
MARKOV PROCESSES WITH REDISTRIBUTION
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Abstract. We study a class of stochastic processes evolving in the interior of a set D

according to an underlying Markov kernel, undergoing jumps to a random point x in D

with distribution νξ(dx) as soon as they reach a point ξ outside D. We give conditions on

the family of measures νξ(dx) preventing that infinitely many jumps occur in finite time

(explosiveness), conditions for ergodicity and the existence of a the spectral gap. The

setup is applied to a multitude of models considered recently, including particle systems

like the Fleming-Viot branching process and a new variant of the Bak-Sneppen dynamics

from evolutionary biology. The last part of the paper is expository and discusses the

relation with quasi-stationary distributions.

1. Introduction

Let S ⊆ Rd, (Ω, (Ft),F , P ) a filtered probability space and (xo(t)), t ≥ 0 a Dynkin-Feller

process on S, adapted to (Ft), which satisfies the usual conditions, i.e. the filtration is

P - complete and right-continuous with rcll (right continuous with left side limit) paths

almost surely. The process will be assumed to be stochastic, i.e. Px(xo(t) ∈ S) = 1 for any

x ∈ S, t ≥ 0; it will be referred to as the underlying process. In addition, D ⊆ S will be an

open set in the topology induced on S as a subspace of Rd. For any ξ ∈ S \D we have a

probability measure νξ(dx) on D such that ξ → νξ(dx) is measurable, where S \D 3 ξ is

endowed with its Borel σ - algebra and M1(D) 3 νξ(dx) with the Borel sets of the topology

of convergence in distribution. These are the redistribution measures. Here M1(X) denotes
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the space of probability measures on the Polish space X. For such a process [25], the first

hitting time τD of S \D

(1.1) τD = inf{t > 0 |xo(t) ∈ S \D}

is a stopping time (not necessarily finite) and has the property that Px(τD > 0) = 1 for

any x ∈ D.

This setup allows the construction of a new Markov process (x(t)) on D. Starting from

x ∈ D, x(t) evolves according to (xo(t)) until τD−, when xo(t) exits D at ξ = xo(τD) ∈
S \D. After that, x(t) instantaneously jumps to a random point x1 ∈ D with distribution

νξ(dx) and continues this evolution inductively, putting back to back episodes in D of total

positive time length τ∗. When τ∗ <∞ we say that (x(t)) is explosive.

Even though the construction is more general, the examples we discuss refer only to

diffusions and to pure jump processes on the lattice Zd.

1.1. Examples. A more detailed presentation of the examples is done in the last section.

1. Brownian motion with redistribution (rebirth). In the simplest version, the diffusion

with jumps on the connected open set D has a delta function relocation measure νξ(dx) =

δx0(dx), x0 ∈ D [15, 17], constant in ξ ∈ ∂D, νξ(dx) = ν(dx) ∈ M1(D) [5], or with

continuous dependence on the exit point ξ → νξ(·) ∈ M1(D) [6]. In the special case of

the delta measure and bounded D, the process is generated by a Feller semigroup on a

compact manifold where the boundary is glued together with the return point x0 [15, 17]

(figure eight). Other variants include the case [21] of a domain with piecewise smooth

boundary and constant redistribution measure on each smooth component. The interest in

the problem stems from a multitude of applications, for example in barrier options pricing

theory (see [26] for the definition).

2. An additive increase multiplicative decrease (AIMD) model for distributed resource

allocation [22]. Here a Markov process evolves in a simplex D of positive coordinates

x = (x1, . . . , xd) with
∑
xi < C. The particles xi(t) represent rates of flow (e.g., internet

data flow) moving (possibly deterministically) on a straight line (additive increase). Upon

reaching C (congestion), particles are redistributed inside the domain to a fraction of their

current value (multiplicative decrease). This is reflecting the practice of throttling applied

to outliers of data usage employed by the telecoms.
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3. Diffusive Bak-Sneppen fitness evolution model. We consider an n particle system,

a variant of the well known evolution model proposed by Bak and Sneppen in [4]. The

particles follow Brownian motions xi(t) for i ∈ {1, 2, · · ·n} in an interval (0, a], a > 0 with

reflection at a ∈ R and with 0 considered a boundary point, evolving independently of each

other until the first one reaches 0. Each coordinate xi represents the ‘fitness state’ of the i-th

species and has an associated set of neighbors Vi ⊆ {1, 2, . . . , n}, designated by their indices,

such that i ∈ Vi. Whenever one of the fitness levels xi reaches the boundary point zero,

all xj with j ∈ Vi are instantaneously replaced by new i.i.d. fitness levels with distribution

function G(x) on the interval (0, a) and the evolution continues afresh. To fix ideas, we

shall assume i→ Vi to be deterministic functions and |Vi| ≥ 2, for all 1 ≤ i ≤ n, where |V |
is the cardinality of V . It is easy to verify that n = 1 and n ≥ 2 with |Vi| = 1 are covered

in subsection 4.1 since this coincides with Vi = {i} and particles move independently.

4. The Fleming-Viot branching particle system, studied in [8, 16, 23] for Brownian

motions, and in [14, 1] in a discrete setting (where the existence of a quasi-stationary

measure is obtained from the empirical measures) is perhaps the most important example.

Here the redistribution probabilities νξ(dx) send a particle reaching the boundary to one of

the locations of the remaining particles chosen at random. This process satisfies Condition

2 but the proof is more difficult. It is rigorously presented in [19], but the main ideas

are outlined in the last section of the present paper (Lemma 3). A discussion of the

hydrodynamic limit (LLN) of the particle system and its connection to the Yaglom limit of

the underlying process is also presented.

1.2. General questions. 1) If the redistribution measures are very singular, perhaps the

mass migrates towards ∂D and jumps become very frequent. When is (x(t)) non-explosive?

More precisely, under what conditions on (νξ(dx)) does the process not end in finite time, i.e.

Px(τ∗ =∞) = 1 for all x ∈ D? This is equivalent to (x(t)) being stochastic, or equivalently

having the transition probabilities satisfy Px(x(t) ∈ D) = 1, t > 0. Proposition 1 gives a

sufficient condition, namely that (νξ(dx))ξ∈∂D ∈ M1(D) be tight. However, it is easy to

verify that the FV process (Example 4) for more than three particles is not tight. This

difficulty is resolved with Lemma 3. Other proofs in [27], [7] are exploiting the idea that

since Brownian paths meet with probability zero, the same is true for the ”broken” paths

of the FV process, via some path-by-path transformations. When the drift towards the

boundary is very strong, explosion may occur [9].
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2) A second question is, if the process is non-explosive, is it ergodic? Quite generally,

the answer is positive. Due to the structural bound (3.5), it is easy to verify for many

models (e.g. diffusions) that a compact set in D is a small set. If the small set is accessible,

the process is Harris recurrent. Determining the speed of convergence may be harder, but

we provide a criterion (2.14) for the strong Doeblin condition. How can one characterize

its invariant measure? The answer is (3.13) in Theorem 3. Even though this provides a

formula, it is dependent on the invariant measure of the interior chain (2.3) or, equivalently,

the boundary chain (2.4).

