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Abstract. In a bounded open region of the d dimensional space we consider a Brownian

motion which is reborn at a fixed interior point as soon as it reaches the boundary. The

evolution is invariant with respect to a density equal, modulo a constant, to the Green

function of the Dirichlet Laplacian centered at the point of return. We determine the re-

solvent in closed form and prove the exponential ergodicity by Laplace transform methods

using the analytic semigroup properties of the Dirichlet Laplacian. In d = 1 we calculate

the exact spectrum of the process and note that the principal eigenvalue is equal to the

second eigenvalue of the Dirichlet Laplacian, correcting an error from a previous paper.

The method can be generalized to other renewal type processes.

1. Introduction

This paper generalizes to higher dimensions the results of [7]. Let R be a bounded open

region in Rd with a smooth boundary (to make things precise, of class C2) such that the

origin O ∈ R. For x ∈ Rd, let Wx = (wx(t, ω), {Ft}t≥0) be a Brownian motion on Rd such

that P (wx(0, ω) = x) = 1. On the regionR, for any x ∈ R, we define a process {zx(t, ω)}t≥0

with values in R which is identical to a standard d dimensional Brownian motion until the

almost surely finite time τ when it reaches the boundary, then instantaneously returns to

the origin O at τ and repeats the same evolution indefinitely. This is the multidimensional

version of the problem described in [7], which may be called Brownian motion with rebirth,

since after emulating the Brownian motion with absorbing boundary conditions (in other
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words, killed at the boundary) it is reborn at the origin. The state space can be shown

to be compact with the topology described in (2.14) creating a shunt at the return point.

As a consequence, the dynamics has an invariant measure. We identify it as the Green

function for the Laplacian with pole at ξ = 0, modulo a normalizing factor, and prove the

exponential ergodicity in Theorem 1. The key part of the proof consists in establishing that

the semigroup corresponding to the rebirth process is analytic, that is, proving estimate

(2.23).

In section 7.4 of [10] the average time a Brownian motion starting at x spends in the

set B ⊂ R before hitting the boundary is determined as 2
∫
B G(x, y)dy. Our particle will

repeat the trip from the origin to the boundary indefinitely and will stabilize in time,

by ergodicity, towards the measure which gives the mean value over all configurations.

The proof is analytic and uses essentially the conditions needed to carry out the contour

integration in the complex plane in order to calculate the inverse Laplace transform (based

on Proposition 3), which are the same as the sufficient conditions for an analytic semigroup

from Theorem 7.7 in [12], applied to the Dirichlet Laplacian.

There are two venues for applications of the rebirth process.

The first originates in a variant of the Fleming-Viot branching process introduced in [1]

and studied further in [8]- [9]. Assume that the singular measure δO giving the distribution

of the rebirth location of the Brownian particle is replaced by a time-dependent determin-

istic measure µ(t, dx). The tagged particle process from [9] is an example in the case when

µ(t, dx) is the deterministic macroscopic limit of the empirical measures of a large system of

Brownian particles with branching confined to the region R. In particular, in equilibrium,

the updating measure µ(t, dx) is constant in time, being equal to µ(dx) = Φ1(x)dx, the

probability measure with density equal to the first eigenfunction of the Dirichlet Laplacian

(normalized). The closed formula (2.22) captures the renewal mechanism imbedded in the

process. The estimates needed for the Laplace transform inversion formula are easier to

obtain in an L2 norm than in the uniform norm. A reference in that direction is again [12].

The proofs presented in this paper are easy to modify in order to include the L2 case. More

precisely, it should be pointed out that when the measure µ(dx) has a density in L2(R)

part of the analysis carried out for establishing (3.4)-(3.6) is simplified due to the explicit

form of the resolvent of the Dirichlet Laplacian in the square norm.
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The degeneracy of the update distribution at the origin gives a local (pointwise) character

which increases considerably the difficulty of the problem. In that sense, one needs the

analytic semigroup results from Stewart [13] and [14].

The second application is coming from mathematical finance. If {S(t)}t≥0 denotes the

asset process in a model for the derivative markets, then log S(t) is typically assumed to

follow the path of a geometric Brownian motion (see [3], also [6]). The double knock-out

barrier options have payoff equal to S(t) as long as it belongs to a region R with the

prescription that it falls back to zero as soon as the barrier or boundary is reached and

starts again.

