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Abstract. An (m, p) urn contains m balls of value −1 and p balls of value +1. A player

starts with fortune k and in each game draws a ball without replacement with the fortune

increasing by one unit if the ball is positive and decreasing by one unit if the ball is negative.

having to stop when k = 0 (risk aversion). Let V (m, p, k) be the expected value of the

game. We are studying the question of the minimum k such that the net gain function

of the game V (m, p, k)− k is positive, in both the discrete and the continuous (Brownian

bridge) settings. Monotonicity in various parameters m, p, k is established. Since the case

m− p < 0 is trivial, for p → ∞, either m− p ≥ α
√
2p, when the the gain function cannot

be positive, or m − p < α
√
2p, when it is sufficient to have k ∼

√
p log p, where α is a

constant. We also determine an approximate optimal strategy with exponentially small

probability of failure in terms of p. The problem goes back to Shepp [2], who determined

the constant α in the unrestricted case when the net gain does not depend on k. A new

proof of his result is given in the continuous setting.

1. Introduction

In [2], (also in [3], [4], and [6]) Shepp studied a series of optimal stopping problems. One

of them is given in part a) of Section 6 of that paper, which contains a sketch of the proof,

as follows.

An (m, p) urn contains m balls of value “−1” and p balls of value “+1”, and the player

is allowed to draw balls randomly without replacement until he wants to stop (he is also

allowed not to draw at all). We are interested in finding the values for m and p such that
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there exists an optimal drawing policy for which the expected return (1.4), as a function of

m and p, is positive. Let C denote the set of all (m, p) urns for which the expected return

is positive.

Shepp reasons, by analogy with the main problem in his paper (the Sn/n problem of

Chow and Robbins [1]) that there exists a sequence β(1),β(2), ... of integers for which

(1.1) C = {(m, p) : m ≤ β(p)} .

Of course β(p) ≥ p and for large p we have

(1.2) lim
p→∞

[β(p)− p]√
2p

= α ,

where α = 0.83992... is the unique solution of the following integral equation explained

later on in this paper in equation (3.22), more exactly

α = (1− α2)

󰔻 ∞

0

eαt−t2/2dt.

The initial fortune k is not relevant for the construction of C in the unrestricted model,

when the player would be able to play for any k, i.e. with unbounded debt. In this paper,

we consider this urn scheme problem with risk aversion, which means that the player cannot

go below a certain value of his fortune (cannot borrow money).

We introduce some notations. The process (kn) of fortunes at times n, indexed by the

discrete time units n ≥ 0 is adapted to a filtration (Fn)n≥0. The assumption that the player

cannot look into the future is formalized by requiring that any stopping strategy τ be a

stopping time, i.e. {τ > n} ∈ Fn, n ≥ 0. We notice that trivially τ ≤ m + p and taking

z ∈ Z∪ {−∞} we define τ0 = inf{n ≥ 0 | kn ≤ z} as the hitting time of the level set z, with

the usual convention that the infimum over the empty set is +∞.

We shall define W (m, p, k; z) the value function of the game starting with fortune k ≥ 0,

m ≥ 0 negative balls, p ≥ 0 positive balls, and stopping when reaching fortune z ≥ −∞

(1.3) W (m, p, k; z) = sup
τ∈T

E[kτ ]

where T is the set of stopping times not exceeding the minimum of the hitting time of the

level set k = z and the final time n = m+p. In this case T is the set of admissible strategies

of the game. In the discrete case, z < −m is identical to z = −∞. However, due to scaling,

in the continuous case presented in Section 3 this setup is relevant.

Additionally G(m, p, k; z) = W (m, p, k; z)−k is the expected return function of the game.
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Inspecting the dynamic programming equation (2.1) we see that when z = −∞ the

return function is independent of k.

This is the case considered in [2] and then we may simplify the notation by setting

(1.4) V (m, p) := G(m, p, k;−∞) .

We retain the notation V (m, p) in this case for consistency with the literature on the

unrestricted model [2, 3, 4]. For example [3] adopts k = 0 since the initial fortune is not

relevant, as mentioned.

In the risk aversion case, which is the subject of this paper, without loss of generality,

we set z = 0. To simplify notation, since throughout Section 2 dedicated to the discrete

case the value z is fixed, we denote

(1.5) V (m, p, k) = W (m, p, k; 0) and G(m, p, k) = G(m, p, k; 0) .

We are interested in finding the smallest k for which the player makes a positive expected

gain for a given (m, p) urn in C, i.e., finding the minimal k so that the expected value

V (m, p, k) exceeds k, when the player plays optimally. The answer can be summarized as

follows:

(i) if m < k then the unrestricted case and the risk-aversion case are not distinguishable

and thus G(m, p, k) > 0 (Theorems 5 and 7);

(ii) if m < p, then G(m, p, k) > 0 for all k ≥ 1;

(iii) if m ≥ p, p is large and m ≥ p + α
√
2p, then G(m, p, k) = 0 for all k by (1.2) and

Theorem 7;

(iv) ifm ≥ k, p is large and p ≤ m < p+α
√
2p, then a sufficient condition for G(m, p, k) >

0 is given in Theorem 1.

Case (iv) is the most difficult since it exhibits critical behavior, pointing naturally to the

parabolic scaling (3.7) from the invariance principle for random walks.

The next result follows as a consequence of Theorem 12, which is, in its turn, based on

the bounds established in Proposition 3.

Theorem 1. Let (m, p) ∈ C defined in (1.1). If p is large and p ≤ m < p + α
√
2p, then

there exists k(m, p) > 0 such that G(m, p, k) > 0 if k ≥ k(m, p) and G(m, p, k) = 0 if
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k < k(m, p). An upper bound for k(m, p) is given by c(p)
√
2p, with

(1.6) c(p) =

󰕓
c1 +

1

2
ln p , c1 =

3

2
ln 2− 5

2
lnα ≈ 1.4758 .

If, in addition, m ≤ p + α0

√
2p, for some α0 ∈ [0,α), then c(p) has finite order, not

exceeding the value x∗(α0) defined in Proposition 3.

The proof is at the end of the paper, after Theorem 13.

Remark. It is natural to look at k(m, p) on a scale of order
√
m+ p ∼

√
2p, since this

corresponds to the scaling for the diffusive limit from Theorem 9. Asymptotically, only

pairs (m, p) with m ≤ p + α
√
2p belong to C. The value of c = k(m, p)/

√
2p is bounded

and depends only on u = (m − p)/
√
m+ p (see Proposition 3) provided that u remains

bounded above away from α, say u ≤ α0 < α. It is only the worst case scenario u ↑ α when

c ↑ ∞. In other words, given an arbitrary (m, p) ∈ C, the set of values allowing a positive

gain in the unrestricted setting, (1.6) gives a value of k that ensures a positive gain for

the risk-aversion setting. Numerical data shows that c ≤ 3 for p from 2 to 1,000, which is

consistent with the order of the approximation that predicts c ≈ 2.22 with the logarithmic

bound.

