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Abstract. We prove non-explosiveness and a lower bound of the spectral gap via the

strong Doeblin condition for a large class of stochastic processes evolving in the inte-

rior of a region D ⊆ Rd with boundary ∂D according to an underlying Markov process

with transition probabilities p(t, x, dy), undergoing jumps to a random point x in D with

distribution νξ(dx) as soon as they reach a boundary point ξ. Besides usual regularity

conditions on p(t, x, dy), we require a tightness condition on the family of measures νξ,

preventing mass from escaping to the boundary. The setup can be applied to a multitude

of models considered recently, including a particle system with the Bak-Sneppen dynamics

from evolutionary biology.

1. Introduction

Let S ⊆ Rd be a closed set, (Ω, (Ft),F , P ) a filtered probability space and (xo(t)), t ≥ 0

a Markov process on S, adapted to (Ft)t≥0. The usual conditions will be assumed without

loss of generality, i.e. the filtration is P - complete and right-continuous. For example,

S is the closure of an open set and (xo(t)) is a diffusion with the appropriate boundary

conditions. Alternatively, S may be a countable set (e.g. a subset of Zd). In addition, D

will be an open connected set in the topology induced on S and ∂D its boundary. Besides

(xo(t)), two more processes will be considered: the process killed at the boundary (x̃(t))

and the derived jump process (x(t)).
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In the present construction, the underlying process (xo(t)) does not need be a diffusion.

However, it is assumed stochastic (honest), i.e. Px(xo(t) ∈ S) = 1 for any x ∈ S, t ≥ 0.

Some results, as Theorem
tnon
1 and

T:do
2 are general, while the other two, Theorems

C:do
3 and

cor-1
4,

are formulated for diffusions. For the pure jump process on a discrete set D we adopt the

discrete topology.

Let τD = inf{t > 0 |xo(t) ∈ ∂D} be the first hitting time of the boundary ∂D by

the underlying process. Since D is allowed to be infinite, even a very regular D may see

the possibility that Px(τD = ∞) > 0 for some x ∈ D. However, we assume that no

instantaneous jumps are allowed from inside D, i.e. Px(τD > 0) = 1. We further denote by

PD(t, x, dy) the transition probabilities of (x̃(t))t≥0, the process killed at the boundary ∂D

pd (1.1) PD(t, x, dy) = Px(xo(t) ∈ dy , τD > t) , ∀x ∈ D

and by (PD
x )x∈D its law when starting at x. In the following λ(B) will be a reference

measure (Lebesgue measure when xo(t) is a diffusion) of a Borel set B ⊆ Rd and we

shall assume they have densities PD(t, x, dy) = pD(t, x, y)dy, where we use the notation

λ(dy) = dy for simplification. Additionally, the harmonic measures will be denoted by

λ0(x, dξ) = Px(x̃(τD−) ∈ dξ), ξ ∈ ∂D.

For any ξ ∈ ∂D we have a probability measure νξ(dx) on D such that ξ → νξ(dx) is

measurable, where ∂D 3 ξ is endowed with the Borel σ - algebra induced as a subspace in

Rd and MF (D) 3 νξ(dx) with the Borel sets of the topology of convergence in distribution.

Here MF (X), M1(X) denote the space of finite, respectively probability measures on the

Polish space X.

We shall construct a Markov process (x(t))t≥0 on D with jumps at the boundary, based

on an infinite collection (x̃l(t))l≥1 of independent processes with laws PD· for each l ≥ 1.

For each of these processes, denote τD
l the first hitting time of the boundary. Set τ0 = 0.

Then, for any x ∈ D, define x(t) = x̃1(t) on t ∈ [0, τD
1 ). If τD

1 = ∞, we put l∗ = 0, where l∗

denotes the total number of jumps, and we are done. If not, we continue. When x(t) reaches

the boundary at ξ1 = x̃(τD
1 −), it instantaneously jumps to a random point x1, independent

of the process, with probability distribution νξ(dx1) and we update τ1 := τD
1 . The process

continues as x(t) = x̃2(t − τD
1 ) on the time interval τD

1 ≤ t < τD
1 + τD

2 , where x̃2(·) has

law PD
x1

. Unless τD
2 = ∞, in which case we have l∗ = 1, upon reaching the boundary, we

set τ2 := τ1 + τD
2 and the we continue inductively for all l ≥ 1. If the total number of
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jumps l∗ is finite, we set τl = ∞ for all l > l∗. By construction, the sequence (τl)0≤l≤l∗

is strictly increasing almost surely (Condition
c00
1 (i)). We denote τ∗ = liml→∞ τl ≤ ∞.

Theorem
tnon
1 proves that under some additional conditions the process (x(t)) is non-explosive,

or equivalently Px(τ∗ = ∞) = 1, implying that the transition probabilities are stochastic.

We give a brief outline of the paper. The results are described in the next section, where

we give general conditions for both non-explosiveness (Theorem
tnon
1, with proof in Section

S:2
3)

and geometric ergodicity (Theorem
T:do
2, with proof in Section

S:ee
4) for (x(t)). The two theorems

are our main results in general setting. Theorem
C:do
3 introduces an explicit formula for the

invariant measure and Theorem
cor-1
4 gives a lower bound of the spectral gap in terms of the

spectral gap of the process (x̃(t)) killed at the boundary. Their proofs are left to Section
S:ee
4.