In any dimension, Theorem 1 (i) describes the spectrum 0 = λ0 > λ1 ≥ λ2 ≥ . . . of

the generator of the process as a subset of singularities appearing in the resolvent formula

(2.22), and the existence of a spectral gap is established (ii). In dimension d = 1 we are

able to calculate the spectrum of the generator of the process exactly, and show that the

spectral gap is equal to the second eigenvalue of the Dirichlet Laplacian λ1 = λabs
2 . This

corrects an incorrect statement from [7], which is only true in one direction, namely that

the spectral gap is at least equal to λabs
1 , or more precisely λ1 ≤ λabs

1 (in d = 1).

2. Results

We shall denote by (Ω,F , P ) a probability space supporting the law of the family of

d-dimensional coupled Brownian motions indexed by their starting points x ∈ R. Let A be

an open region in Rd and x ∈ A. In general we shall use the notation

(2.1) Tx(A) = inf{t > 0 : wx(t, ω) /∈ A} ,

the exit time from the region A for the Brownian motion starting at x. Occasionally we

shall suppress either x or the set A if they are unambiguously defined in a particular

context. We shall define inductively the increasing sequence of stopping times {τn}n≥0,

together with a family of adapted nondecreasing point processes {Nx(t, ω)}t≥0 and the

process {zx(t, ω)}t≥0, starting at x ∈ R. Let Tx = τ0 = inf{t : wx(t, ω) /∈ R}, while for

t ≤ τ0 we set Nx(t, ω) = 1{∂R}(wx(t, ω)) and zx(t, ω) = wx(t, ω)−∫ t
0 wx(s, ω)dNx(s, ω). We

notice that zx(τ0−, ω) = wx(τ0, ω) ∈ R. By induction on n ≥ 0,

(2.2) τn+1 = inf{t > τn : wx(t, ω)−
∫ τn

0
zx(s, ω)dNx(s, ω) /∈ R}
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which enables us to define, for τn < t ≤ τn+1,

(2.3) Nx(t, ω) = Nx(τn, ω) + 1{∂R}(zx(t−, ω)) ,

as well as

(2.4) zx(t, ω) = wx(t, ω)−
∫ t

0
zx(s, ω)dNx(s, ω) .

We notice that zx(t, ω) = 0 for all t = τn. The construction and the summations present in

(2.2) and (2.4) are finite due to the following result.

Proposition 1. The sequence of stopping times τ0 < τ1 < . . . < τn < . . . are finite for all n

and limn→∞ τn = ∞, both almost surely. Also, the integer-valued processes Nx(t, ω) defined

for t ≥ 0 have the properties (i) they are nondecreasing, piecewise constant, progressively

measurable and right-continuous, and (ii) for any x ∈ R, P (Nx(t, ω) < ∞) = 1.

Proof. By monotonicity, since the expected value of the first exit time from a ball centered

at the origin is finite in any dimension d (for example, in [15]), we deduce that E[T ] < ∞.

As a consequence, T = Tx < ∞ a.s.. The time intervals between τn and τn+1 (we include

τ−1 = 0), for any n ≥ −1 are either Tx for the first exit time or independently identically

distributed as T0 for all the rest. Since P (Tx = 0) = 0 for any x ∈ R the sequence is strictly

increasing. Moreover, E[τn] < ∞, which implies P (τn < ∞) = 1. The differences τn+1− τn

are i.i.d. when n ≥ 0 which shows that limn→∞ τn
n > 0 implying that τn →∞ a.s..

The processes Nx(t, ω) ≥ 0 are clearly nondecreasing, integer-valued and piecewise constant.

They are right-continuous by construction (2.3) preserving the same value until the next

boundary hit. Progressive measurability is a consequence of the fact that the first exit

times {τn} are stopping times. ¤

Let A ∈ B(R) and pabs(t, x, y) denote the absorbing Brownian kernel

(2.5)
∫

A
pabs(t, x, y)dy = P

(
wx(t, ω) ∈ A , t < Tx(R)

)
.