We give a brief outline of the paper. Section 2 gives monotonicity and comparison results

between the unrestricted (z = −∞) and the risk aversion (z = 0) case in the discrete setting

via the recurrence corresponding to the dynamical programming equations for the optimal

value (2.1). Section 3 treats the continuous limit of the problem, where under the diffusive

scaling of Brownian motion (invariance principle) the underlying process is a Brownian

bridge. Theorem 10 proves the relevant monotonicity results analogue to those of Section

2. Theorem 11 gives a new proof in the case z = −∞ outlined by Shepp [2], while Theorem

12 gives an approximate winning strategy in the risk aversion case. In the discrete setting,

Theorems 1 and 13 provide the asymptotic upper bounds for critical value of k for which

a positive return is possible, as well as the approximate strategy to achieve it, via the

continuous scaling limit.

2. Monotonicity results in the discrete case

The function V (m, p, k) satisfies the following recursive relation,

(2.1) V (m, p, k) = max
󰕏
k,

m

m+ p
V (m− 1, p, k − 1) +

p

m+ p
V (m, p− 1, k + 1)

󰕐
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for all m, p, k ≥ 1 with the following boundary conditions: For any m, p ≥ 0, V (m, p, 0) = 0,

for any m, k ≥ 0, V (m, 0, k) = k, and for any p ≥ 0, k ≥ 1, V (0, p, k) = p+ k. The optimal

drawing policy is as follows: The game ends if the player does not have fortune any more

or the first time V (i, j, n) = n for some n ≥ 1.

In [3] and [2], Boyce and Shepp proved the following three inequalities: V (m + 1, p) ≤
V (m, p), V (m, p) ≤ V (m, p+ 1), and V (m, p) ≤ V (m+ 1, p+ 1) for all m, p ≥ 0. Below we

show that the function V (m, p, k) exhibits similar monotonicity.

Theorem 2. For any fixed m, p ≥ 0, V (m, p, k) is increasing in k.

Proof. We will prove this inequality by induction on t = m+ p. If either m or p equals 0,

it is easy to see that V (m, p, k) is increasing in k. From now on we will assume m, p ≥ 1.

Suppose t = m + p = 2, then m = p = 1. Then we have V (1, 1, 0) = 0, V (1, 1, 1) = 1 and

V (1, 1, k) = 1
2(2k + 1) for all k ≥ 2. So V (m, p, k) is increasing in k when t = m + p = 2.

Suppose that V (m, p, k) is increasing in k for all 2 ≤ t = m + p ≤ s − 1 for some s ≥ 3.

Now for t = m+ p = s, we have

V (m, s−m, k) = max{k, m
s
V (m− 1, s−m, k − 1) + (1− m

s
)V (m, s−m− 1, k + 1)}

≤ max{k+1,
m

s
V (m− 1, s−m, k)+ (1− m

s
)V (m, s−m− 1, k+2)} = V (m, s−m, k+1).

Hence Theorem 1 also holds for t = m + p = s. Therefore, by mathematical induction,

V (m, p, k) is increasing in k for all m, p ≥ 0. □

Theorem 3. For any fixed m, p, k ≥ 1, V (m− 1, p, k − 1) ≤ V (m, p− 1, k + 1).

Proof. When k = 1, V (m − 1, p, k − 1) = V (m − 1, p, 0) = 0 < 2 ≤ V (m, p − 1, 2) =

V (m, p − 1, k + 1). From now on, we will assume that k ≥ 2. As in the proof of Theorem

2, we will use mathematical induction on t = m+ p. First note that t ≥ 2, since m, p ≥ 1.

Suppose that t = 2, then m = 1 and p = 1. V (0, 1, k − 1) = k < k + 1 = V (1, 0, k + 1). Let

t = 3. If m = 2 and p = 1, then V (1, 1, k − 1) = k − 1
2
≤ k + 1 = V (2, 0, k + 1) for k ≥ 3.

For k = 2, we have V (1, 1, k − 1) = V (1, 1, 1) = 1 ≤ 2 = k + 1 = V (2, 0, k + 1). If m = 1

and p = 2, then V (0, 2, k − 1) = k + 1 ≤ k + 3
2 = V (1, 1, k + 1). So Theorem 3 holds for

t = 2, 3.

Suppose that Theorem 3 holds for all m, p ≥ 1 such that t = m+ p ≤ s− 1 where s ≥ 4.

Now let t = m + p = s. If m = 1, then V (m − 1, p, k − 1) = V (0, p, k − 1) = k + p − 1 ≤
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k+p−1+ 1
p = V (1, p−1, k+1) = V (m, p−1, k+1), hence Theorem 3 holds. If p = 1, then

V (m−1, p, k−1) = V (m−1, 1, k−1) = k−1 ≤ k+1 = V (m, 0, k+1) = V (m, p−1, k+1),

since m ≥ 3 in this case. So Theorem 3 holds. From now on we will assume that m, p ≥ 2

and t = m+ p = s ≥ 4.

For all 2 ≤ m ≤ s− 2, note that

V (m− 1, s−m, k − 1) =

max{k − 1 ,
m− 1

s− 1
V (m− 2, s−m, k − 2) +

s−m

s− 1
V (m− 1, s−m− 1, k)},

V (m, s−m− 1, k + 1) =

max{k + 1 ,
m

s− 1
V (m− 1, s−m− 1, k) +

s−m− 1

s− 1
V (m, s−m− 2, k + 2)}.

By induction hypothesis, we know V (m − 2, s − m, k − 2) ≤ V (m − 1, s − m − 1, k) ≤
V (m, s−m−2, k+2), hence V (m−1, s−m, k−1) ≤ V (m, s−m−1, k+1). Now Theorem

2 also holds for t = m+ p = s. Induction completes the proof. □

Theorem 4. For all m, p, k ≥ 0, V (m, p, k) ≤ V (m, p+ 1, k) and V (m, p, k) ≤
V (m− 1, p, k).