Subsection
S:bmab
5.1 generalizes a class of models studied recently

BAP1, BAP2, GK1, GK3, E, WLi1, Uwe
[2, 3, 9, 11, 13, 14, 15] by

identifying a unifying condition (
ec1
2.3) which guarantees existence (non-explosiveness) and

convergence to equilibrium, providing the motivation for this paper. These results are based

on the Doeblin condition; they actually constitute good examples of a relative advantage

of probabilistic methods over their analytic counterparts
GK1, GK3, BAP2, Uwe
[9, 11, 3, 15].

The interest in the problem stems from a multitude of applications, for example in

barrier options pricing theory
GK1, Shreve
[9, 17], but also in particle systems. A new such example

is described in Subsection
s:bksn
5.2 where we prove that a Bak-Sneppen type of interaction

fits in this framework. Most interesting features of this model from evolutionary biology

are observed in equilibrium (self-organizing criticality) but the relevant literature mostly

concentrates on Markov chain simulation, which assumes a fast rate of convergence to

equilibrium. The present result appears to be the only formal proof of geometric ergodicity

in any variant of the model except the finite state discrete version, where it is trivial.

Here the particles (fitness levels) are diffusing while confined to a finite interval (0, a), with

reflection at the upper end and jumps at the lower end. With minor changes, one can

consider diffusions with negative drift on the positive half-line.

Finally, the construction (but not the proof) presented here includes a particle system

with Fleming-Viot branching mechanism studied in
BHM, GK2, Uwe
[4, 10, 15] for Brownian motions, and

in
FerrariMaric
[8] in a discrete setting (where the existence of a quasi-stationary measure is obtained

from the empirical measures). In this model the redistribution probability νξ(dx) sends a

particle reaching the boundary to one of the locations of the remaining particles chosen at
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random. This process satisfies Condition
c1
2 (i) but the proof is more elaborate and is left

to an upcoming paper
GKimm
[12].

2. Results
S:res

In the following δ > 0 and Dδ = {x ∈ D | d(x, ∂D) > δ} is an open subset of D with

distance at least δ from the boundary ∂D. In the countable state space case, Dδ = D is a

valid choice. For δ > 0, we shall use the notation Dc
δ = D \Dδ and τDc

δ for the first hitting

time of the boundary of Dc
δ.

c00 Condition 1. For any sufficiently small δ > 0 we have the properties:

(i) For any x ∈ D, t > 0, PD
x (τD > 0) = 1 and PD

x (τD > t) > 0;

(ii) for any t > 0, infx∈D̄δ
PD

x (τD > t) > 0, and

(iii) limt→∞ supx∈Dc
δ
PD

x (τDc
δ > t) = 0.

Remark. Condition (i) is immediate if we assume that the densities of (
pd
1.1) are positive.

In the case of regular diffusions on smooth domains Condition
c00
1 is easily satisfied.

Given a δ > 0, we denote by α(δ) = inf{t ≥ 0 |x(t) ∈ D̄δ}, the first hitting time of

D̄δ by the process (x(t)), and α(δ) = ∞ if the infimum is over the empty set. We define

l(δ) = max{l ≥ 0 | τl ≤ α(δ)}, equal to infinity if (x(t)) never reaches D̄δ; in general, l(δ) is

not a stopping time.

c1 Condition 2. (i) There exists δ > 0 such that Px(l(δ) < ∞) = 1.

(ii) The condition (i) is uniform in x ∈ Dc
δ, i.e.

0ec1 (2.1) lim
l→∞

sup
x∈Dc

δ

Px(l(δ) > l) = 0 .

A useful way of looking at (
0ec1
2.1) is to observe that Xl := x(τl), 0 ≤ l ≤ l∗ is a Markov

chain with state space D and transition probabilities

X (2.2) S(x, dy) =
∫

D
Px(x(τD−) ∈ dξ)νξ(dy) =

∫

D
λ0(x, dξ)νξ(dy) .

We note that S(x,D) = 1 without any assumption on νξ, thus (Xl) is well defined for any

l ≤ l∗. Even when l∗ = ∞, it is nontrivial to show that (x(t)) is non-explosive since (Xl)

may not be tight in D. In other words, if the chain migrates towards the boundary, the

duration τl − τl−1 of an episode between boundary visits diminishes with the possibility

that τ∗ < ∞.
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0p1 Proposition 1. Condition
c1
2 is satisfied if there exists a positive integer m and a positive

real constant c1 such that

ec1 (2.3) inf
x∈Dc

δ

Px(l(δ) ≤ m) ≥ c1 > 0 .

Remark. 1) If x ∈ D̄δ, then (
ec1
2.3) is trivially satisfied with m = 0 and any constant c1 ≤ 1,

which implies that (
ec1
2.3) can be immediately extended to all x ∈ D.