3) The relation with particle systems. In the multi-particle systems cases, scaling limits

- law of large numbers [8], hydrodynamic limits [16, 14], large deviations [18], fluctuation

fields - can be considered. An important problem is to establish a lower bound for the

spectral gap, uniformly over the dimension of the system (number of particles). Theorem

4 relates the spectral gap of the killed process with the spectral gap of the redistribution

process. More precise results can be obtained for specific settings ([15, 17, 5, 6, 21]).

Unfortunately these are one particle models. A lower bound independent of the number of

particles is not yet available.

4) Relation to the existence of the quasi-stationary distribution. For particle systems,

the tightness (and limit) of the empirical measure under the invariant distribution (3.13)

is very important in connection to qvasi-invariant distributions. It is intuitively clear that

the equilibrium measure of the n - dimensional FV system should produce an empirical

measure on D converging as n → ∞ to the quasi-stationary distribution of the driving

process (4.11). The method is introduced in [14] and is related to an idea in [13]. This

question is solved for some pure jump process in [2, 3].

2. Construction and non-explosiveness.

Since D is allowed to be unbounded, even for very well behaved underlying processes

and regular domains D, we may see the possibility that Px(τD =∞) > 0 for some x ∈ D.

This is not a major concern, because explosiveness occurs when too many redistribution

jumps occur, and not too few. However, we recall that there are no instantaneous jumps

from inside D, i.e. Px(τD > 0) = 1. We further denote by PD(t, x, dy) the transition

probabilities of the killed process (x̃(t))t≥0

(2.1) PD(t, x, dy) = Px(xo(t) ∈ dy , τD > t) , ∀x ∈ D
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and by (PDx )x∈D its law when starting at x.

We shall construct formally a Markov process (x(t))t≥0 on D based on an infinite col-

lection (x̃l(t))l≥1 of independent processes with laws PD· for each l ≥ 1. For each of these

processes, denote τDl the first hitting time of S \ D. Set τ0 = 0. Then, for any x ∈ D,

define x(t) = x̃1(t) on t ∈ [0, τD1 ). If τD1 = ∞, we put l∗ = 0, where l∗ denotes the total

number of jumps, and we are done. If not, we continue. When x(t) reaches S \ D at

ξ1 = x̃(τD1 −), it instantaneously jumps to a random point x1, independent of the process,

with probability distribution νξ(dx1) and we update τ1 := τD1 . The process continues as

x(t) = x̃2(t− τD1 ) on the time interval τD1 ≤ t < τD1 + τD2 , where x̃2(·) has law PDx1 . Unless

τD2 = ∞, in which case we have l∗ = 1, upon reaching S \ D, we set τ2 := τ1 + τD2 and

the we continue inductively for all l ≥ 1. If the total number of jumps l∗ is finite, we set

τl =∞ for all l > l∗. By construction, the sequence (τl)0≤l≤l∗ is strictly increasing almost

surely. We denote τ∗ = liml→∞ τl ≤ ∞. Theorem 1 proves that under some additional

conditions the process (x(t)) is non-explosive, or equivalently Px(τ∗ = ∞) = 1, implying

that the transition probabilities are stochastic.

Even when the underlying process is very well behaved (satisfying Conditions 1 and 3,

easily verified in the diffusive case), the questions are nontrivial because of the generality of

the family of redistribution measures. In the present paper and [19], we provide answers for

several families (νξ(dx)). A direct answer is the tightness criterion from Proposition 1 (ii),

applicable to the examples in subsection 4.1. The particle system subsection 4.2 is a useful

example when the redistribution measures fail to be tight. In this case we provide the more

general Proposition 1 (i). The geometric ergodicity results are proved with the Doeblin

condition; they actually constitute good examples of a relative strength of probabilistic

methods over their analytic counterparts [15, 17, 6, 23], in the sense that except for explicit

calculations, Theorems 3 and 4 give the same qualitative results with a much shorter proof.

2.1. Notations. In the following λ(B) will be a reference measure (Lebesgue measure

when xo(t) is a diffusion) of a Borel set B ⊆ Rd and we shall assume that the transition

probabilities of the underlying process have densities PD(t, x, dy) = pD(t, x, y)dy, where we

use the notation λ(dy) = dy for simplification. The harmonic measures on S \ D will be

denoted by

(2.2) λ0(x, dξ) = Px(xo(τD) ∈ dξ) , ξ ∈ S \D .
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Naturally, when the underlying process is a diffusion and D is regular, we restrict ourselves

to ξ ∈ ∂D (the boundary of D) since λ0(x, ∂D) = 1.

Given δ > 0 we shall use the notation Dδ = {x ∈ D | d(x, ∂D) > δ} for the open subset

of D with distance at least δ from the boundary ∂D. In the lattice case state space case,

δ = 1/2 is a valid choice. For δ > 0, we shall use the notation Dc
δ = D \ D̄δ and τD

c
δ for the

first exit time from Dc
δ (note that Dc

δ 6= S \D).

Condition 1 (i) is immediate if we assume that the densities of (2.1) are positive. In the

case of regular diffusions (3.12) on smooth domains Condition 1 is easily satisfied, as well as

for pure jump processes with bounded jump rates. Nonetheless, for the sake of generality,

we assume the following.

Condition 1. For any sufficiently small δ > 0 we have the properties:

(i) For any x ∈ D, PDx (τD > 0) = 1 and for any x ∈ D, t > 0, PDx (τD > t) > 0;

(ii) for any t > 0, infx∈D̄δ P
D
x (τD > t) > 0, and

(iii) limt→∞ supx∈Dcδ
PDx (τD

c
δ > t) = 0.

Two Markov chains can be constructed based on (x(t)). Define the interior chain Xl :=

x(τl), l ≥ 0, with state space D and transition probabilities

(2.3) S(x, dy) =

∫
S\D

Px(x(τD−) ∈ dξ)νξ(dy) =

∫
S\D

λ0(x, dξ)νξ(dy) .

The boundary chain Yl , l ≥ 0 on S \D can be defined with transition probabilities

(2.4) P (Y1 ∈ dξ′ |Y0 = ξ) =

∫
D
νξ(dx)λ0(x, dξ′) .

We note that S(x,D) = 1 without any assumption on (νξ(dx)), thus (Xl), (Yl) are never

explosive, being well defined for any l ≥ 0, even in case τ∗ <∞.

For f ∈ Cb(S), the semigroup Ptf(x) =
∫
D p(t, x, y)f(y)dy satisfies

(2.5) Ptf(x) = PDt f(x) +

∫ t

0

∫
D
Pt−sf(x′)

∫
∂D

Px(τD ∈ ds, x(τD−) ∈ dξ)νξ(dx′) .

Due to (2.5, the densities (p(t, x, y)) satisfy

(2.6) p(t, x, y) = pD(t, x, y) +

∫ t

0

∫
D
p(t− s, x′, y)

∫
∂D

Px(τD ∈ ds, x(τD−) ∈ dξ)νξ(dx′) .

It is important to notice that, in general, the semigroup (2.5) is not Feller. When

ξ → νξ(dx) is continuous with the topology of weak convergence of probability measures
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on ∂D, the process solves the martingale problem for the class of functions in Cb(D) form

the domain

(2.7) D = {f ∈ Do | f(ξ) =

∫
D
f(y)νξ(dy) , ξ ∈ ∂D} .