The operator ∆ with Dirichlet boundary conditions on ∂R has a countable spectrum

{λabs
i }i≥1

(2.6) 0 > λabs
1 ≥ λabs

2 ≥ . . .
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with corresponding eigenfunctions {Φn(x)} and

(2.7) pabs(t, x, y) =
∞∑

n=1

exp
(λabs

n t

2

)
Φn(x)Φn(y) .

The functions {Φn(x)} are smooth and form an orthonormal basis of L2(R) (reference [10],

or [4], (6.5)). The resolvent of the absorbing Brownian motion applied to f ∈ C(R) will be

denoted by

(2.8) Rabs
α f(x) =

∫ ∞

0

∫

R
e−αtpabs(t, x, y)f(y)dydt .

In the following, the Laplace transform of the first exit time Tx(R) from the domain R
of a Brownian motion starting at x will be denoted by

(2.9) ĥx(α) = Ex[e−αTx(R)] =
∫ ∞

0
e−αthx(t)dt .

where hx(t) is the density function of Tx(R). The Laplace transform (2.9) exists on the

complex plane for all α with <(α) > λabs
1 (see, in that sense, the remark following Theorem

1) and can be extended (page 211, [16]) to the resolvent set.

The law of the process {zx(t, ω)}t≥0, adapted to {Ft}t≥0 will be denoted by Qx and the

family of processes {Qx}x∈R will be denoted simply by {Q}. The construction described

by equations (2.2) through (2.4) can be made deterministically for any x ∈ R and each

path wx(·) ∈ C([0,∞),Rd) resulting in a mapping preserving the progressive measurability

(2.10) Φ(wx(·)) = wx(·)−
∫ ·

0
wx(s, ω)dNx(s, ω) .

With this notation Φ : C([0,∞),Rd) → D([0,∞),R) and Qx = Wx ◦ Φ−1 is the law of

the process {zx(t, ω)}t≥0 with values in the region R, a measure on the Skorohod space

D([0,∞),R).

Let m ∈ Z+, α = (α1, α2, . . . , αd) ∈ Zd
+ be a d dimensional multi-index vector and we write

|α| = ∑d
i=1 αi. If A ⊆ Rd and f : A → R, we use the standard notation

∂(α)f(x) =
∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαd
d

(x)

if the derivative exists. Naturally Cm(A) is the set of functions for which all derivatives

with multi-indices α such that |α| ≤ m exist and are continuous. We recall that the process

{zx(t, ω)}t≥0 is adapted to the filtration {Ft}t≥0 corresponding to the underlying standard

d-dimensional Brownian motion.

5



Proposition 2. If f ∈ C2(R) ∩ C(R), then

(2.11) f(zx(t, ω))− f(x)−
∫ t

0

1
2
∆f(zx(s, ω))ds−

∫ t

0
(f(0)− f(zx(s, ω))dNx(s, ω)

is a Ft - martingale with respect to Qx.

Proof. The proof is identical with the d = 1 case from [7]. ¤

Let

(2.12)
D =

{
f ∈ C2(R) : ∀ |α| ≤ 2 , ∃ limx→b ∂(α)f(x) ∈ R , b ∈ ∂R

}

D0 =
{

f ∈ D : ∀ b ∈ ∂R , limx→b f(x) = f(0)
}

.

Corollary 1. If f ∈ D0 then

(2.13) f(zx(t, ω))− f(x)−
∫ t

0

1
2
∆f(zx(s, ω))ds

is a Ft - martingale with respect to Qx.

The next result allows us to regard {zx(t, ω)}t≥0 as a process with continuous paths on the

compact state space X obtained by identifying the boundary ∂R and the origin O.

Let X = R with the topology T generated by the neighborhood basis

(2.14)
Vx,r =

{
B(x, r) : ∀r > 0 such thatB(x, r) ⊂ R \ {0}

}
if x 6= 0

V0,r =
{

B(0, r) ∪
(
∪b∈∂R (B(b, r) ∩R)

)
: r ∈ (0, 1

2d(x, ∂R))
}

if x = 0 .

Remark: The space (X, T ) is compact and homeomorphic to a sphere in Rd+1 with the

North and South poles identified. The boundary conditions from below introduce a shunt

at the origin which is responsible for the intrinsic asymmetry of the evolution.