2) A sufficient condition for (
ec1
2.3) is that νξ(D̄δ) be bounded away from zero, uniformly in

ξ ∈ ∂D, as in (
ec2
5.1). This corresponds to m = 1 in (

ec1
2.3) and works for all the applications

discussed in Subsection
S:bmab
5.1. The particle model from Subsection

s:bksn
5.2 requires (

ec1
2.3) with

m = n, where n ≥ 2 (in the nontrivial case) is the number of particles. To summarize, (
ec2
5.1)

⇒ (
ec1
2.3) ⇒ (

0ec1
2.1).

Proof. Let x ∈ Dc
δ. From (

ec1
2.3) we derive that Px(l(δ) > l) ≤ (1− c1)[

l
m

] as an application

of the strong Markov property to the chain Xl := x(τl), l ≥ 0, which implies (
0ec1
2.1). ¤

We may state our first result, with proof given in Section
S:2
3.

tnon Theorem 1. Assume that Conditions
c00
1 and

c1
2 (i) are satisfied for the same δ > 0. Then

for any x ∈ D, we have Px(τ∗ = ∞) = 1.

We state the strong Doeblin condition, that ensures uniform exponential ergodicity. For

the statement in discrete time, the reader is referred to
M-T
[16], and Theorem 5.3 in

D-M-T
[6] which

settles the case of continuous time processes.

Doeblin’s Theorem. Let X be a locally compact metric space and Zt, t ≥ 0 a con-

tinuous time Markov process with state space X. Assume there exists a time T0 > 0, a

probability measure η(dx) on X and a positive constant k0 < 1 such that for all x ∈ X

and all B ∈ B(X) we have Px(ZT0 ∈ B) ≥ k0η(B). Then, (i) the process has an invariant

probability measure µ(dx) and there exist positive constants C and r < 1, independent of

x, such that

e:doe (2.4) ||Px(Zt ∈ ·)− µ(·)|| ≤ Crt ,

where || · || denotes the total variation norm on the space of finite measures and (ii) the

convergence rate satisfies r ≤ (1− k0)
1

T0 .

An interesting observation is that a second Markov chain Yl, l ≥ 0 on ∂D can be defined

with transition probabilities P (Y1 ∈ dξ′ |Y0 = ξ) =
∫
D νξ(dx)λ0(x, dξ′). If the set D is
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bounded, the chain has at least one invariant probability measure due to the tightness of

any family of measures supported on a compact set. On the other hand, if µY (dξ) is an

invariant measure for (Yl), then µX(dx) =
∫
∂D νξ(dx)µY (dξ) is invariant for the chain (Xl),

which can be used to construct the invariant measure (
mu
2.9) under appropriate conditions.

To establish exponential ergodicity of the process (x(t)) we shall make an additional

assumption, natural when D is bounded (which we don’t require). Let α(F ) = inf{t ≥
0 |x(t) ∈ F}. We shall say that F is uniformly accessible from a set A ⊆ D if

ec4 (2.5) lim
t→∞ sup

x∈A
Px(α(F ) > t) = 0 .

c0 Condition 3. There exists δ > 0 and a closed set F ⊆ D̄δ with λ(F ) > 0 such that for any

t > 0

ec0 (2.6) inf
t≤t′≤2t

inf
y,z∈F

pD(t′, z, y) = b1(t, δ) > 0 .

Remark. 1) If D is bounded, regular and the diffusion (
pd
1.1) has a uniformly elliptic

infinitesimal generator with sufficiently smooth coefficients, then Conditions
c00
1-

c0
3 are auto-

matically satisfied with F = D̄δ since pD are continuous in all variables and D̄δ and Dc
δ are

compact.

2) In addition to the properties from 1), (
ec0
2.6) is satisfied and stronger, explicit bounds

Da
[5]

exist for any t > 0 when D is bounded connected with C1 boundary - see also the remark

following Theorem
cor-1
4.

3) Conditions
c00
1 and

c0
3 are on the kernel of the killed process pD only and ignore the

jumps at the boundary. Condition
c00
1 is required for non-explosiveness while Condition

c0
3 is

required for the Doeblin condition, that is, for ergodicity.

The proof of the following theorem is given in Section
S:ee
4.

T:do Theorem 2. Suppose Conditions
c00
1,

c1
2 and

c0
3 satisfied for the same δ > 0 and the set F

in Condition
c0
3 is uniformly accessible from D̄δ in the sense of (

ec4
2.5). Then the process

(x(t))t≥0 is uniformly exponentially ergodic.

In many cases, the invariant measure admits a representation in terms of the Green

function of the underlying process killed at the boundary (x̃(t)) and the invariant measure

of the chain (Xl) defined in (
X
2.2). More precise results can be given case by case. We make

a few supplementary assumptions in order to formulate this rigorously.
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In the following discussion, preparing for Theorems
C:do
3 and

cor-1
4, D will be a regular bounded

domain. We shall denote by (L,Do) the infinitesimal generator of the diffusion (xo(t)),

where L is a second-order uniformly elliptic differential operator with uniformly bounded

smooth coefficients and the domain Do ⊆ Cb(S) is the set of bounded, twice differen-

tiable functions with continuous derivatives up to ∂S with some set of boundary conditions

compatible with Conditions
c00
1 and

c0
3. In that case the underlying process (xo(t)) is said

regular. Then, the process (x̃(t)) has an infinitesimal generator with the same operator L

and domain

dgen (2.7) D̃ = {f ∈ Do | f(ξ) = 0 , ξ ∈ ∂D} .