Proof. If one of m, p, k is 0, it is easy to check that Theorem 4 holds. So we will assume

that m, p, k ≥ 1. We will use induction argument on t = m + p. Suppose t = 2, then

m = p = 1 since m, p ≥ 1. If k = 1, then V (1, 1, 1) = 1 ≤ 2 = V (0, 1, 1) and V (1, 1, 1) =

1 ≤ 5
3 = V (1, 2, 1). If k ≥ 2, then V (1, 1, k) = k + 1

2
≤ k + 1 = V (0, 1, k) and V (1, 1, k) =

k + 1
2
≤ k + 4

3 = V (1, 2, k). Hence Theorem 4 holds for t = 2. Assume that Theorem 4

holds for t ≤ s and assume that t = m+ p = s+ 1, where s ≥ 2. Note that

V (m, s+ 1−m, k) =

max
󰓩
k,

m

s+ 1
V (m− 1, s+ 1−m, k − 1) +

s+ 1−m

s+ 1
V (m, s−m, k + 1)

󰓪
,

V (m− 1, s+ 1−m, k) =

max
󰓩
k,

m− 1

s
V (m− 2, s+ 1−m, k − 1) +

s+ 1−m

s
V (m− 1, s−m, k + 1)

󰓪
and

V (m, s+ 2−m, k) =

max
󰓩
k,

m

s+ 2
V (m− 1, s+ 2−m, k − 1) +

s+ 2−m

s+ 2
V (m, s+ 1−m, k + 1)

󰓪
.
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Hence to compare V (m − 1, s + 1 −m, k) with V (m, s + 1 −m, k), it is enough to look

at the following difference,

󰕉m− 1

s
V (m− 2, s+ 1−m, k − 1) +

s+ 1−m

s
V (m− 1, s−m, k + 1)

󰕊

−
󰕉 m

s+ 1
V (m− 1, s+ 1−m, k − 1) +

s+ 1−m

s+ 1
V (m, s−m, k + 1)

󰕊

=
m

s+ 1

󰓣
V (m− 2, s+ 1−m, k − 1)− V (m− 1, s+ 1−m, k − 1)

󰓤

+
s+ 1−m

s+ 1

󰓣
V (m− 1, s−m, k + 1)− V (m, s−m, k + 1)

󰓤

+
s+ 1−m

s(s+ 1)

󰓣
V (m− 1, s−m, k + 1)− V (m− 2, s+ 1−m, k − 1)

󰓤
≥ 0 ,

The reason we get this difference non-negative is the induction hypothesis that grants

V (m−2, s+1−m, k−1)−V (m−1, s+1−m, k−1) ≥ 0 and V (m−1, s−m, k+1)−V (m, s−
m, k+1) ≥ 0 and Theorem 3 implying V (m−1, s−m, k+1)−V (m−2, s+1−m, k−1) ≥ 0.

Hence V (m, s + 1 − m, k) ≤ V (m − 1, s + 1 − m, k). The proof for V (m, s + 2 − m, k) ≥
V (m, s+1−m, k) is completely analogous. Therefore by mathematical induction, Theorem

4 holds for all m, p, k ≥ 0. □

Boyce (in [3]) and Shepp (in [2]) proved that V (m, p) ≤ V (m + 1, p + 1) for any (m, p)

urn. However, the statement that V (m, p, k) ≤ V (m + 1, p + 1, k) is not true in general.

The equation (2.1) enables actual numerical computation and we see that, for example,

V (8, 7, 5) ≈ 5.463869 < 5.469114 ≈ V (7, 6, 5) and V (6, 7, 3) ≈ 4.301282 < 4.409091 ≈
V (5, 6, 3).

Theorem 5. For all m, p ≥ 0 and k ≥ m+ 1, V (m, p) = V (m, p, k)− k.

Proof. It is easy to check that V (m, p) = V (m, p, k) − k for all m + p = t = 0, 1, 2 and

k ≥ m + 1. Assume that Theorem 5 holds for all t = m + p = 0, 1, 2, ..., s − 1. Then by

induction hypothesis,

V (m, s−m) = max

󰓻
0 ,

m

s
[V (m− 1, s−m)− 1] +

s−m

s
[V (m, s−m− 1) + 1]

󰓼
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= max

󰓻
0,

m

s
[V (m−1, s−m, k−1)−(k−1)−1]+

s−m

s
[V (m, s−m−1, k+1)−(k+1)+1]

󰓼

= max

󰓻
0,

m

s
V (m− 1, s−m, k − 1) +

s−m

s
V (m, s−m− 1, k + 1)− k

󰓼

= V (m, s−m, k)− k .

Therefore, Theorem 5 holds for all m + p = t = 0, 1, 2, ..., s. By mathematical induction,

the proof is complete. □

Recall that G(m, p, k) = V (m, p, k)−k denotes the expected net profit under an optimal

drawing policy. Below we show that the expected net profit, G(m, p, k) is non-decreasing

in k.

Theorem 6. For all m, p ≥ 0, G(m, p, k) is non-decreasing in k.

Proof. By Theorem 5, for all m, p ≥ 0, G(m, p, k) = V (m, p) for all k ≥ m + 1. We will

assume 0 ≤ k ≤ m. It is easy to check that Theorem 6 holds if one of m, p, k equals 0. We

will assume that m, p ≥ 1 and 1 ≤ k ≤ m. Then we have

(2.2) G(m, p, k) = max

󰓻
0 ,

m

m+ p
V (m− 1, p, k − 1) +

p

m+ p
V (m, p− 1, k + 1)− k

󰓼
.

Let t = m+p be the induction parameter. First consider the case t = 2, then m = p = 1

since we assume m, p ≥ 1. Then

G(1, 1, k) = max
󰓩
0 ,

1

2
[V (0, 1, k − 1) + V (1, 0, k + 1)]− k

󰓪
= 0 .

Hence Theorem 6 holds for t = 2. Now let us assume that Theorem 6 holds for for all

m, p ≥ 1 and t = m + p = 2, 3, ..., s − 1, where s ≥ 3. Now for t = s, the equation (2.2)

gives

G(m, p, k) = max
󰓩
0 ,

m

s
V (m− 1, s−m, k − 1) +

s−m

s
V (m, s−m− 1, k + 1)− k

󰓪

= max
󰓩
0,

m

s
[V (m−1, s−m, k−1)−(k−1)]+

s−m

s
[V (m, s−m−1, k+1)−(k+1)]+

s− 2m

s

󰓪

(2.3) = max
󰓩
0,

m

s
G(m− 1, s−m, k − 1) +

s−m

s
G(m, s−m− 1, k + 1) +

s− 2m

s

󰓪
.
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On the other hands,

G(m, p, k + 1) = max
󰓩
0,

m

s
V (m− 1, s−m, k) +

s−m

s
V (m, s−m− 1, k + 2)− (k + 1)

󰓪

= max
󰓩
0,

m

s
[V (m− 1, s−m, k)− k] +

s−m

s
[V (m, s−m− 1, k+ 2)− (k+ 2)] +

s− 2m

s

󰓪

(2.4) = max
󰓩
0,

m

s
G(m− 1, s−m, k) +

s−m

s
G(m, s−m− 1, k + 2) +

s− 2m

s

󰓪
.

From the induction hypothesis, we know that G(m− 1, s−m, k − 1) ≤ G(m− 1, s−m, k)

and G(m, s − m − 1, k + 1) ≤ G(m, s − m − 1, k + 2). Hence comparing the equations

(2.3) and (2.4), we conclude G(m, s−m, k) ≤ G(m, s−m, k + 1) and Theorem 6 holds for

t = m+ p = s. □

Theorem 7. For all m, p, k ≥ 0, V (m, p) ≥ G(m, p, k).