We define the class of functions of class C2 up to the boundary {0} of X \ {0}

(2.15) D(X) = {f ∈ C2(X \ {0}) : ∃ lim
x→y

∂(α)f(x) ∈ R , 0 ≤ |α| ≤ 2 , y ∈ {0} ∪ ∂R}

with the notational convention that the one-sided limit limx→y g(x) is defined as limx→y g(x)

in the topology inherited from Rd by the set B(0, r) ⊆ R, r > 0, in the case of y = 0 and

X ∩B(y, r), if y ∈ ∂R.

The inclusion mapping I : D(X) → D is defined as D(X) 3 f −→ I(f) ∈ D, where

I(f)(x) = f(i(x)) and i(x) = x is the identification mapping from R to X.
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Under the inclusion mapping I : D(X) → D we define the domain

(2.16) D0(X) =
{

f ∈ D(X) : ∀b ∈ ∂R lim
x→0

f(x) = lim
x→b

f(x)
}

.

Corollary 2. Let Q̂x = Qx ◦ i−1 be the measure induced on C([0,∞), X) by i : R → X.

Then, Q̂x solves the martingale problem for the Markov pregenerator

(2.17) L = (
1
2
∆X ,D0(X))

with the convention that ∆Xf = ∆I(f) for any f ∈ D0(X).

Remark 1. The intrinsic asymmetry of the process with respect to the direction the Brow-

nian motion enters the origin is given by the boundary conditions on X \ {0}. The domain

is composed of functions which are C2 up to the boundary {0}; yet the one-sided limits on

the ‘south pole’ neighborhood are equal, ensuring C2 regularity on the lower sheet of the

domain, while the one-sided limits on the ‘north pole’ (that is, the boundary inherited from

∂R) are non necessarily equal, with the exception of the multi-index |α| = 0 which ensures

continuity.

Remark 2. We note that the domain D0 of the original process on R is not dense in C(R).

Proof. The argument does not change with d > 1 and is presented in [7]. We refer to

[11] for the definition of a Markov pregenerator. The properties of f ∈ D0(X) ensure that

D0(X) = C(X). In addition, we have to show that if x is a maximum point for f , then

∆f(x) ≤ 0. If x 6= 0, this is a consequence of Taylor’s formula about x. At x = 0 we can

still apply the standard argument which shows that ∇f(0) = 0 because it only depends on

the ball B(0, r), which is a subset of a neighborhood of the origin in (X, T ) as well, and

then necessarily ∆Xf(0) ≤ 0. The rest is immediate from Proposition 2. ¤

In the following we shall use the notation ‖f‖C(R) for the supremum norm of the bounded

function f and we assume that the domain R has boundary ∂R ∈ C2. We also recall that

the Laplace transform of the first boundary hit (2.9) is analytic on the resolvent set of the

Dirichlet Laplacian (2.6) due to the analyticity of the resolvent all over the resolvent set

([16]).
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Given φ ∈ (π
2 , π), we denote by U0(φ) = U0 the sector of the complex plane containing

the positive real axis and bounded by the two half-lines (x,± tan(φ)x) for x ≤ 0 and, for

R > 0, we denote by U0(R,φ) the truncated sector

(2.18) U0(R, φ) =
{

α : |arg(α)| < φ , |α| > R
}

.

Theorem 1. Let P (t, x, dy) be the transition probability for the process {Qx}x∈R. For any

t > 0 the measure P (t, x, dy) is absolutely continuous with respect to the Lebesgue measure

on R and, if Nx(t, ω) is the total number of visits to the boundary up to time t > 0, its

probability density function p(t, x, y) is given by

(2.19) p(t, x, y) = pabs(t, x, y) +
∫ t

0
pabs(t− s, 0, y)dE[Nx(s, ω)]

where

(2.20) E[Nx(s, ω)] =
∞∑

n=1

P (Nx(s, ω) ≥ n) =
∫ s

0

∞∑

n=1

(hx ∗ (h0)∗ , n−1)(r)dr

and satisfies the properties:

(i) for f ∈ C(X), the contraction semigroup

(2.21) Stf(x) =
∫

R
p(t, x, y)f(y)dy

maps continuous functions into continuous functions (generating a Feller process). The

spectrum σ of the infinitesimal generator of (2.21) is contained among the eigenvalues of

the Dirichlet Laplacian (2.6), the zeros of 1 − ĥ0(α) and there exist φ ∈ (π
2 , π), R > 0

and M > 0 such that the resolvent set %(L) includes the union of (λabs
1 ,∞) \ {0}, the right

half-plane <(α) > 0 and the truncated sector U0(R, φ) from (2.18).