Let G(x, x′) be the corresponding Green function. By construction, the process (x(t)) has

infinitesimal generator with operator L acting on the domain

gen (2.8) D = {f ∈ Do | f(ξ) =
∫

D
f(y)νξ(dy) , ξ ∈ ∂D} .

C:do Theorem 3. If, in addition to the conditions of Theorem
T:do
2 the underlying process is a

regular diffusion and the chain (
X
2.2) has an invariant probability measure µX(dx), then

the invariant probability measure µ(dx) of the process (x(t)) is absolutely continuous with

respect to the Lebesgue measure λ(dx) = dx with density

mu (2.9)
dµ

dx
(x) = Z−1

∫

D
G(x, x′)µX(dx′) , Z =

∫

D
Ex′ [τD]µX(dx′) ,

where Z is the normalizing constant.

To better understand (
mu
2.9), it is useful to calculate the resolvent

Rβ(x, y) =
∫ ∞

0
e−βtp(t, x, y)dt , β > 0

of the transition semigroup p(t, x, dy) of the process (x(t)). One can establish
GK3,BAP2
[11, 3] that

Px(x(t) ∈ dy) have densities p(t, x, y). They satisfy

1 (2.10) p(t, x, y) = pD(t, x, y) +
∫ t

0

∫

D
p(t− s, x′, y)

∫

∂D
Px(τD ∈ ds, x(τD−) ∈ dξ)νξ(dx′) .

Applying the Laplace transform we see that the kernel of the resolvent verifies

r-01 (2.11) Rβ(x, y) = RD
β (x, y) +

∫

D
Kβ(x, dx′)Rβ(x′, y)
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where

r-02 (2.12) Kβ(x, dx′) =
∫ ∞

0
e−βsPx(τD ∈ ds, x(τD−) ∈ dξ)νξ(dx′) .

With a minor abuse of notation between the operator Kβ on Cb(D̄) and its kernel we have

r-03 (2.13) (I −Kβ)Rβ = RD
β , Rβ = (I −Kβ)−1RD

β ,

where the second equality is formal. The existence conditions of the inverse are difficult

to establish directly. However, one can see that the density of the invariant measure from

(
mu
2.9) is (again formally) obtained as

r-04 (2.14) lim
β→0

βRβ(x, y) = lim
β→0

∫

D
(
I −Kβ

β
)−1(x, dx′)RD

β (x′, y) = Z−1

∫

D
G(x′, y)µX(dx′)

since

r-05 (2.15) lim
β→0

RD
β (x′, y) = G(x′, y) , µX(dx′) = Z lim

β→0
(
I −Kβ

β
)−1(x, dx′) .

Intuitively, Kβ is the transition function of the interior resolvent chain (
X
2.2) and Z ac-

counts for the average duration of a trip to the boundary in equilibrium. Under stronger

assumptions, the spectral gap is calculated in
GK1,GK3
[9, 11] when the inverse Laplace transform is

obtainable. We shall not pursue this venue in this paper.

The next question is if we can relate the spectral gap of the killed process to the spectral

gap of the jump process (x(t)). The following result is proven in Section
S:ee
4.

cor-1 Theorem 4. Let αD be the spectral gap of the process killed at the boundary ∂D defined

by (
pd
1.1). Assume b1(T0, δ) ≥ C1e

−αDT0, with C1 > 0 depending possibly on δ but not on

T0. Under the conditions of Theorem
T:do
2, considering δ fixed and T0 as defined in Lemma

l1
2, there exists cD(T0) > 0 depending on the process killed at the boundary and possibly on

νξ(·) via T0 only, such that the convergence rate from (
e:doe
2.4) satisfies − ln r ≥ cD(T0)αD.

Remark. It is known
Da
[5] that assuming D is bounded connected with sufficiently smooth

boundary and the diffusion (
pd
1.1) has sufficiently smooth coefficients, then the transition

probabilities are bounded smooth functions in (t, x, y) for t > 0, x, y ∈ D with the lower

bound b1(T0, δ) ≥ C1e
−αDT0 .

8



3. Proof of non-explosiveness
S:2

By construction, the process x(t) will have a boundary jump at times (τl)l≥0, starting

with τ1 = τD
1 and continuing with τl =

∑
1≤j≤l τ

D
j until the last jump at τl∗ . Recall that

if there is a finite number of jumps, we convene that τl = ∞ for all l > l∗. We have

to prove that Px(τ∗ = ∞) = 1 for all x ∈ D, or equivalently, that x(t) is non-explosive.