Proof. By Theorem 5, V (m, p) ≥ G(m, p, k) holds if k ≥ m + 1. Now let us assume that

k ≤ m. It is easy to verify that Theorem 7 holds if one of m, p, k is 0, we will focus on the

case m, p, k ≥ 1. Let t = m + p be the induction parameter. First notice that Theorem 7

holds for t = 2, in other words, for m = p = 1. Suppose that V (m, p) ≥ G(m, p, k) holds

for all m, p such that 2 ≤ t = m + p ≤ s − 1 where s ≥ 3. Then for t = m + p = s, the

induction hypothesis gives

V (m, s−m) = max
󰓩
0,

m

s
[V (m− 1, s−m)− 1] +

s−m

s
[V (m, s−m− 1) + 1]

󰓪

≥ max
󰓩
0,

m

s
[V (m−1, s−m, k−1)−(k−1)]+

s−m

s
[V (m, s−m−1, k+1)−(k+1)]+

s− 2m

s

󰓪

= max
󰓩
0,

m

s
V (m− 1, s−m, k − 1) +

s−m

s
V (m, s−m− 1, k + 1)− k

󰓪
.

Hence V (m, s − m) ≤ V (m, s − m, k) − k and the mathematical induction completes the

proof. □

Theorem 8. For all m, p, k ≥ 0, G(m, p, k) ≤ G(m+ 1, p+ 1, k + 1).
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Proof. It is easy to check if one of m, p, k is 0, Theorem 8 holds. We will assume that

m, p, k ≥ 1. For t = m+ p which will be used as the induction parameter, we first establish

the inequality for all m, p such that t = m + p ≤ 3 and for all k ≤ 3. G(1, 1, 1) = 0 <

G(2, 2, 2) = 1
3 and G(1, 1, 2) = 1

2 < G(2, 2, 3) = 2
3 . G(1, 2, 1) = 2

3 < G(2, 3, 2) = 6
5 ,

G(1, 2, 2) = 4
3 < G(2, 3, 3) = 3

2 , G(1, 2, 3) = 4
3 < G(2, 3, 4) = 3

2 . G(2, 1, 1) = G(3, 2, 2) = 0,

G(2, 1, 2) = G(3, 2, 3) = 0 and G(2, 1, 3) = 0 < G(3, 2, 4) = 1
5 .

Let us assume that Theorem 8 holds for all m, p such that t ≤ s − 1 where s ≥ 4. Now

let t = s and k ≤ s, then

(2.5) G(m, s−m, k) = max
󰕏
0,

m

s
G(m− 1, s−m, k − 1)

+
s−m

s
G(m, s−m− 1, k + 1) +

s− 2m

s

󰕐

and on the other hand,

(2.6) G(m+ 1, s−m+ 1, k + 1) = max
󰕏
0,

m+ 1

s+ 2
G(m, s+ 1−m, k)

+
s+ 1−m

s+ 2
G(m+ 1, s−m, k + 2) +

s− 2m

s+ 2

󰕐
.

First note that G(m− 1, s−m, k − 1) ≤ G(m, s+ 1−m, k) and G(m, s−m− 1, k + 1) ≤
G(m+ 1, s−m, k + 2) from the induction hypothesis. Now we will show G(m, s−m, k) ≤
G(m+1, s−m+1, k+1) by dealing with the cases, s < 2m, s = 2m and s > 2m separately.

If s < 2m, the difference of the second terms in the equations (2.6) and (2.5) is

󰓵
m+ 1

s+ 2
G(m, s+ 1−m, k) +

s+ 1−m

s+ 2
G(m+ 1, s−m, k + 2) +

s− 2m

s+ 2

󰓶

−
󰓵
m

s
G(m− 1, s−m, k − 1) +

s−m

s
G(m, s−m− 1, k + 1) +

s− 2m

s

󰓶

(2.7) ≥ s− 2m

s(s+ 2)

󰓣
G(m, s+ 1−m, k)−G(m+ 1, s−m, k + 2)− 2

󰓤
≥ 0 .

To see the inequality in (2.7), using Theorem 3, note that

G(m+ 1, s−m, k + 2) + 2−G(m, s+ 1−m, k)

= V (m+ 1, s−m, k + 2)− V (m, s+ 1−m, k) ≥ 0.
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If s = 2m, due to the induction assumptions, G(m,m + 1, k) ≥ G(m − 1,m, k − 1) and

G(m+ 1,m, k + 2) ≥ G(m,m− 1, k + 1). Hence

G(m+ 1, s+ 1−m, k + 1)−G(m, s−m, k) = G(m+ 1,m+ 1, k + 1)−G(m,m, k)

=
1

2

󰓣
G(m,m+1, k)−G(m− 1,m, k− 1) +G(m+1,m, k+2)−G(m,m− 1, k+1)

󰓤
≥ 0 .

Finally, if s > 2m, then note that

G(m+ 1, p+ 1, k + 1)−G(m, p, k) = V (m+ 1, p+ 1, k + 1)− V (m, p, k)− 1 .

Here p > m since s = m + p > 2m. By mathematical induction, we can prove that

V (m+ 1, p+ 1, k+ 1)− V (m, p, k)− 1 ≥ 0 if m < p. During the induction process, we will

encounter the case that p = m+ 1. In that case

V (m+ 1,m+ 2, k + 1)− V (m,m+ 1, k)

=
m+ 1

2m+ 3
V (m,m+ 2, k) +

m+ 2

2m+ 3
V (m+ 1,m+ 1, k + 2)

− m

2m+ 1
V (m− 1,m+ 1, k − 1) +

m+ 1

2m+ 1
V (m,m, k + 1)

By the induction hypothesis, V (m,m+ 2, k)− V (m− 1,m+ 1, k − 1) ≥ 1. Similarly, since

V (m+1,m+1, k+2) = G(m+1,m+1, k+2)+k+2 and V (m,m, k+1) = G(m,m, k+1)+k+

1, V (m,m+2, k)−V (m−1,m+1, k−1) ≥ 1 because G(m+1,m+1, k+2) ≥ G(m,m, k+1).

Therefore, G(m+1, p+1, k+1)−G(m, p, k) = V (m+1, p+1, k+1)− V (m, p, k)− 1 ≥ 0

if s > 2m. Hence the proof is complete by induction. □

3. The continuous case

Let Mt be the number of balls marked with − (minus), Pt the number of balls marked

with + (plus) and Kt the current amount of money (fortune) at time t ≥ 0. We assume for

the moment that the time is discrete.

A player picks a ball without replacement. If the ball is a minus, he loses one dollar,

and if the ball is a plus, he wins one dollar. We specify that in this variant of the game,

the player must play each time. This would not affect the answer to the question on the

minimum initial fortune to guarantee a positive net profit G(m, p, k). However, it simplifies

the conservation laws (3.1).

11



The game can only last a maximum of P0 + M0 time units, but will stop as soon as

Kt = 0. There exist constants A,B equal to the two conserved quantities in the problem

(3.1) Kt −Mt + Pt = B , Mt + Pt + t = A .

The probability that Kt moves up by one unit is equal to qt = Pt/(Pt +Mt) and down by

one unit to 1− qt.