We notice that Px(τD ∈ ds, x(τD−) ∈ dξ) depends exclusively of the well known process

killed at the boundary (3.12). For fixed t > 0, this has a density λ0(x, s, ξ), whose marginal

with respect to the exit point ξ ∈ ∂D is the harmonic measure (2.2).

After applying the Laplace transform to (2.5), we see that the resolvent has a kernel

Rβ(x, y) =

∫ ∞
0

e−βtp(t, x, y)dt , β > 0

verifying

(2.8) Rβ(x, y) = RDβ (x, y) +

∫
D
Kβ(x, dx′)Rβ(x′, y)

where

(2.9) Kβ(x, dx′) =

∫ ∞
0

∫
∂D

e−βsPx(τD ∈ ds, x(τD−) ∈ dξ)νξ(dx′) .

Letting Kβ denote the corresponding operator on Cb(D̄), we have

(2.10) (I −Kβ)Rβ = RDβ , Rβ = (I −Kβ)−1RDβ ,

where the first equality is rigorous, as the Laplace transform of a convolution in the time

variable, while the second equality is formal. The existence conditions of the inverse are

difficult to establish directly. However, one can see that the density of the invariant measure

from (3.13) is obtained heuristically as

(2.11) lim
β→0

βRβ(x, y) = lim
β→0

∫
D

(
I −Kβ

β
)−1(x, dx′)RDβ (x′, y) = Z−1

∫
D
G(x′, y)µX(dx′) ,

where the normalizing constant Z is the average duration of a trip to the boundary in

equilibrium. We used the fact that

(2.12) lim
β→0

RDβ (x′, y) = G(x′, y) , µX(dx′) = Z lim
β→0

(
I −Kβ

β
)−1(x, dx′) .

Intuitively, Kβ is the transition function of the interior resolvent chain (2.3).

7



2.2. Non-explosion. Given a δ > 0, we denote by

(2.13) α(δ) = inf{t ≥ 0 |x(t) ∈ D̄δ} ,

the début time of D̄δ by the process (x(t)), with the usual convention α(δ) = ∞ if the

infimum is over the empty set. We define l(δ) = max{l ≥ 0 | τl ≤ α(δ)}, equal to infinity if

(x(t)) never reaches D̄δ; in general, l(δ) is not a stopping time.

Condition 2. There exists δ > 0 such that Px(l(δ) <∞) = 1.

The condition is often uniform in x ∈ Dc
δ and it is easier to verify, i.e.

(2.14) lim
l→∞

sup
x∈Dcδ

Px(l(δ) > l) = 0 .

A useful way of looking at (i) and (ii) is to observe that Xl := x(τl), 0 ≤ l ≤ l∗ (2.3).

Even when l∗ = ∞, it is nontrivial to show that (x(t)) is non-explosive since (Xl) may

not be tight in D. In other words, the chain might be well defined for all l ≥ 0, but if

it migrates towards the boundary, the duration τl − τl−1 of an episode between boundary

visits diminishes with the possibility that τ∗ <∞.

The next proposition gives some concrete criteria to verify Condition 2.

Proposition 1. (i) Condition 2 is satisfied if there exists a positive integer m and a positive

real constant c1 such that

(2.15) ∀x ∈ Dc
δ Px(l(δ) ≤ m) ≥ c1 > 0 .

(ii) A sufficient condition for (i) with m = 1 is that the family of redistribution measures

(νξ(dx))ξ∈S\D be tight.

Remark. 1) If x ∈ D̄δ, then (2.15) is trivially satisfied with m = 0 and any constant

c1 ≤ 1, which implies that (2.15) can be immediately extended to all x ∈ D.

2) A sufficient condition for (2.15) is that νξ(D̄δ) is that ξ → νξ(dx) be continuous and

S \ D be bounded which works for all the applications discussed in Subsection 4.1. To

summarize, Proposition 2 in subsection 4.1 ⇒ Proposition 1 (ii) ⇒ (2.15).

3) The particle model from Subsection 4.2 requires (2.15) with m = n, where n ≥ 2 (in the

nontrivial case) is the number of particles, since the redistribution measures are not tight.
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Proof. (i) Let x ∈ Dc
δ. From (2.15) we derive that Px(l(δ) > l) ≤ (1 − c1)[ l

m
] as an

application of the strong Markov property to the chain Xl := x(τl), l ≥ 0, which implies

(2.14).

(ii) From tightness and the fact that (D̄δ), δ ↓ 0 is an exhausting sequence of compacts in

D, we have that for any ε > 0 there exists δ > 0 such that νξ(D̄δ) > 1− ε for all ξ ∈ S \D.

We may take any 0 < ε < 1. From Condition 1 (iii) we know that, starting at x ∈ Dc
δ, the

exit time τD, equal to τ1 for (x(t)), is almost surely finite. For x ∈ Dc
δ, we have

(2.16) Px(x(τ1) ∈ D̄δ) ≥ inf
x∈Dcδ

∫
S\D

PDx (x(τD−) ∈ dξ)νξ(D̄δ) > 1− ε > 0 .

This proves that (2.15) is satisfied with m = 1 and c1 = 1− ε. �

By construction, the process x(t) will have redistribution jumps at times (τl)l≥0, starting

with τ1 = τD1 and continuing with τl =
∑

1≤j≤l τ
D
j until the last jump at τl∗ . Recall that if

there is a finite number of jumps, we convene that τl =∞ for all l > l∗. We have to prove

that Px(τ∗ = ∞) = 1 for all x ∈ D. This is the contents of Theorem 1. We start with

a lemma containing the essence of the proof, and useful as an independent result. Recall

α(δ) is the first hitting time of D̄δ by the rebirth process (x(t)) and l(δ) is the number of

jumps before α(δ) (2.13). We note that α(δ) ≥ τ∗ only if α(δ) = +∞.

Lemma 1. Assume Condition 1 is satisfied and Px(α(δ) < τ∗) = 1 for all x ∈ D \ Dδ.

Then the process is non-explosive.

Remark. The statement Px(α(δ) < τ∗) = 1 for all x ∈ D is then immediate.

Proof. In view of the hypothesis, it is sufficient to prove that Px(τ∗ = ∞) = 1 for any

x ∈ D̄δ. Let S < ∞ be a sufficiently large deterministic time; we want to show that

Px(τ∗ ≤ S) = 0. There are two possibilities: Either there are no redistribution jumps at

all, in which case τ∗ =∞, or there exists at least one such jump τ1 <∞ and then we define

α1 = inf{t > τ1 |x(t) ∈ D̄δ}. In this case we notice that since Px(α(δ) < τ∗) = 1 for any x,

then τ∗ > α1 ≥ τ1 = τD with probability one. Put u(S) = supx∈D̄δ Px(τ∗ ≤ S). Applying

the strong Markov property to the stopping time α1, we obtain

Px(τ∗ ≤ S) = Px(τ∗ ≤ S , α1 < τ∗)

≤ Px(τ∗ ≤ S , α1 < S) =

∫ S

0
Px(τ∗ ≤ S |α1 = s)Px(α1 ∈ ds)
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≤
∫ S

0
Ex[Px(s)(τ

∗ ≤ S − s |α1 = s)]Px(α1 ∈ ds) ≤ u(S)Px(α1 ≤ S)

after taking the supremum over x(α1) ∈ D̄δ in the last inequality. The supremum over

x ∈ D̄δ on both sides of the inequality, as well as the fact that α1 ≥ τD give

0 ≥ u(S)(1− sup
x∈D̄δ

Px(α1 ≤ S)) ≥ u(S) inf
x∈D̄δ

Px(τD > S) .