This is the contents of Theorem
tnon
1. We start with a lemma containing the essence of the

proof, and useful as an independent result. Recall α(δ) is the first hitting time of D̄δ by

the jump-process (x(t)) and l(δ) is the number of jumps before α(δ) (defined right before

Condition
c1
2). We note that α(δ) ≥ τ∗ only if α(δ) = +∞.

lnon Lemma 1. Assume Condition
c00
1 is satisfied and Px(α(δ) < τ∗) = 1 for all x ∈ D \ Dδ.

Then the process is non-explosive.

Remark. The statement Px(α(δ) < τ∗) = 1 for all x ∈ D is then immediate.

Proof. In view of the hypothesis, it is sufficient to prove that Px(τ∗ = ∞) = 1 for any

x ∈ D̄δ. Let S < ∞ be a sufficiently large deterministic time; we want to show that

Px(τ∗ ≤ S) = 0. There are two possibilities: Either there are no jumps at all, in which

case τ∗ = ∞, or there exists at least one jump τ1 < ∞ and then we define α1 = inf{t >

τ1 |x(t) ∈ D̄δ}. In this case we notice that since Px(α(δ) < τ∗) = 1 for any x, then

τ∗ > α1 ≥ τ1 = τD with probability one. Put u(S) = supx∈D̄δ
Px(τ∗ ≤ S). Applying the

strong Markov property to the stopping time α1, we obtain

Px(τ∗ ≤ S) = Px(τ∗ ≤ S , α1 < τ∗)

≤ Px(τ∗ ≤ S , α1 < S) =
∫ S

0
Px(τ∗ ≤ S |α1 = s)Px(α1 ∈ ds)

≤
∫ S

0
Ex[Px(s)(τ

∗ ≤ S − s |α1 = s)]Px(α1 ∈ ds) ≤ u(S)Px(α1 ≤ S)

after taking the supremum over x(α1) ∈ D̄δ in the last inequality. The supremum over

x ∈ D̄δ on both sides of the inequality, as well as the fact that α1 ≥ τD give

0 ≥ u(S)(1− sup
x∈D̄δ

Px(α1 ≤ S)) ≥ u(S) inf
x∈D̄δ

Px(τD > S) .

Our claim is proved if we show that for sufficiently large S, infx∈D̄δ
Px(τD > S) > 0, which

is guaranteed by Condition
c00
1 (ii). Then we have u(S) = 0 for any S > 0 large enough,

proving the claim. ¤
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3.1. Proof of Theorem
tnon
1.

Proof. Condition
c00
1 (i) implies that the sequence (τl)0≤l≤l∗ is strictly increasing almost

surely. Due to Lemma
lnon
1, we only have to show that Px(α(δ) < τ∗) = 1 for any x ∈ D. By

construction α(δ) = inf{t ≥ 0 |x(t) ∈ D̄δ}, which means that either α(δ) < τ∗ (if it occurs

in one of the episodes [τl−1, τl), 1 ≤ l ≤ l∗ + 1) or α(δ) = ∞, or equivalently, the process

never enters D̄δ. If x ∈ D̄δ, then α(δ) = 0 < τ∗. Assuming x ∈ Dc
δ, (

0ec1
2.1) implies that

Px(l(δ) < ∞) = 1, which means that α(δ) ∈ [τl(δ), τl(δ)+1). We proceed to show a slightly

stronger statement than needed, namely that Px(α(δ) < ∞) = 1 for all x ∈ Dc
δ.

Let t > 0 and x ∈ Dc
δ. For any l ≥ 1,

03 (3.1) Px(α(δ) > t) ≤ Px(α(δ) > t , l(δ) ≤ l) + Px(l(δ) > l) ,

030 (3.2) ≤ Px(τl(δ)+1 > t , l(δ) ≤ l) + Px(l(δ) > l) ,

providing the bound (we recall that τD
l = τl − τl−1)

03-2 (3.3) Px(α(δ) > t) ≤ (l + 1) sup
x∈Dc

δ

Px(τDc
δ >

t

l + 1
) + Px(l(δ) > l) .

For any small ε > 0, Condition
c1
2 allows us to pick l such that Px(l(δ) > l) < ε. Passing

to the limit over t → ∞ gives that lim supt→∞ Px(α(δ) > t) < ε (using Condition
c00
1(iii)).

Since ε is arbitrary, we conclude that Px(α(δ) < τ∗) = 1. From here on, the theorem is a

consequence of Lemma
lnon
1. ¤

Corollary
cnon
1 states that D̄δ is an uniformly accessible set from D.

cnon Corollary 1. Conditions
c00
1 and

c1
2 imply that

ec100 (3.4) lim
t→∞ sup

x∈D
Px(α(δ) > t) = 0 .

Proof. The proof is given by taking the supremum over x ∈ Dc
δ in lines (

03
3.1)-(

03-2
3.3) of the

proof of Theorem
tnon
1 for Dc

δ and α(δ) = 0 for x ∈ Dδ. ¤

4. Proof of exponential ergodicity.
S:ee

We shall need the following lemma.
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l1 Lemma 2. Assume Conditions
c00
1,

c0
3 as well as Condition

c1
2 are satisfied for the same δ > 0

and the set F in (
ec0
2.6) is uniformly accessible from D̄δ. Then there exists a time T0 which

may depend on δ, the redistribution measures νξ and a positive constant c such that

el1 (4.1) p(T0, x, y) ≥ c , ∀x ∈ D , ∀y ∈ F .