Assume the process (Kt) is defined on a probability space (Ω,F , P ) and is adapted to

the filtration (Ft). Let τ0 be the hitting time of the level set zero (running out of money).

We want to solve the optimal stopping problem

(3.2) V (M0, P0,K0) = sup
0≤τ≤A∧τ0

E[Kτ ] , τ stopping time .

A player can control the outcome by choosing the stopping time τ when to quit. The

only restrictions are that he cannot play after running out of money and he cannot look

into the future, which is formalized by having {τ ≤ t} ∈ Ft for any t ∈ [0, A].

The times of depletion of the pluses (respectively minuses) τ± are such that τ+ ∧ τ− ≤
A − 1. For τ+ ∧ τ− ≤ t ≤ A the fortune moves deterministically with qt = 0, respectively

qt = 1.

This allows to write the relation

(3.3)

󰔉
Zt =

Kt−B
A−t = 1− 2qt =

Mt−Pt

Pt+Mt
, if 0 ≤ t < τ+ ∧ τ− ∧ τ0

Zt ∈ {−1,+1} , if τ+ ∧ τ− ∧ τ0 ≤ t ≤ τ0
,

where +1 is assumed when τ+ < τ− and −1 in the opposite case (equality cannot happen).

It follows that qt =
1
2(1− Zt), leading to the inhomogeneous Markov chain

(3.4) Kt+1 = Kt ± 1 , with probability
1

2
(1∓ Zt) .

Proposition 1. The process (Zt) is a martingale.

Proof. Evidently Kt ≤ K0 + t < ∞ and A − t ≥ 1, τ0 is a finite stopping time bounded

above by a constant and the conditional expectations of the change in one step can be

verified directly. □

It follows that

Z0 =
Mt − Pt

Pt +Mt

󰓭󰓭󰓭
t=0

=
M0 − P0

P0 +M0
=

K0 −B

A
,

12



and since Kt −B = (A− t)Zt, we can write

(3.5) Kt = K0(1−
t

A
) +B

t

A
+ (A− t)(Zt − Z0) .

It is known [5] (6.24) that the Brownian bridge (Xt) pinned at (a, b), i.e. Xa = b - almost

surely and starting at (0, k0) satisfies

(3.6) Xt = k0(1−
t

a
) + b

t

a
+ (a− t)

󰔻 t

0

dWs

a− s
.

One can see that Zt is a discrete version of the martingale appearing in the stochastic

integral. Let N > 0 and

(3.7) kNt = N−1KN2t , k0 = N−1K0 , b = N−1B , a = N−2A .

The parabolic scaling is natural to the Brownian motion. It can be regarded (consider-

ing N → ∞) as an invariance principle for the original Kt with the understanding that

N2tmacro = tmicro, NKmacro = Kmicro. We define (kNt )t≥0 at all lattice points N−1Z,
t = N−2Z+ and by linear interpolation between lattice points. The resulting paths are

continuous. We then have the following invariance principle.

Theorem 9. Under the scaling from (3.7), the process (kNt )t≥0 converges weakly (in dis-

tribution) to the Brownian bridge, i.e. the process satisfying the SDE

(3.8) dXt =
b−Xt

a− t
dt+ dWt , X0 = k0 ,

where (Wt)t≥0 is a standard Brownian motion.

Proof. The proof is standard so we only sketch it. The scaling limit is proven by showing

that (kNt )t≥0, indexed by N > 0, is tight as a probability measure on C([0, a− δ],R). Here
δ is arbitrary, strictly less than one. Any limit point is the law of a process solving the

martingale problem for

Lf(t, x) = ∂tf(t, x) +
b− x

a− t
f ′(t, x) +

1

2
f ′′(t, x)

for all f ∈ C 1 ,2
c ([0 , a−δ]×R,R) (the subscript is for compact support in the space variable).

It is a consequence of Doob’s maximal inequality that the martingale part is tight. The

drift term can be considered on any time interval away from a, i.e. [0, a − δ]. Uniqueness

of the solution to the martingale problem proves the result on [0, a] by letting δ ↓ 0. □
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Denote the optimal function

(3.9) w(a, b, k0; z) = sup
0≤τ≤τ0∧a

E[Xτ ] , τ0 = inf{t > 0|Xt ≤ z}

for the Brownian bridge (0, k0) → (a, b) stopped at the level set z.

Comparing to (3.1) we see that necessarily Mt + Pt ∼ O(N2), Mt − Pt ∼ O(N). The

scaling carries over to

(3.10) pt = N−2Pt , mt = N−2Mt , mt − pt = N−1(kt − b)

via the equations mt − pt = kt − b, mt + pt = a − t. The analogue problem to (3.2)

corresponds to z = 0 and t = 0 and satisfies the scaling relation

(3.11) v(m0, p0, k0) := w(m0 + p0, k0 −m0 + p0, k0; 0) ∼ N−1V (M0, P0,K0) .

Theorem 10. The optimal function v(m, p, k) and the gain function g(m, p, k) = v(m, p, k)−
k are (i) increasing in k when p and m are fixed; (ii) decreasing in u = m− p when k and

m + p are fixed. (iii) When z = −∞ the gain function w(m + p, k −m + p, k; z) − k does

not depend on k and is decreasing in m− p when m+ p is fixed.

Proof. The first observation is that w(a, b, k; z) is increasing in b, k = k0 and decreasing in

z. In the variable z we simply have a larger set of stopping times. In the other variables,

we use formula (3.6). The last term is independent of any parameters. The expected values

are monotone for each stopping times τ in the optimization problem (3.9). It follows that

the supremums are monotone in the respective parameter.

We notice that using the relation

(3.12) w(a, b− d, k − d; z − d) + d = w(a, b, k; z) ,

true for any real number d, for

(i) d = k we obtain v(m, p, k) = w(m+ p,−(m− p), 0;−k) + k and g(m, p, k) = w(m+

p,−(m − p), 0;−k), which shows that v and g are increasing in k and (ii) decreasing in

u = m− p when k and m+ p are fixed;

(iii) d = k −m + p we obtain g(m, p, k) = w(m + p, 0,m − p;−k + (m − p)) − (m − p)

which is increasing in k. When z = −∞ the fourth component of the function is −∞ and

the gain function does not depend on k and is decreasing in m− p. □
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The optimal function can be further simplified by noticing that

(3.13) w(a, b, k0; z) = a
1
2w(1, a−

1
2 b, a−

1
2k0; a

− 1
2 z)

and using (3.12). Putting z = 0 and d = b, x = a−
1
2k0, r = a−

1
2 b and u = x − r =

a−
1
2 (m0 − p0), we can see that

(3.14) a
1
2 (w(1, 0, u;−r) + r) = w(a, b, k0; 0) ,

which, in the original variables a = p0 +m0 = p+m, b = b0 = k0 −m0 + p0 = k −m+ p,

can be written as

(3.15) v(m, p, k) =
√
m+ p w

󰓱
1,

k −m+ p√
m+ p

,
k√

m+ p
; 0
󰓲
.