Our claim is proved if we show that for sufficiently large S, infx∈D̄δ Px(τD > S) > 0, which

is guaranteed by Condition 1 (ii). Then we have u(S) = 0 for any S > 0 large enough,

proving the claim. �

Theorem 1. Assume that Conditions 1 and 2 are satisfied for the same δ > 0. Then for

any x ∈ D, we have Px(τ∗ =∞) = 1.

Proof. Condition 1 (i) implies that the sequence (τl)0≤l≤l∗ is strictly increasing almost

surely. Due to Lemma 1, we only have to show that Px(α(δ) < τ∗) = 1 for any x ∈ D. By

construction α(δ) = inf{t ≥ 0 |x(t) ∈ D̄δ}, which means that either α(δ) < τ∗ (if it occurs

in one of the episodes [τl−1, τl), 1 ≤ l ≤ l∗ + 1) or α(δ) = ∞, or equivalently, the process

never enters D̄δ. If x ∈ D̄δ, then α(δ) = 0 < τ∗. Assuming x ∈ Dc
δ, Condition 2 implies

that Px(l(δ) < ∞) = 1, which means that α(δ) ∈ [τl(δ), τl(δ)+1). We proceed to show a

slightly stronger statement than needed, namely that Px(α(δ) <∞) = 1 for all x ∈ Dc
δ.

Let t > 0 and x ∈ Dc
δ. For any l ≥ 1,

(2.17) Px(α(δ) > t) ≤ Px(α(δ) > t , l(δ) ≤ l) + Px(l(δ) > l) ,

(2.18) ≤ Px(τl(δ)+1 > t , l(δ) ≤ l) + Px(l(δ) > l) ,

providing the bound (we recall that τDl = τl − τl−1)

(2.19) Px(α(δ) > t) ≤ (l + 1) sup
x∈Dcδ

Px(τD
c
δ >

t

l + 1
) + Px(l(δ) > l) .

For any small ε > 0, Condition 2 allows us to pick l such that Px(l(δ) > l) < ε. Passing

to the limit over t → ∞ gives that lim supt→∞ Px(α(δ) > t) < ε (using Condition 1(iii)).

Since ε is arbitrary, we conclude that Px(α(δ) < τ∗) = 1. From here on, the theorem is a

consequence of Lemma 1. �

Corollary 1 states that D̄δ is an uniformly accessible set from D.
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Corollary 1. Condition 1 and (2.14) imply that

(2.20) lim
t→∞

sup
x∈D

Px(α(δ) > t) = 0 .

Proof. The proof is given by taking the supremum over x ∈ Dc
δ in lines (2.17)-(2.19) of the

proof of Theorem 1 for Dc
δ and α(δ) = 0 for x ∈ Dδ. �

3. Recurrence and Ergodic properties

We shall say that a Borel set F ∈ B(D) is a small set (or Doeblin set) if there there

exists a time T0 > 0, a probability measure η(dx) on F and a positive constant k0 < 1 such

that for all x ∈ F and all B ∈ B(D), B ⊆ F we have

(3.1) Px(ZT0 ∈ B) ≥ k0η(B) .

A sufficient condition for F to be a small set, when the transition probabilities have

densities, is

(3.2) inf
t≤t′≤2t

inf
y,z∈F

pD(t′, z, y) = b1(t, δ) > 0 .

Condition 3. There exists δ > 0 and a closed set F ⊆ D̄δ with λ(F ) > 0 such that for any

t > 0, condition (3.2) holds.

Let α(F ) = inf{t ≥ 0 |x(t) ∈ F}. We shall say that F is accessible from a set A ⊆ D if

Px(α(F ) < +∞) = 1 and uniformly accessible from a set A ⊆ D if

(3.3) lim
t→∞

sup
x∈A

Px(α(F ) > t) = 0 .

Theorem 2. Suppose Condition 1 and (2.14) are satisfied for the same δ > 0 and F is

a small set with λ(F ) > 0. Then, (i) if F is accessible from D̄δ, then (x(t)) is Harris

recurrent, and (ii) if F is uniformly accessible from D̄δ and satisfies (3.2), then (x(t))t≥0

satisfies the strong Doeblin condition and is uniformly exponentially ergodic.

For the statement in discrete time, the reader is referred to [24], and Theorem 5.3 in [11]

which settles the case of continuous time processes.

Remark. 1) If D is bounded, regular and the diffusion (2.1) has a uniformly elliptic

infinitesimal generator with sufficiently smooth coefficients, then Conditions 1-3 are auto-

matically satisfied with F = D̄δ since pD are continuous in all variables and D̄δ and Dc
δ are

compact.
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2) In addition to the properties from 1), (3.2) is satisfied and stronger, explicit bounds

[10] exist for any t > 0 when D is bounded connected with C1 boundary - see also the

remark following Theorem 4.

3) Conditions 1 and 3 are on the kernel of the killed process pD only and ignore the

redistribution measures (νξ(dx)).

If the set D is bounded, the boundary chain Yl, l ≥ 0 on S \D has at least one invariant

probability measure due to the tightness of any family of measures supported on a compact

set, here equal to ∂D. On the other hand, if µY (dξ) is an invariant measure for (Yl), then

µX(dx) =
∫
∂D νξ(dx)µY (dξ) is invariant for the chain (Xl), which can be used to construct

the invariant measure (3.13) under appropriate conditions.

We shall need the following lemma.

Lemma 2. Assume Conditions 1, 3 as well as Condition 2 are satisfied for the same δ > 0

and the set F in (3.2) is uniformly accessible from D̄δ. Then there exists a time T0 which

may depend on δ, the redistribution measures νξ and a positive constant c such that

(3.4) p(T0, x, y) ≥ c , ∀x ∈ D , ∀y ∈ F .

Moreover, the constant c may be chosen such that c ≥ 1
2b1(T0, δ).

Remark. In most applications we may choose F = D̄δ and (3.3) is no longer needed; for

instance when D is bounded and the underlying process is a sufficiently regular diffusion.

Proof. Theorem 1 shows that Px(x(t) ∈ dy) stochastic, i.e. Px(x(t) ∈ D) = 1 for all x ∈ D,

t ≥ 0. We recall (2.6) which implies immediately

(3.5) p(t, x, y) ≥ pD(t, x, y) .

In view of (2.20), there exists T1 > 0 with supx∈D Px(α(δ) > T1) ≤ 1/4. Also, by (3.3)

there exists T2 such that supx∈D̄δ Px(α(F ) > T2) ≤ 1/4. Let T = T1 + T2, such that

supx∈D Px(α(F ) > T ) ≤ 1
2 . We shall prove the lemma with T0 = 2T .