Moreover, the constant c may be chosen such that c ≥ 1
2b1(T0, δ).

Remark. In most applications we may choose F = D̄δ and (
ec4
2.5) is no longer needed; for

instance when D is bounded and the underlying process is a sufficiently regular diffusion.

Proof. Theorem
tnon
1 shows that Px(x(t) ∈ dy) stochastic, i.e. Px(x(t) ∈ D) = 1 for all x ∈ D,

t ≥ 0. We recall (
1
2.10) which implies immediately

1-00 (4.2) p(t, x, y) ≥ pD(t, x, y) .

In view of (
ec100
3.4), there exists T1 > 0 with supx∈D Px(α(δ) > T1) ≤ 1/4. Also, by (

ec4
2.5)

there exists T2 such that supx∈D̄δ
Px(α(F ) > T2) ≤ 1/4. Let T = T1 + T2, such that

supx∈D Px(α(F ) > T ) ≤ 1
2 . We shall prove the lemma with T0 = 2T .

Due to Condition
c0
3 and (

1-00
4.2), we see that

2 (4.3) inf
T≤t′≤2T

inf
y,z∈F

p(t′, z, y) ≥ b1(T, δ) > 0 .

Pick x ∈ D. If x ∈ F , (
2
4.3) implies that any c ≤ b1(T, δ) would satisfy (

el1
4.1). Suppose

x ∈ D \ F . Let α(F ) be as in (
ec4
2.5) with A = Dδ. To prove the lower bound for p(2T, x, y),

we start with an analogue of (
1
2.10) with t = 2T . For any Borel set B,

1-010 (4.4) Px(x(2T ) ∈ B) ≥ Px(x(2T ) ∈ B,α(F ) ≤ 2T )

which, after applying the Markov property to the stopping time α(F ), implies the inequality

for density functions

1-01 (4.5) p(2T, x, y) ≥
∫ 2T

0

∫

F
p(2T − s, z, y)Px(α(F ) ∈ ds, x(α(F )) ∈ dz)

1-02 (4.6) ≥
∫ T

0

∫

F
pD(2T − s, z, y)Px(α(F ) ∈ ds, x(α(F )) ∈ dz) .

11



The inequality is true for the integral on the full interval 0 ≤ s ≤ 2T . In the special case

when 0 ≤ s ≤ T , 2T −s lies in the interval [T, 2T ], making (
2
4.3) applicable to the integrand

p(2T − s, z, y), which gives

3 (4.7) p(2T, x, y) ≥ b1(T, δ)
∫ T

0
Px(α(F ) ∈ ds, x(α(F )) ∈ F ) ≥ b1(T, δ)Px(α(F ) ≤ T )

3-10 (4.8) ≥ b1(T, δ)(1− sup
x∈D

Px(α(F ) > T )) ≥ 1
2
b1(T, δ) .

The last inequality is true due to the construction of T . By choosing c = 1
2b1(T, δ) we

proved the lemma with T0 = 2T . ¤

Lemma
l1
2 leads to our second result.

4.1. Proof of Theorem
T:do
2.

Proof. Let B be a Borel subset of D and let λ(·|F ) be the probability measure defined by

λ(B|F ) = λ(B ∩F )/λ(F ) where λ is the reference measure defined right after (
pd
1.1). Then,

for any x ∈ D, according to Lemma
l1
2

p(T0, x, B) ≥ p(T0, x, B ∩ F ) ≥ c λ(B ∩ F ) = c λ(F ) λ(B|F ) .

Setting k0 = min{c λ(F ), 1}, we have proven the condition from Doeblin’s theorem is satis-

fied for the Markov process (x(t)) with the same T0 as in Lemma
l1
2 and η(·) = λ(·|F ). ¤

4.2. Proof of Theorem
C:do
3.

Proof. The invariant probability measure µ(dx) exists and is unique from the Doeblin’s

condition. We want to show that if f ∈ D

1mu (4.9)
∫

D

(∫

D
G(x, x′)µX(dx′)

)
Lf(x)dx = 0 .

The operator G commutes with L on the domain D̃. Let g(x) =
∫
∂D f(ξ)λ0(x, dξ) be the

solution to Lg = 0, g(ξ) = f(ξ) for all ξ ∈ ∂G. Then f − g ∈ D̃ and we have

2mu (4.10)
∫

D

(∫

D
G(x, x′)µX(dx′)

)
Lf(x)dx =

∫

D

(∫

D
G(x, x′)µX(dx′)

)
L(f(x)− g(x))dx

3mu (4.11) =
∫

D
µX(dx′)L

(∫

D
G(x, x′)(f(x)− g(x))

)
dx =

∫

D
µX(dx′)

(
g(x′)− f(x′)

)

4mu (4.12) =
∫

D
µX(dx′)

∫

∂D
λ0(x′, dξ)