In similar fashion, we have the gain function

(3.16) g(m, p, k) = v(m, p, k)− k = a
1
2 (w(1, 0, u;−r)− u)

with the same notations.

An explicit formula (3.25) exists in [2] for the unrestricted resources case when the player

does not face ruin, i.e. for z = −∞. Let τc be the hitting time of the curve c
√
a− t by the

Brownian bridge Xt between the points (0, u) → (a, 0), a > 0, c ≥ 0 and

(3.17) v̄(a, u, c) = E
(a,0)
(0,u)

[Xτc1τc<a] .

In the following we drop the initial and terminal point script when there is no danger of

confusion.

It is proven in the same paper via (3.19) that when c > ua−
1
2 , then τc < 1 almost surely

(evidently when c = u we have τc = 0). The Brownian bridge (3.8) admits a representation

due to Doob of the form

(3.18) Xt = b+
Bs + k0 − b

1 + s/a
, s =

t

1− t/a
, 0 ≤ t < a .

Based on the normalizations described in (3.13), we shall focus on the Brownian bridge

Xt with a = 1. In terms of (3.18) with a → 1, k0 → u and b → 0, the stopping time

s′ = τc/(1− τc) will give the equation

(3.19) Bs′ + u = c
√
1 + s′ .
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This permits an exact calculation, with the exact formula

(3.20) v̄(1, u, c) = cE[
√
1− τc] =

ch(1, u)

h(1, c)
=

c e
u2

2 Φ(u)

e
c2

2 Φ(c)
,

where we introduced the notation

(3.21) h(a, u) =

󰔻 ∞

0

eλu−
λ2a
2 dλ , −∞ < u < ∞ , a > 0 .

Here Φ(z) denotes the distribution function of the standard normal. Then, directly by

integration or using the Laplace transform of the complementary error function,

h(a, u) = a−
1
2h(1, a−

1
2u) and h(1, u) =

√
2πe

u2

2 Φ(u) .

The function in (3.20) has a maximum in the variable c at α > 0, equal to the solution

of h(1,α)− αh′(1,α) = 0, or equivalently

(3.22) α = (1− α2)

󰔻 ∞

0

eλα−
λ2

2 dλ .

Similarly u → (α/h(1,α))h(1, u) − u is well defined for all real u and convex. Its global

minimum is zero and is achieved at u = α. This is exactly the gain function in the case

z = −∞, i.e. g(1, 0, u) = w(1, 0, u;−∞) − u from (3.16) (using the same notation for

simplicity). It has a double zero at u = α

(3.23) g(1, 0,α) = 0 , g′(1, 0,α) = 0 , g′′(1, 0,α) = 2α > 0 ,

where the last equality is obtained by direct computation.

Theorem 11 shows that, as long as u ≤ α, the optimal function is the value of v̄ at c = α

(3.24) w(1, 0, u;−∞) = v̄(1, u,α) .

More precisely, with the equality (3.22) in mind,

(3.25) w(1, 0, u;−∞) =

󰔙
󰔝

󰔛
(1− α2)

󰔳∞
0

eλu−
λ2

2 dλ , u ≤ α

u u > α
.

As discussed, the game allows an expected net gain w(1, 0, u;∞) > u only when u < α.

In view of (3.14) we have

(3.26) w(a, b, k;−∞) = a
1
2w(1, 0, a−

1
2 (k − b);−∞) + b
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and again

(3.27) w(a, b, k;−∞) =
α

h(1,α)
ah(a, k − b) + b .

The relation

(3.28) u → w(1, 0, u;−∞) =
αh(1, u)

h(1,α)
≥ u , u ≤ α

shows that

(3.29)
α

h(1,α)
a

1
2h(1, a−

1
2 (k − b)) + b =

α

h(1,α)
ah(a, k − b) + b ≥ k .

Theorem 11. The process

t → α

h(1,α)
(a− t)h(a− t, kt − b) + b , 0 ≤ t ≤ a

is a (Ft) - martingale. Due to (3.29), by comparing the values at t = 0 and t = τ , a

stopping time in the interval [0, a], we obtain the upper bound

(3.30)
α

h(1,α)
ah(a, k − b) + b ≥ w(a, b, k;−∞) .

For initial 0 ≤ a−
1
2 (k− b) ≤ α, the Brownian bridge Xt = (kt− b)/(a− t) reaches the curve

α
√
a− t at τα ∈ [0, a] with probability one and the bound is achieved for this stopping time,

proving (3.30) holds with equality. For initial a−
1
2 (k − b) > α, the optimal function (3.26)

is constant equal to k and is realized at τ = 0.

Proof. We have to show that t → (a − t)h(a − t, kt − b) is a martingale. The function

is non-negative. Modulo a deterministic linear part in t, a Brownian Bridge has a mean

zero Gaussian component represented by the stochastic integral in (3.6) with covariance

s ∧ t− sta−1. For a given t ∈ [0, a] the variance is t(a− t)a−1. Fubini’s theorem applied to

(3.21) when taking the expected value proves that E[(a− t)h(a− t, kt − b)] is always finite.

Ito’s formula gives the time component

−h(a− t, kt − b)− (a− t)
∂

∂a
h(a− t, kt − b)

+(a− t)
󰕉 ∂

∂u
h(a− t, kt − b)(−kt − b

a− t
) +

1

2

∂2

∂u2
h(a− t, kt − b)

󰕊

= − ∂

∂u
[uh(a− t, u)− (a− t)

∂

∂u
h(a− t, u)] = 0 , u = kt − b ,
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after noticing that for any a > 0, u ∈ R, the function h satisfies the equation

uh(a, u)− a
∂

∂u
h(a, u) =

󰔻 ∞

0

∂

∂λ
eλu−

λ2

2 adλ = −1 .

From here we apply the optional stopping theorem. To prove that as soon as a−
1
2 (k −

b) > α we have w(a, b, k;−∞) = k, we notice that in Theorem 10 (iii) the function u →
w(1, 0, u;−∞) − u is non-increasing in u. Since at u = α the function vanishes, and the

solution is trivially non-negative by adopting τ = 0 in (3.9), we are done. □

Let Xt be the Brownian bridge pinned at zero when t = 1, i.e. case a = 1 in (3.17). The

expected value of the process at the stopping time τc ∧ τ0 provides a lower bound for the

optimal function w(1, 0, u;u− k).

Formula (3.41) p. 265 in [5] gives the distribution function of τ0

(3.31) Fτ0(s) = Pu(τ0 ≤ s) = 1−Φ(b
√
t+

b+ u√
t
)+ e−2(b+u)bΦ(b

√
t− b+ u√

t
) , t =

s

1− s
.

Here and the next proposition we follow the convention from (3.17) that Eu[·] = E
(1,b)
(0,u)

[·].