Due to Condition 3 and (3.5), we see that

(3.6) inf
T≤t′≤2T

inf
y,z∈F

p(t′, z, y) ≥ b1(T, δ) > 0 .

Pick x ∈ D. If x ∈ F , (3.6) implies that any c ≤ b1(T, δ) would satisfy (3.4). Suppose

x ∈ D \ F . Let α(F ) be as in (3.3) with A = Dδ. To prove the lower bound for p(2T, x, y),

12



we start with an analogue of (2.6) with t = 2T . For any Borel set B,

(3.7) Px(x(2T ) ∈ B) ≥ Px(x(2T ) ∈ B,α(F ) ≤ 2T )

which, after applying the Markov property to the stopping time α(F ), implies the inequality

for density functions

(3.8) p(2T, x, y) ≥
∫ 2T

0

∫
F
p(2T − s, z, y)Px(α(F ) ∈ ds, x(α(F )) ∈ dz)

(3.9) ≥
∫ T

0

∫
F
pD(2T − s, z, y)Px(α(F ) ∈ ds, x(α(F )) ∈ dz) .

The inequality is true for the integral on the full interval 0 ≤ s ≤ 2T . In the special case

when 0 ≤ s ≤ T , 2T −s lies in the interval [T, 2T ], making (3.6) applicable to the integrand

p(2T − s, z, y), which gives

(3.10) p(2T, x, y) ≥ b1(T, δ)

∫ T

0
Px(α(F ) ∈ ds, x(α(F )) ∈ F ) ≥ b1(T, δ)Px(α(F ) ≤ T )

(3.11) ≥ b1(T, δ)(1− sup
x∈D

Px(α(F ) > T )) ≥ 1

2
b1(T, δ) .

The last inequality is true due to the construction of T . By choosing c = 1
2b1(T, δ) we

proved the lemma with T0 = 2T . �

3.1. Proof of Theorem 2.

Proof. Let B be a Borel subset of D and let λ(·|F ) be the probability measure defined by

λ(B|F ) = λ(B ∩ F )/λ(F ) where λ is the reference measure defined in the first paragraph

of Section 2.2. Then, for any x ∈ D, according to Lemma 2

p(T0, x,B) ≥ p(T0, x,B ∩ F ) ≥ c λ(B ∩ F ) = c λ(F )λ(B|F ) .

Setting k0 = min{c λ(F ), 1}, we have proven the condition from Doeblin’s theorem is satis-

fied for the Markov process (x(t)) with the same T0 as in Lemma 2 and η(·) = λ(·|F ). �
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3.2. The diffusive case. The invariant measure admits a representation in terms of the

Green function of the underlying process killed at the boundary (x̃(t)) and the invariant

measure of the chain (Xl) defined in (2.3). More precise results can be given case by

case. These results are not specific to diffusion processes but the presentation is more

straightforward.

In the following discussion (xo(t)) is a strongly elliptic diffusion on an open domain

S with smooth, bounded coefficients and generator (L,Do), where Do is a subset of the

continuous functions vanishing at infinity f ∈ C0(S̄) satisfying the appropriate boundary

conditions, written as (BC). We assume (xo(t)) is non-explosive, i.e. Px(xo(t) ∈ S) = 1,

for all x ∈ S. Difusions on bounded sets, or on unbounded sets with drift towards ∂D, as

well as diffusions with reflection at the boundary are natural examples.

Let D ⊂ S be a regular domain. The process killed at ∂D with the same operator L

(3.12) D̃ = {f ∈ C(D̄) ∩ C2(D) | f(ξ) = 0 , ξ ∈ ∂D , (BC)} ,

where the closure is in the relative topology of S ⊆ Rd. Let G(x, x′) be the corresponding

Green function. The harmonic measures (2.2) are then concentrated on ∂D and xo(τD) =

x̃(τD−).

Both references [17, 6] prove that the transition probabilities Px(x(t) ∈ dy) (2.5) have

densities p(t, x, y) for slightly less general redistribution measures (νξ(dx)), but the proofs

can be extended immediately to the present case.

Theorem 3. If the chain (2.3) has an invariant probability measure µX(dx), then the

measure with density

(3.13)
dµ

dx
(x) = Z−1

∫
D
G(x, x′)µX(dx′) , Z =

∫
D
Ex′ [τ

D]µX(dx′)

is invariant for the process (x(t)). When the conditions of Theorem 2 are met and the

underlying process is a regular diffusion, this is the unique invariant measure of the redis-

tribution process.

Proof. The second part of the Theorem is immediate since the invariant probability measure

µ(dx) exists and is unique from the Doeblin’s condition.

With (2.9) in mind, define for g ∈ Cb(∂D) the operator

(3.14) Ǩβg(x) =

∫ ∞
0

∫
∂G
e−βsPx(τD ∈ ds, x(τD−) ∈ dξ)g(ξ) .

14



Writing u(x) = Ǩβg(x) and h(x) =
∫
∂G λ0(x, dξ)g(ξ) = Ǩ0g(x), we obtained two functions

in C(D̄) ∩ C2(D) (due to the boundary regularity), with boundary values given by g and

satisfying the equations (L−β)u = 0, Lh = 0, respectively. The difference u−h belongs to

the domain of the infinitesimal generator D̃ of the killed process (x̃(t)). Then GL(u−h) =

h− u and we have shown that

(3.15) (Ǩ0 − Ǩβ)g = βGǨβg , g ∈ Cb(∂D) .

All these considerations pertain to the underlying process (xo(t)) killed at the boundary.

The operators have no relation to the redistribution measures νξ(dx). For fixed x ∈ D,

their kernels can be seen as measures on ∂G satisfying inequality (3.15). We conclude that

(3.15) is true for all bounded g defined on ∂D.

If f ∈ Cb(D), then g(ξ) =
∫
D f(x′)νξ(dx

′) is a bounded function on ∂D. Applying (3.15)

to g(ξ) and noticing that Ǩ0g = Sf we obtain

(3.16) Sf −Kβf = βGKβf , f ∈ Cb(D) .

Since µX is invariant with respect to S, integrating with respect to µX to the left hand side

we have

(3.17) 〈µX , (I −Kβ)f〉 = β〈µX , GKβf〉 , f ∈ Cb(D) .

We want to show that µ = 〈µX , G〉 is invariant. It is sufficient to show it is invariant for

βRβ. Multiply by β, apply G, then µX to the left in (2.10),

〈µX , G(βRβ)f〉 = β〈µX , GKβRβf〉+ β〈µX , GRDβ f〉 .

Set f → Rβf and use (3.17) to replace the first term on the right hand side by

〈µX , (I −Kβ)Rβf〉 = 〈µX , RDβ f〉 ,

once again due to (2.10). Using the resolvent identity βGRDβ = G − RDβ for the second

term, since G = RD0 , we have shown

〈µX , G(βRβ)f〉 = 〈µX , RDβ f〉+ 〈µX , Gf〉 − 〈µX , RDβ f〉 = 〈µX , Gf〉 .