∫

D
νξ(dy)f(y)−

∫

D
µX(dx′)f(x′)

12



5mu (4.13) =
∫

D
µX(dx′)

∫

D
S(x′, dy)f(y)−

∫

D
µX(dx′)f(x′) = 0 ,

where the equality between (
3mu
4.11) and (

4mu
4.12) is due to f(ξ) =

∫
D f(x′)νξ(dx′). ¤

4.3. Proof of Theorem
cor-1
4.

Proof. We refer to the last part of Doeblin’s theorem to see that − ln r ≥ − 1
T0

ln(1 − k0),

with k0 = min{cλ(F ), 1} (proof of Theorem
T:do
2) and for b1(t, δ) defined in (

ec0
2.6), we have

c ≥ 1
2b1(T0, δ) (proof of Lemma

l1
2). Summarizing, there exists C > 0 such that k0 ≥

Cb1(T0, δ). We note that C and C1 can be chosen independently of T0, and thus independent

of (νξ(·))ξ∈∂D. Since b1(T0, δ) ≥ C1e
−αDT0 , let C2 = CC1. Then

ca (4.14) − ln r

αD
≥ − 1

αDT0
ln(1− C2e

−αDT0) =: cD(T0) > 0 .

¤

5. Examples
s:eS:bmab

5.1. Brownian motion with rebirth. In the simplest version, the diffusion with jumps

on the connected open set D has a delta function relocation measure νξ(dx) = δx0(dx),

x0 ∈ D
GK1,GK3, E
[9, 11, 13], constant in ξ ∈ ∂D, νξ(dx) = ν(dx) ∈ M1(D)

BAP1, BAP2
[2, 3], or with continuous

dependence on the exit point ξ → νξ(·) ∈ M1(D)
BAP2
[3]. In the special case of the delta

measure and bounded D, the process is generated by a Feller semigroup on a compact

manifold where the boundary is glued together with the return point x0
GK1, GK3
[9, 11]. Other

variants include the case
WLi1
[14] of a domain with piecewise smooth boundary and constant

redistribution measure on each smooth component.

p2 Proposition 2. Consider a diffusion as in (
gen
2.8). Assuming D is bounded and the redis-

tribution measure has the property

ec2 (5.1) lim inf
δ→0

b2(δ) > 0 , where b2(δ) = inf
ξ∈∂D

νξ(Dδ) .

Then (a) condition
c1
2 is satisfied with m = 1; (b) a sufficient condition for (

ec2
5.1) is the

piecewise continuity of the function ξ → νξ(dx), where the space M1(D) of probability

measures on D is endowed with the topology of convergence in distribution.

Remark. An immediate nontrivial example of (
ec2
5.1) is when νξ(dx) are continuous in

ξ over each smooth component of ∂D, even though not continuous over ∂D. One such
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case is when the components are constant, as in
WLi1
[14]. But simply put, it is sufficient that

infξ∈∂D νξ(K) > 0 for some compact K ⊂⊂ D.

Proof. (a) For x ∈ Dc
δ, since τ1 = τD we have

ec10 (5.2) Px(x(τ1) ∈ D̄δ) ≥ inf
x∈Dc

δ

∫

∂D
PD

x (x(τD−) ∈ dξ)νξ(D̄δ) ≥ b2(δ) .

This proves that (
ec1
2.3) is satisfied with m = 1 and c1 = b2(δ), which proves part (a).

(b) We shall assume that ξ → νξ(dx) is continuous; it is easy to generalize to the case of

piecewise continuity by taking the minima of b2(δ) over all the finite number of continuous

portions of ∂D 3 ξ. Let ψδ = 1D̄2δ
∗ ρδ where ρδ is a smooth approximation to the delta

function at the origin. We choose ρδ in such a way that 0 ≤ ψδ ≤ 1 is smooth, ψδ(x) = 1

on D̄3δ and ψδ(x) = 0 on D \Dδ which ensures 1D̄δ
(z) ≥ ψδ(z). Let {δk}k≥1 be a sequence

δk ↓ 0 and uk(ξ) =
∫
D ψδk

(z)νξ(dz). Since uk(ξ) are 1) continuous in ξ on the compact

∂D, 2) nondecreasing in k, 3) limk→∞ uk(ξ) = 1 for all ξ ∈ ∂D, then we have the limit

limk→∞ infξ∈∂D uk(ξ) = 1. ¤

s:bksn

5.2. Diffusive Bak-Sneppen fitness evolution model. We consider an n particle sys-

tem, a variant to the well known evolution model proposed by Bak and Sneppen in
BS1
[1].

The particles follow Brownian motions xi(t) for i ∈ {1, 2, · · ·n} in an interval (0, a], a > 0

with reflection at a ∈ R and with 0 considered a boundary point, evolving independently

of each other until the first one reaches 0. Each coordinate xi represents the ‘fitness state’

of the i-th species and has an associated set of neighbors Vi ⊆ {1, 2, . . . , n}, designated by

their indices, such that i ∈ Vi. Whenever one of the fitness levels xi reaches the bound-

ary point zero, all xj with j ∈ Vi are instantaneously replaced by new i.i.d. fitness levels

with distribution function G(x) on the interval (0, a) and the evolution continues afresh.