The resolvent Rαf =
∫∞
0 e−αtStfdt of (2.21) is a meromorphic function on the resolvent

set of the Dirichlet Laplacian with a simple pole at λ0 = 0

(2.22) Rαf(x) = Rabs
α f(x) + Rabs

α f(0)
ĥx(α)

1− ĥ0(α)

satisfying

(2.23) ‖Rαf‖C(R) ≤
M

|α|‖f‖C(R) ∀ α ∈ U0(R, φ) ,

(ii) the residue at α = 0 has kernel

(2.24) ρ(y) =
G(0, y)∫

RG(0, y)dy
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where G(x, y) is the Green function of the Laplacian with Dirichlet boundary conditions and

(iii) if α∗ is the nonzero element of the spectrum σ with maximal real part, then

sup
α∈σ\{0}

<(α) = <(α∗) < 0

and, for any f ∈ D0(X)

(2.25) lim
t→∞

1
t

log
(

sup
‖f‖C(R)≤1

‖Stf(x)−
∫

R
ρ(x)f(x)dx‖C(R)

)
= <(α∗) .

Corollary 3. The process {Q} is exponentially ergodic.

Remark. The function defined by (2.9) has an analytic continuation on the resolvent set

of the Dirichlet Laplacian, and can be re-written directly in terms of the resolvent Rabs
α as

shown in equations (3.1)-(3.2).

3. Proof of Theorem 1

Proof. (i) The derivation of (2.19) does not depend on the dimension d ∈ Z+ hence we can

refer to the proof of Theorem 1 in [7] directly.

By definition, the Laplace transform of a function g(t) is equal to ĝ(α) =
∫∞
0 e−αtg(t)dt

whenever the integral converges. From equation (2.5) P (Tx > t) =
∫
R pabs(t, x, y)dy we see

that

(3.1) ĥx(α) = E
[
e−αTx

]
= −

∫ ∞

0
e−αtdP (Tx > t) .

For <(α) > 0, we derive

(3.2) ĥx(α) = −
∫

R
e−αtpabs(t, x, y)dy

∣∣∣
∞

0
− αRabs

α 1(x) = 1− αRabs
α 1(x)

where 1(x) is the constant function equal to 1 and Rabs
α is the resolvent of the half Laplacian

with Dirichlet boundary conditions (the infinitesimal generator of the absorbing Brownian

motion) from (2.8). If <(α) > 0 and arbitrary x ∈ R we immediately have |ĥx(α)|C < 1.

Relation (2.19) is derived in [7] for d = 1 but the proof is identical in higher dimensions.

With this in mind, for <(α) > 0, we obtain from (2.19) and the formula (2.20) established

in [7] that ∫

R
p̂(α, x, y)f(y)dy =

∫

R
p̂abs(α, x, y)f(y)dy +
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+
∫

R
p̂abs(α, 0, y)f(y)dy

̂( ∞∑

n=1

(hx ∗ (h0)∗ , n−1)
)
(α)

=
∫

R
p̂abs(α, x, y)f(y)dy +

∫

R
p̂abs(α, 0, y)f(y)dy

( ∞∑

n=1

ĥx(α)(ĥ0(α))n−1
)

which proves (2.22) on {α : <(α) > 0} in the form

(3.3) Rαf(x) = Rabs
α f(x) + Rabs

α f(0)
1− αRabs

α 1(x)
αRabs

α 1(0)
.

For any f ∈ D0(X) the resolvent Rabs
α f(x) is analytic on C \ {λabs

n : n ≥ 1} ([16], page

211, applied to the generator of a semigroup), which implies that (3.3) can be extended as

a meromorphic function outside the spectrum (2.6) of the Dirichlet Laplacian.