This proves the invariance of µ. �

The next question is if we can relate the spectral gap of the killed process to the spectral

gap of the jump process (x(t)).
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Theorem 4. Let αD be the spectral gap of the process killed at the boundary ∂D defined

by (2.1). Assume b1(T0, δ) ≥ C1e
−αDT0, with C1 > 0 depending possibly on δ but not on

T0. Under the conditions of Theorem 2, considering δ fixed and T0 as defined in Lemma

2, there exists cD(T0) > 0 depending on the process killed at the boundary and possibly on

νξ(·) via T0 only, such that the convergence rate satisfies the lower bound cD(T0)αD.

Remark. It is known [10] that assuming D is bounded connected with sufficiently smooth

boundary and the diffusion (2.1) has sufficiently smooth coefficients, then the transition

probabilities are bounded smooth functions in (t, x, y) for t > 0, x, y ∈ D with the lower

bound b1(T0, δ) ≥ C1e
−αDT0 .

Proof. We refer to Doeblin’s theorem to see that the exponential rate r ∈ (0, 1) satisfies

− ln r ≥ − 1
T0

ln(1 − k0), with k0 = min{cλ(F ), 1} (proof of Theorem 2) and for b1(t, δ)

defined in (3.2), we have c ≥ 1
2b1(T0, δ) (proof of Lemma 2). Summarizing, there exists

C > 0 such that k0 ≥ Cb1(T0, δ). We note that C and C1 can be chosen independently of

T0, and thus independent of (νξ(·))ξ∈∂D. Since b1(T0, δ) ≥ C1e
−αDT0 , let C2 = CC1. Then

(3.18) − ln r

αD
≥ − 1

αDT0
ln(1− C2e

−αDT0) =: cD(T0) > 0 .

�

4. Applications and Examples

4.1. Brownian motion with rebirth. In the simplest version, the diffusion with jumps

on the connected open set D has a delta function relocation measure νξ(dx) = δx0(dx),

x0 ∈ D [15, 17], constant in ξ ∈ ∂D, νξ(dx) = ν(dx) ∈ M1(D) [5, 6], or with continuous

dependence on the exit point ξ → νξ(·) ∈ M1(D) [6]. In the special case of the delta

measure and bounded D, the process is generated by a Feller semigroup on a compact

manifold where the boundary is glued together with the return point x0 [15, 17]. Other

variants include the case [21] of a domain with piecewise smooth boundary and constant

redistribution measure on each smooth component.

Proposition 2. Consider a regular diffusion as in (2.7). Assuming D is bounded and

the mapping ξ → νξ(dx) is piecewise continuous on ∂D, with each component having a

continuous extension up to its boundary (seen as a subset of ∂D), then all Theorems 1, 2,

3 and 4 are applicable. Moreover, Condition 2 is satisfied with m = 1.
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Remark. 1) One such case is when the components are constant, as in [21]. 2) The

components on the boundary of the domain may conflict at their intersection. However,

this is a set of codimension two, and is a.s. not visited by the diffusion.

Proof. The boundary ∂D is bounded and has a finite number of compact components. On

each, the local definition of νξ(dx) is continuous up to the boundary of the component. A

continuous function sends a compact into a compact, thus each family (νξ(dx)) indexed

over each component of ∂D is tight, implying that the whole family is tight. From here we

use Proposition 1 (ii) to ensure Condition 2. Since Condition 1 is trivially satisfied for a

regular diffusion, Theorem 1 may be applied and the process is non-explosive. Condition 3 is

trivially satisfied by F = D̄δ, allowing us to use Theorem 2. The conditions for Theorems 3

and 4 are met for regular diffusions on a bounded domain with regular boundary, concluding

the proof. �

4.2. Diffusive Bak-Sneppen fitness evolution model. We consider an n particle sys-

tem, a variant to the well known evolution model proposed by Bak and Sneppen in [4].

The particles follow Brownian motions xi(t) for i ∈ {1, 2, · · ·n} in an interval (0, a], a > 0

with reflection at a ∈ R and with 0 considered a boundary point, evolving independently

of each other until the first one reaches 0. Each coordinate xi represents the ‘fitness state’

of the i-th species and has an associated set of neighbors Vi ⊆ {1, 2, . . . , n}, designated by

their indices, such that i ∈ Vi. Whenever one of the fitness levels xi reaches the bound-

ary point zero, all xj with j ∈ Vi are instantaneously replaced by new i.i.d. fitness levels

with distribution function G(x) on the interval (0, a) and the evolution continues afresh.

To fix ideas, we shall assume i → Vi to be deterministic functions and |Vi| ≥ 2, for all

1 ≤ i ≤ n, where |V | is the cardinality of V . It is easy to verify that n = 1 and n ≥ 2 with

|Vi| = 1 are covered in subsection 4.1 since this coincides with Vi = {i} and particles move

independently.

In the framework laid out in the Introduction, the dimension d is equal to the num-

ber of particles n, the vector-valued process xo(t) = {xi(t)}1≤i≤n is a diffusion on S =

(−∞, a]n with reflecting boundary conditions on each component at a, D = (0, a]n and

∂D = ∂(−∞, a]n in Rn. Then x̃(t) is the process killed at the part of the boundary of the

hypercube D containing at least one zero component.
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To be specific, the reflection takes place on the upper hyper-surface U = ∪ni=1Ui where

Ui = {x ∈ D |xi = a , xj 6= a for all j 6= i}. On the other hand, redistribution is triggered

on the lower hyper-surface L = ∪ni=1Li where Li = {x ∈ D |xi = 0 , xj 6= 0 for all j 6= i}.
We note that more than one boundary hits at the same time occur with probability zero

in this setup. When one of the particles hits ∂D = {0}, the redistribution is carried out

through a measure νx(τD−)(dz) where x(τD−) = ξ = (ξ1, . . . , ξn) ∈ L

(4.1) νξ(dz) =
n∑
i=1

1Li(ξ) ·
(
⊗j /∈Vi δξj (dzj)

)
⊗
(
⊗j′∈Vi dG(zi)

)
,

with i in the periodic lattice Zn and δx(·) the delta measure at x.

For any sufficiently small δ > 0 we let

(4.2) Fi = {x ∈ D̄ |
n∑
j=1

1[0,δ)(xj) = i } ,

the set on which there are exactly i coordinates less than δ. We notice that F0 = D̄δ and

∪ni=0Fi = D̄. We shall prove the bound (2.15) with m := n inductively; the set Fn the

worst case scenario and F0 = D̄δ, the set we want to enter almost surely.

Proposition 3. Assume that G is concentrated on (0, a), i.e. G(0+) = 0 and G(a−) = 1.

For all 1 ≤ k ≤ n, there exists a positive real wk such that

(4.3) inf
x∈Fk

Px(x(τD) ∈ Ak−1) ≥ wk , Al = ∪0≤j≤lFj , 0 ≤ l ≤ n .

Remark. Since G is concentrated in (0, a), there exists δ ∈ (0, a) such that G charges

[δ, a], which is equivalent to G(δ) < 1. The key observation is that since the particle hitting

the boundary is for sure in [0, δ) and G charges [δ, a], then with a positive probability

independent of the current configuration, right after the jump there will be at least one

more particle in [δ, a].

