolution of the chain

{Yn} which exits the grid G(R). Naturally, if the two paths exit the grid in one step (at the

first ever boundary hit) with positive probability, we are done. Assume that this does not

happen. Without loss of generality, we shall denote by k the initial position of the Markov

chain {Yn}.
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There are two possible outcomes for k while the successive boundary hits occur:

(i) Yn enters the set R \G(R) with positive probability, in which case we are done,

(ii) Yn stays in G(R) with positive probability.

In case (ii) we shall hit the boundary over a flat portion parallel to one of the facets of the

region at each time. The reason for this is that we have to ensure that (∂R±k)∩G(R) has

positive surface area. The grid has codimension one in the case of both general polyhedral

regions and convex regions R. The reasoning is the same as in Proposition 5.

This implies that no matter how many planar directions from the grid k is parallel to,

with positive probability, after one step, we can transfer k → k′ with k′ parallel to only

one planar direction of the grid. Let the normal to that planar direction be denoted by ni.

Proposition 3 shows that there will be a solid radial domain S0(n) such that the intersection

with R is not perpendicular to ni. The algorithm from Proposition 2 enables us to bring k′

inside S0(n) with positive probability. Then, with positive probability, the first boundary

hit of the Brownian paths will be through the unique part of the boundary of S0(n) not

perpendicular on ni. This is equivalent to having Yn exit the grid, and concludes the proof

of the theorem. ¤
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