Proposition 2. Based on the distribution functions Fτ0 and Fτc we can calculate

(3.32) Eu[Xτc∧τ01τc<1] = v̄(1, u, c)−
󰔻 1

0

(v̄(1− t,−b, c) + b)Pu(τc > t)dFτ0(t) ,

with lower bounds l2 ≥ l1 ≥ l0, in order of simplicity,

(3.33) l2 = v̄(1, u, c)−
󰔻 1

0

(c
√
1− t+ b)Pu(τc > t)dFτ0(t) ,

(3.34) l1 = v̄(1, u, c)− (c+ b)

󰔻 1

0

Pu(τc > t)dFτ0(t) ,

(3.35) l0 = v̄(1, u, c)− (c+ b)Pu(τ0 < 1) , Pu(τ0 < 1) = e−2(b+u)b .

Remark. 1) The Laplace transform of Fτc can be calculated in the same way as (3.20)

[2]. 2) Formula (3.20) calculates the expected value under the event that τc ≤ 1 (the event

τc = 1 has zero probability), which was shown to have probability one when 0 ≤ u ≤ c.

However, the function v̄ is well defined when u < 0. This is needed in the integrand of the

second term of (3.32) where the starting point −b after τ0 may be negative.
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Proof. Denote τ ′ = τc ∧ τ0 for simplification. In all relevant cases c > 0 and τc = τ0 has

zero probability. Then

(3.36) Eu[Xτ ′1τc<1] = Eu[Xτ ′1τc<1,τc<τ0 ] + Eu[Xτ ′1τc<1,τc>τ0 ]

= Eu[Xτc1τc<1,τc<τ0 ]− bPu(τc < 1, τc > τ0)

(3.37) = v̄(1, u, c)− Eu[Xτc1τc<1,τc>τ0 ]− bPu(τc < 1, τc > τ0) .

Since c > u guarantees τc < 1 with probability one, the probability in the last term

subtracted equals

(3.38) Pu(τc < 1, τc > τ0) =

󰔻 1

0

Pu(τc > t)dFτ0(t) ≤ Pu(τ0 < 1) = e−2(b+u)b ,

where the upper bound was obtained from (3.31) at t = +∞. Noting that {τc > τ ′} =

{τc > τ0}, the other term subtracted in (3.37) equals

Eu[Xτc1τc<11τc>τ ′ ] = Eu[1τc>τ ′Eu[Xτc◦θτ ′+τ ′1τc◦θτ ′+τ ′<1 | Fτ ′ ]]

=

󰔻 1

0

v̄(1− t,−b, c)Pu(τc > t)dFτ0(t)

which gives (3.32) after applying the strong Markov property for τ ′ since {τc > τc ∧ τ0} is

Fτ ′ - measurable. □

We recall the gain function g(m, p, k) = v(m, p, k)−k = w(a, b, k; 0)−k = a
1
2 (w(1, 0, u;u−

x)− u) from (3.16).

Proposition 3. Let ḡ(u, x) = (w(1, 0, u;u− x)− u)+.

(i) If u ≥ α, then ḡ(u, x) = 0 for any x ≥ 0.

(ii) If 0 ≤ u < α, there exists x∗ = x∗(u) ≥ u such that ḡ(u, x) > 0 for any x > x∗ and

ḡ(u, x) = 0 for any x ≤ x∗. In this case, for any c ≥ u, x ≥ u

(3.39) ḡ(u, x) ≥ v̄(1, u, c)− u− (c+ x− u)e−2x(x−u) ,

and for any c ∈ (u,α], the lower bound from (3.39) seen as a function of x has a unique

zero xc ∈ (u,∞), and the constant x∗ ≤ infc∈[u,α] xc. There exist values u for which the

infimum over c is obtained at c < α. Moreover, limu→α− infc∈[u,α] xc = +∞.
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Remark. 1) We may adopt c = α in (3.39) to obtain an estimate for x∗. The value

obtained by (3.39) is not optimal.

2) The limit of the upper bound of x∗(u) only says that our approximation (3.39) blows

up as u ↑ α. It is a conjecture that, in fact, limu→α− x∗(u) < +∞.

Proof. The stopping time τ ′ = τc ∧ τ0 provides a possible strategy and thus a lower bound

for the gain function is Eu[Xτ ′ ] − u. This is provided by the exact calculation (3.36),

noticing that b = x− u.

The integral in (3.32) is bounded above by

(3.40) cPu(τ0 < τc) ≤ cPu(τ0 < 1) = ce−2(b+u)b = ce−2x(x−u) .

and the other term subtracted in (3.37) is exact.

Since Eu[Xτc ] = Eu[Xτc1τc<τ0 ] + Eu[Xτc1τc≥τ0 ] and Xτc1τc<τ0 = Xτc∧τ01τc<τ0 , we have

the inequality

Eu[Xτc∧τ01τc<τ0 ] = Eu[Xτc ]− Eu[Xτc1τc≥τ0 ] ≥

Eu[Xτc ]− cPu(τ0 < 1) ≥ v̄(1, u, c)− cPu(τ0 ≤ 1) ,

since Xτc = c
√
1− τc ≤ c and τc ≤ 1 a.s. On the other hand

Eu[Xτc∧τ0 ] = Eu[Xτc∧τ01τc<τ0 ] + Eu[Xτc∧τ01τc≥τ0 ] ≥

v̄(1, u, c)− (c+ (x− u)+)Pu(τ0 ≤ 1) .

Equation (3.40) p. 240 in [5] shows that Pu(τ0 ≤ 1) = e−2x(x−u) as long as x > 0 and

x > u. The function x → v̄(1, u, c) − u − (c + x − u)e−2x(x−u) in (3.39) is considered only

for x ≥ u. Since v̄(1, u, c) − c < 0, it starts with a negative value at x = u. Its derivative

e−2x(x−u)[(4x − 2u)(c + x − u) − 1] cannot have two zeros on [u,∞), otherwise the vertex

of the parabola in brackets (3u − 2c)/4 < u < c would also be greater than u. Because

the derivative has at most one zero, the function starts with a negative value and ends as

x → ∞ with a positive value v̄(1, u, c) − u > 0, it is analytic (the zeros are not dense), it

follows that there exists exactly one zero in (u,∞). Since v̄(1, u, x)− u > 0 for 0 ≤ u < α,

we are done.

□

It is easy to see that u < 0 (i.e. m0 < p0), then any strategy produces a win with

probability one since the terminal point is zero, greater than u.
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Let x∗ be the constant obtained in (3.39) and c∗ the value for which it is achieved.

Theorem 12. A winning strategy for the continuum problem (3.9) with initial data (m, p, k)

is to calculate u = m−p√
m+p

and

(i) if u ≥ α then stop;

(ii) if 0 ≤ u < α, then play until kt − b = mt − pt ≥ c∗
√
mt + pt or kt = 0, whichever

occurs first, allowing the non-optimal but exponentially small probability of ruin.

Proof. After time scaling with a factor of a, (kat − x)/
√
a ≥ c

√
1− t is equivalent to

kt − b = mt − pt ≥ c
√
mt + pt for any c and thus for the optimum c∗ as well.