Proof. First we note that there exist a positive real vk = vk(δ, a), 0 ≤ k ≤ n, satisfying

(4.4) inf
x∈Fk

Px(x(τD−) ∈ Fk ∩ ∂D) ≥ vk > 0 .

To see that, the harmonic functions u(x) = Px(x(τD−) ∈ Fk∩∂D) have limit one at interior

points of Fk ∩ ∂D and zero at exterior points. Since the boundary function is piecewise

continuous (indicator function), the solution u(x) is equal to its Fourier series and has limit
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1/2 at points of discontinuity of the boundary. Thus over Ak, a compact set, the minimum

is strictly positive.

Following the distribution after the redistribution jump, when x ∈ Fk

(4.5) Px(x(τD) ∈ Ak−1) ≥ inf
x∈Fk

∫
∂D

PDx (x(τD−) ∈ dξ)νξ(Ak−1) ≥ vk inf
ξ∈Fk∩∂D

νξ(Ak−1) .

According to (4.1), ξ ∈ Fk will imply that νξ(Ak−1) ≥ (1 − G(δ))|Vi| for all 1 ≤ k ≤ n.

This is based on the fact that xi = 0 ∈ [0, δ) to begin with, and then the event that all

neighbors Vi go to [δ, a] implies that the number of particles in [0, δ) has diminished by

at least one. Using the fact that G(0+) = 0, G(δ) < 1 and l(V ) = max1≤i≤n |Vi| ≤ n

we proved the lower bound νξ(Ak) ≥ (1 − G(δ))l(V ) > 0, uniformly in k. This proves the

proposition with wk = vk(1−G(δ))l(V ). �

Proposition 4. Under the same assumptions as in Proposition 3, condition (2.15) is sat-

isfied with m = n and c1 = (min{wk})n and Theorems 1, 2, 3 and 4 are in force.

Proof. Put w = min{wk}. Since F0 = D̄δ, it is clear in view of Proposition 3 that if x ∈ Fk,
then Px(x(τk) ∈ D̄δ) ≥ wk, meaning that Px(l(δ) ≤ n) ≥ wk. We only have to choose

m := n and c1 = wn. Once Condition (2.15) is satisfied, Condition 2 is satisfied. The

Brownian motions satisfy Condition 1, 3 so all theorems in Section 2.2 are in force. �

4.3. The FV branching model. In order to concentrate on the idea of the proof, we

adopt the simpler setup of a family of n ≥ 2 independent d - dimensional diffusions xo(t) =

(x1(t), . . . , xn(t)). Each is generated by a second order strongly elliptic operator A with

smooth, bounded coefficients and evolves in a bounded C2 domain G ⊂ Rq. We then set

D = Gn and d = nq and L =
∑n

i=1Axi , where Axi acts on the variable i, meaning that

particles are killed at the boundary and redistributed inside G.

The boundary ∂D is the set of vectors ξ ∈ D̄ with exactly one component in ∂G, desig-

nating the particle ”killed” at the boundary ∂G. Instantaneously, one of the n−1 remaining

particles, chosen with a probability proportional to a function of the configuration, branches

into two independent offsprings. The branching mechanism is meaningful even when more

than one offspring is produced. The standard model is critical with n fixed. It is then more

convenient to think of a pure jump of particle i to the location of particle j, which is a

special case of the type of process studied in this paper.
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Note that the ”edges” K, where at least two components are on the boundary at the

same time, are hit with probability zero. When ξ is an element on ∂D with xi ∈ ∂G \ K,

let ξij ∈ Gn be the vector with the same components as ξ with the exception of ξi which is

replaced by ξj . We shall assume there exist Borel measurable functions ∂D 3 ξ → pij(ξ) ∈
[0, 1], indexed by 1 ≤ i, j ≤ n, i 6= j, such that

∑
j pij(ξ) = 1 and satisfying

(4.6) ∀ξ ∈ ∂D \ K , xi ∈ ∂G ν(ξ, dx) =
∑
j 6=i

pij(ξ)δξij (dx) .

In the uniform distribution case pij = 1/(n− 1).

Non-explosiveness. The only condition for non-explosion on the redistribution measures

(ν(·, dx)) will be that the probability to choose the most distant particle from the boundary

be uniformly bounded away from zero. To make this precise, let r > 0 chosen sufficiently

small such that Gr 6= ∅ and its boundary is smooth.

We assume there exists p0 > 0, independent of ξ ∈ ∂Gn, such that when xi ∈ ∂G and j

is a maximizer of the distance to the boundary, we have the lower bound

(4.7) pij(ξ) ≥ p0 , ξj = max
k 6=i

d(ξk, ∂G) ∧ r .

Since δ ≤ r implies (Gr)
n ⊆ Dδ, we may simply pick δ = r.

A multi-dimensional analogue of Proposition 3 in the Bak-Sneppen fitness model can be

formulated by replacing the interval [0, δ) by Ḡ \ Ḡδ in (4.2).

The system can move form a configuration with a number k (i.e. in Fk) to one with

at most k − 1 particles within distance δ from the boundary (in Ak−1) with a probability

bounded away from zero, uniformly on configuration. The proof has two steps: 1) shows

that starting from a configuration in the interior of Fk, the probability to exit through

Fk ∩ ∂D has a uniform lower bound vk, and 2) once on the boundary of Fk ∩ ∂D, the

probability to be redistributed to a configuration in Ak−1 has a uniform lower bound wk.

Part 1) does not depend on the redistribution mechanism. It can be simplified substan-

tially as we did above in the Bak-Sneppen case, or opt for a slight modification of the claim

for more general domains. The idea is that Fk = Fk(δ) depends on δ. We may prove that

under very general conditions for G and the diffusion coefficients, the passage from Fk(δ)

to Ak−1( δ2) has a uniform lower bound. Since there are a finite number of particles (steps)

the loss in distance to the boundary is not changing the conclusion.
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In the FV case, the step k = n is non-trivial, due to the singularity of the redistribution

measures, i.e. Fn leads to An, and not necessarily to An−1. Particles may stay trapped in

An (all within δ distance form the boundary). More and more degenerate configurations

could form, with particles congregating closer and closer to ∂G. In a cascading effect, it

appears conceivable that infinitely many jumps occur in finite time.

Suppose for a moment that the system has entered An−1. In that case Proposition 3 can

be applied for all 1 ≤ k ≤ n − 1. Part 1) was not a problem in any case, and 2) can be

carried out due to (4.7). We need at least one particle in Gδ to make sure that the particle

killed on ∂G will be redistributed at that location, which increases by one the number of

particles in Gδ and thus moves the configuration to Ak−1.

This discussion shows that once in An−1, the system will enter A0 = Gnδ in a finite

number of steps, with probability one, by using a geometric distribution argument. Let

α′(δ), l′(δ) be the time, respectively the number of jumps until the system enters An−1. In

order to prove Condition 2, which is sufficient for Theorem 1, we have to show that

(4.8) Px(l′(δ) <∞) = 1 .

The greatest effort is to prove the following lemma. Let J(t) be the number of jumps up

to time t.

Lemma 3. For any φ ∈ C(Ḡ), φ positive on G, let Φ(x) =
∑n

i=1 φ
2(xi) and

(4.9) U = inf
ξ∂Gn\K

{∫
D

ln Φ(x)ν(ξ, dx)− ln Φ(ξ)
}
.