To fix ideas, we shall assume i → Vi to be deterministic functions and |Vi| ≥ 2, for all

1 ≤ i ≤ n, where |V | is the cardinality of V . It is easy to verify that n = 1 and n ≥ 2 with

|Vi| = 1 are covered in subsection
S:bmab
5.1 since this coincides with Vi = {i} and particles move

independently.

In the framework laid out in the Introduction, the dimension d is equal to the num-

ber of particles n, the vector-valued process xo(t) = {xi(t)}1≤i≤n is a diffusion on S =

(−∞, a]n with reflecting boundary conditions on each component at a, D = (0, a]n and
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∂D = ∂(−∞, a]n in Rn. Then x̃(t) is the process killed at the part of the boundary of the

hypercube D containing at least one zero component.

To be specific, the reflection takes place on the upper hyper-surface U = ∪n
i=1Ui where

Ui = {x ∈ D |xi = a , xj 6= a for all j 6= i}. On the other hand, redistribution is triggered

on the lower hyper-surface L = ∪n
i=1Li where Li = {x ∈ D |xi = 0 , xj 6= 0 for all j 6= i}.

We note that more than one boundary hits at the same time occur with probability zero

in this setup. When one of the particles hits ∂D = {0}, the redistribution is carried out

through a measure νx(τD−)(dz) where x(τD−) = ξ = (ξ1, . . . , ξn) ∈ L

nxbk (5.3) νξ(dz) =
n∑

i=1

1Li(ξ) ·
(
⊗j /∈Vi

δξj (dzj)
)
⊗

(
⊗j′∈Vi

dG(zi)
)

,

with i in the periodic lattice Zn.

For any sufficiently small δ > 0 we let Fi = {x ∈ D̄ | ∑n
j=1 1[0,δ)(xj) = i }, the set on

which there are exactly i coordinates less than δ. We notice that F0 = D̄δ and ∪n
i=0Fi = D̄.

We shall prove the bound (
ec1
2.3) with m := n inductively; the set Fn the worst case scenario

and F0 = D̄δ, the set we want to enter almost surely.

p-i Proposition 3. Assume that G is concentrated on (0, a), i.e. G(0+) = 0 and G(a−) = 1.

For all 1 ≤ k ≤ n, there exists a positive real wk independent of x, such that, if x ∈ Fk,

then

n0 (5.4) Px(x(τD) ∈ Ak−1) ≥ wk , Al = ∪0≤j≤lFj , 0 ≤ l ≤ n .

Remark. Since G is concentrated in (0, a), there exists δ ∈ (0, a) such that G charges

[δ, a], which is equivalent to G(δ) < 1. The key observation is that since the particle hitting

the boundary is for sure in [0, δ) and G charges [δ, a], then with a positive probability

independent of the current configuration, right after the jump there will be at least one

more particle in [δ, a].

Proof. First we note that there exist a positive real vk = vk(δ, a), 0 ≤ k ≤ n, satisfying

n11 (5.5) inf
x∈Fk

Px(x(τD−) ∈ Fk ∩ ∂D) ≥ vk > 0 .

To see that, the harmonic functions u(x) = Px(x(τD−) ∈ Fk∩∂D) have limit one at interior

points of Fk ∩ ∂D and zero at exterior points. Since the boundary function is piecewise

continuous (indicator function), the solution u(x) is equal to its Fourier series and has limit

1/2 at boundary points. Thus over Ak, a compact set, the minimum is strictly positive.
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Following the distribution after jump as in (
ec10
5.2), when x ∈ Fk

n10 (5.6) Px(x(τD) ∈ Ak−1) ≥ inf
x∈Fk

∫

∂D
PD

x (x(τD−) ∈ dξ)νξ(Ak−1) ≥ vk inf
ξ∈Fk∩∂D

νξ(Ak−1) .

According to (
nxbk
5.3), ξ ∈ Fk will imply that νξ(Ak−1) ≥ (1 − G(δ))|Vi| for all 1 ≤ k ≤ n.

This is based on the fact that xi = 0 ∈ [0, δ) to begin with, and then the event that all

neighbors Vi go to [δ, a] implies that the number of particles in [0, δ) has diminished by

at least one. Using the fact that G(0+) = 0, G(δ) < 1 and l(V ) = max1≤i≤n |Vi| ≤ n

we proved the lower bound νξ(Ak) ≥ (1 − G(δ))l(V ) > 0, uniformly in k. This proves the

proposition with wk = vk(1−G(δ))l(V ). ¤

p-ii Proposition 4. Under the same assumptions as in Proposition
p-i
3, condition (

ec1
2.3) is sat-

isfied with m = n and c1 = (min{wk})n.

Proof. Put w = min{wk}. Since F0 = D̄δ, it is clear in view of Proposition
p-i
3 that if x ∈ Fk,

then Px(x(τk) ∈ D̄δ) ≥ wk, meaning that Px(l(δ) ≤ n) ≥ wk. We only have to choose

m := n and c1 = wn. ¤
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