It is clear from (3.32) that for any c ≥ u

(3.41)

w(1, 0, u;−b)− u ≥ 0 ∨ v̄(1, 0, u;−b)− u , where v̄(1, 0, u;−b) = sup
c≥u

Eu[Xτc∧τ0 1τc≤1] .

Using Proposition 3 we optimize over c obtaining c∗. □

Finally we can formulate an approximate winning strategy for the discrete problem (3.2),

providing the best next move based on the current data.

Theorem 13. Let (M,P,K) be the current data and assume M + P is sufficiently large.

Calculate u = M−P√
M+P

> 0 and

(i) if u ≥ α then stop;

(ii) if 0 ≤ u < α, then check if K > x∗(u)
√
M + P ; if true continue, and if not, stop.

Proof. The discrete case is an approximation based on the continuum case.

Let X ⊆ C([0, a],R) be the subset of continuous paths ω pinned at zero at time t = a

and X0 ⊆ Ω be the subspace of paths killed at the exit time t0 = t0(ω) from the open set

bounded above by x = c
√
1− t and below by x = z, i.e. ω(t) ≡ ω(t0) for all t ≥ t0. This

time is finite, t0 ∈ [0, a] for ω ∈ Ω since the upper boundary is itself in X .

The trajectories of the discrete time process can be embedded in the space X0 by simple

linear interpolation, in the standard construction used to prove Donsker’s invariance prin-

ciple. Under the scaling (3.7), the family of processes {kNt }N>0 is tight (i.e. the laws are

compact in the sense of Prokhorov’s theorem). The limiting process (Xt), the Brownian

bridge killed upon exiting the region at t0, is also concentrated on the same path space X0.

Now consider a functional Φ on X defined by Φ(ω(·)) := ω(t0) = max{c
√
1− t0, z}. We

note that Φ is not continuous on X and X0 is not a closed subspace of X in the supremum
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norm topology. However, convergence still holds. From Portmanteau’s theorem on page

347 in [7], it follows that for a measurable functional Φ(ω(·)) on Ω0 we have

(3.42) lim
N→∞

E[Φ(kN· )] = E[Φ(X·)]

as soon as Φ(·) is bounded and continuous at all points in X0 and the probability law PX

of the limiting process (X·) satisfies PX(X0) = 1.

It is sufficient to see that Φ(ω(·)) := ω(t0) = max{c
√
1− t0, z} is bounded by c∨ |z| and

is continuous on the set of killed paths X0. If two paths are within distance 󰐄 from each

other in the uniform norm, based on the fact that the exit time from the region is actually

in the interval [0, a], we can pick the one exiting first. From there on, the other path must

exit at a point which necessarily is within 󰐄 of the exit value of the first one, since the

first path remained constant. The functional Φ defines the value of the game for both the

discrete (kNt ) and continuous limit (Xt). Since Proposition 3 proves a lower bound for the

continuous limit, we obtained that the approximate strategy (i)-(ii) is a winning strategy

as N = M + P is large. □

We are ready to complete the proof of Theorem 1 in the discrete model version.

Proof of Theorem 1. 1) The existence of a critical k(m, p) is a consequence of Theorem 6

which shows that the net gain function is nondecreasing in k. It is sufficient to find a value

k with positive net gain. Part 2) of the proof will prove the existence of such a k and the

upper bound for its minimal value as p → ∞.

2) We denote z = (m − p)/
√
2p and we have z < α in the hypothesis. The ratio

u = (m− p)/
√
m+ p from Proposition 3 will then satisfy u < α. This gives

u = u(z) = z(1 +
z√
2p

)−
1
2 = z(1− z

2
√
2p

+
3z2

16p
. . .) .

Let x(u) be the solution of the equation in x of the lower bound from (3.39) set equal to

zero. Any c ≥ α in the formula would provide a lower bound, so we may take the extreme

case c = α. More precisely x(u) is the solution of

v̄(1, u,α)− u− (α+ x− u)e−2x(x−u) = 0 , u = z(1 +
z√
2p

)−
1
2 .

It is then sufficient to take

(3.43) c(p) = sup
z<α

x(u(z))(1 +
z√
2p

)
1
2
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such that k ≥ c(p)
√
2p implies G(m, p, k) > 0. For large p, the function maximized in the

formula for c(p) is an increasing function in z, which leads to

c(p) = x(u(α))(1 +
α√
2p

)
1
2 ,

which is, as expected, the case when m = p+α
√
2p. From (3.23) we know that v̄(1, u,α)−

u ≈ 1
2g

′′(1, 0,α)(α − u)2, with g′′(1, 0,α) = 2α, which gives the asymptotic value of x(u),

now a function of p only,

α󰐄2 − (󰐄+ x)e−2x(x−α+󰐄) = 0 , 󰐄 =
α2

2
√
2p

.

The function in the equation is increasing in x, giving a sufficient lower bound x ≥ xδ

where xδ is the solution of the simpler equation α󰐄2−e−(2−δ)x2
= 0, for any δ > 0 sufficiently

small. Inverting xδ, letting δ ↓ 0 and using the relation between 󰐄 and p we obtain the

sufficient condition

c(p) ≥

󰕔

− lnα

2
+ ln

2
√
2

α2
+

1

2
ln p ,

which implies the lower bound (1.6).

3) To prove the second bound of the theorem when m ≤ p + α0

√
2p we simply notice

that in that case c(p) defined in (3.43) has limit x∗(α0) as p → ∞ because the supremum

is taken over values z ≤ α0 < α.

4. Open problems

The summary of the current results given above Theorem 1 points out to a a few open

questions. Assume m ≥ p and p is large. If m ≥ p + α
√
2p, then V (m, p) = 0 and

V (m, p, k)− k = 0. We concentrate on the case p ≤ m < p+ α
√
2p corresponding to (iv).

In this case we know that V (m, p) > 0. Since

(4.1) 0 ≤ V (m, p, k)− k ≤ V (m, p) ,

a question is: What are the largest values of k for which 1) the first inequality is an equality,

and then 2) the second inequality is strict, respectively? Denote by k1(p) and k2(p) the

two values. If k ≤ k1(p) the second equality cannot take place, so k ≤ k2(p), implying that

k1(p) ≤ k2(p). We know that k > m implies k > k2(p), so we have

k1(p) ≤ k2(p) ≤ m < p+ α
󰕑

2p .

Theorem 2 proves that k1(p) is at most of order
√
p ln p.
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Suppose γ ∈ (0,α) and m ≈ p+ γ
√
2p. Then what are k1, k2 seen as functions of γ?

Some numerical computation seems to support that, in fact, G(m, p, k) < V (m, p) if

k ≤ m, conjecturing that k2(p) = m ≈ p + α
√
2p whenever (m, p) ∈ C. However we don’t

have a proof for the strict inequality, G(m, p, k) < V (m, p) if the (m, p) urn is in C.
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