There exists φ such that U > 0 and, if we denote M(t) = ln Φ(t)−UJ(t), then for sufficiently

large n, M(t∧α′(δ)) is a Ft sub-martingale. Moreover, Ex[J(t∧α′(δ))] <∞ implying (4.8).

Remark. The dependence on n can be removed but the proof involves another estimate

and another setting up the proof in two stages. The first shows that Ex[α′(δ) ∧ τ∗] <
∞, x ∈ Fn, and the second uses a version of Lemma (3) based on a test function φ

satisfying weaker conditions. The construction can be achieved for Lipschitz domains G

with integrable Martin kernel.

We sketch the proof of the lemma. Let G′ = Gcδ = G\Ḡδ called a vicinity of the boundary.

Let ψ ∈ C(G′) ∩C2(G′) be the solution to Lψ = 0, ψ(x) = 1 on ∂Gδ and ψ(x) = 0 on ∂G.

We then check that φ(x) = ψ2(x) satisfies the following conditions.
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(i) Lφ(x) ≥ 0, (ii) φ(x) > 0 on G′, (iii) φ(x) = 0 on ∂G and (iv) there exists a constant

c2 > 0 such that ||∇φ(x)||2 ≤ c2φ(x) for any x ∈ G′.
The smooth boundary of G ensures that ψ can be chosen continuous up to the boundary

which ensures (iv). For sets with the uniform exterior cone condition, a construction based

on the modulus of continuity up to the boundary can produce the necessary test function.

The logarithm of the radial process r(t) = Φ(x(t)), with Φ(x) =
∑n

i=1 φ
2(xi) will verify

Lemma 3.

Calculating the Ito formula for the Bessel-type process r(t) and then ln r(t), we obtain

that all coefficients are bounded and, for sufficiently large n, the sub-martingale condition

L ln Φ(t) ≥ 0 is satisfied. We recall that L is the n-dimensional generator of the n particle

process. The size of n depends on the eccentricity of the operator. As mentioned in the

remark, this limitation can be removed, but we chose to focus on the idea.

Due to the smoothness ∂G and conditions (i)-(iv), between jumps the terms in the Ito

formula are bounded. Again, under less regularity, the construction can be localized and

produce a local semi-martingale. In our setting, it remains to verify that U > 0 in (4.9).

Due to (4.7), when particle i hits the boundary and j 6= i is the maximizer of the distance

to ∂G, we have the non-random lower bound∫
GN

ln Φ(x)νξ(dx)− ln Φ(ξ) = p0 ln
(

1 +
φ2(xj)∑
k 6=i φ

2(xk)

)
≥ p0 ln(

n

n− 1
) > 0 .

It follows that

(4.10) Ex[J(t ∧ α′(δ))] ≤ U−1Ex

[
ln

Φ(t ∧ α′(δ))
Φ(0)

]
< +∞ .

This formula proves that the number of jumps until hitting ∂G′ (exiting the vicinity of the

boundary) is finite with probability one.

Since the boundary hits can be totally ordered in a sequence almost surely, the system

must hit Fn−1 = Gn \ (G′)n and thus Dδ.

Uniqueness of the invariant measure. A straightforward coupling argument proves that

the process will access with probability one the set D̄δ. Denoting y(t) = φ(xi(t)) for one

generic index i, we see that between jumps the process (y(t)) is a continuous semi-martingale

with bounded coefficients in its differential formula. By construction, 0 ≤ y(t) ≤ 1. We

know that 0 < y(t) except at jump times (technically it is at y(t−)) and from the maximum

principle for φ, y(t) < 1 as long as xi(t) does not enter Ḡδ. Jumps occur only in the positive
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direction. This implies that a diffusion with the same coefficients (these are continuous and

adapted to the original driving process, and the diffusion matrix remains strongly elliptic)

having all jumps suppressed will be pathwise dominated by y(t). The probability that a

diffusion on (−∞, 1) hits the right side endpoint is positive, as long as the drift is bounded.

This proves that xi(t) enters Ḡδ, and as described in the proof of non-explosiveness, then all

particles will eventually enter Ḡδ, and thus the n-dimensional process will enter D̄δ. Any

compact in D is a small set due to (3.5). The estimate on the hitting time of the ineterior

set can be made uniform as long as the initial point belongs to a compact set. Exponential

ergodicity follows from the local Doeblin theorem.

Relation to quasi-invariant measures. Let pG(t, x′, x)dx be (2.1) for the one particle

process with generator L on G (the driving process), L∗ be its adjoint operator.

Between jumps, the corresponding FV n-particle system is non-interacting. The only

times particles ”see” each other are when one hits ∂G, via redistribution. Suppose νξ(dx)

are given by the uniform distribution among the n − 1 particles which are not at the

boundary. It is intuitively clear that the correlation introduced this way are of the same

scale (with respect to n) as to allow a weak law of large numbers. Let Jn(t) be the number

of jumps up to time t > 0, where we introduced the subscript n to emphasize the scaling

variable.

Let µn(t, dx) = 1
n

∑n
i=1 δxi(t)(dx) be the empirical measure associated with the sys-

tem. Evidently µn(dx) ∈ M1(G) is a probability measure on G. In [16] we prove that if

limn→∞ µ
n(0, dx) converges weakly to µ0(dx) = v0(x)dx, then as n→∞,

1) t −→ exp{−Jn(t)}µn(t, dx), t ≥ 0 is a tight measure - valued process converging

in probability (in the weak topology of probability measures, i.e. as integrals against

test functions) to the deterministic, unique smooth solution of the forward heat equation

v(t, x)dx with zero boundary conditions, ∂tv = L∗v, v|∂G = 0, v(0, x) = v0(x), i.e.

v(t, x) =

∫
G
pG(t, x′, x)µ0(dx′) = pG(t, µ0, x)

and

2) exp{−Jn(t)} converges to the normalizing factor∫
G
v(t, x)dx = pG(t, µ0, G) = Pµ0(τG > t) .
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As a consequence we have the hydrodynamic limit

(4.11) lim
n→∞

µn(t, dx) = u(t, x)dx , u(t, x) =
pG(t, µ0, x)

pG(t, µ0, G)
.

On one hand, as t → ∞, µn(t, dx) converges to the empirical measure under the equi-

librium (stationary) measure of the n-particle FV system from (3.13). On the other hand,

the limit in t for the right hand side of (4.11) is the Yaglom limit of the diffusion killed on

the boundary. This limit, when it exists, is a quasi-stationary distribution.

For Brownian motions L = L∗ = 1
2∆ and the Yaglom limit is the normalized first

eigenfunction of L with zero boundary conditions. It is apparent that by following the

same route

FV Particle system → hydrodynamic limit → limit in t → Yaglom limit

we should be able to obtain the quasi-stationary measure (left-eigenfunction) in cases when

it is not known apriori. The following conjecture is natural.

Under its equilibrium distribution, the empirical measure of the n particle FV system is

tight and, as n→∞, converges to the Yaglom limit of the kernel pG.

Since the equilibrium measure is not a product measure, and (3.13) is is not a readily

computable formula, the question remains open in general.
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