We shall use the results on analytic semigroups generated by strongly elliptic operators

under Dirichlet boundary condition from [13] and [14]. The domain of Dirichlet Laplacian

is not dense in C(R) in the uniform convergence norm, yet there exists a φ0 ∈ (π
2 , π) for

which C(R) belongs to the domain of the resolvent operator for any α in U0. Moreover,

there exist R0 > 0 and Mabs > 0 such that the main estimate for analytic semigroups (see

[12] and [16])

(3.4) ‖Rabs
α f‖C(R) ≤

Mabs

|α| ‖f‖C(R) for all α ∈ U0(R0, φ0)

is valid.

We want to extend the estimate (3.4) to the resolvent (3.3) to obtain (2.23). We prove that

αRαf(x) stays bounded for α ∈ U0(R, φ) ⊆ U0(R0, φ0). It is sufficient to show that there

exist a radius R′ ∈ [R0,∞), an angle φ′ ∈ (π
2 , φ0] and a constant M̃ > 0 such that

(3.5) sup
α∈U0(R′,φ′)

sup
x∈R

∣∣∣αRabs
α f(0)

1− αRabs
α 1(x)

αRabs
α 1(0)

∣∣∣ ≤ M̃‖f‖C(R) .

Since |αRabs
α f(0)| can be bounded using (3.4) we only have to show that

(3.6) sup
α∈U0(R′,φ′)

sup
x∈R

∣∣∣1− αRabs
α 1(x)

∣∣∣ < ∞

and

(3.7) inf
α∈U0(R′,φ′)

∣∣∣αRabs
α 1(0)

∣∣∣ > 0 .
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The resolvent identity applied to the constant function 1 for α, β ∈ %(L) reads

Rabs
β 1−Rabs

α 1 = (α− β) Rabs
β (Rabs

α 1)

and implies

(3.8)
(
I − (

1− β

α

)
αRabs

α

)(
βRabs

β 1− 1
)

= αRabs
α 1− 1 .

Let β = |α|. Since we have ‖αRabs
α ‖ ≤ Mabs in the operator norm from C(R) to C(R),

then for all α in the truncated sector U0(R0, φ0),

‖(I − (
1− β

α

)
αRabs

α

)‖ ≤ (
1 + 2Mabs

)
= M1 .

Therefore,

(3.9) ‖αRabs
α 1−1‖C(R) = ‖(I−(

1− β

α

)
αRabs

α

)(
βRabs

β 1−1
) ‖C(R) ≤ M1 ‖βRabs

β 1−1‖C(R) .

Since β > 0 we can write βRabs
β 1(x)−1 = −ĥx(β) from equation (3.2). The uniform bound

for (3.6) is hence equal to

(3.10) M1 sup
α∈U0(R′,φ′)

sup
x∈R

E[e−|α|Tx ] ≤ M1

for any R′ ≥ R0 and φ′ ∈ (π
2 , φ].

Assume that (3.7) is false for any U0(R′, φ(R′)) where R′ > R0 and φ(R′) ∈ (π
2 , φ0]

is of the form φ(R′) = π
2 + arcsin( 1

R′ ). Let Rn → ∞. Then, there exists a subsequence

{nk}k≥1 such that {αnk
} ∈ U0(Rnk

, φ(Rnk
)) violates the lower bound (3.7). The domain

U0(R′, φ(R′)) is closed to complex conjugation and the complex norm from (3.7) is invariant

to conjugation. This shows that we can assume, without loss of generality, that =(αnk
) > 0.

For simplicity we subindex the subsequence by n as well.

We write αn = rn exp
(
i(π

2 + εn)
)
. Naturally rn ≥ Rn → ∞ and also εn < arcsin( 1

Rn
).

On the other hand, we can select a subsequence such that lim inf εn = 0. Otherwise there

exists ε > 0 such that εn ≤ −ε for large enough n. This, together with the inequality

|αnRabs
αn

1(0)| ≥ 1− |ĥ0(αn)| derived from (3.2) and

lim
n→∞ |ĥ

0(αn)| ≤ lim
n→∞E[e−rn cos (π

2
−ε)T0 ] = 0

would imply a contradiction with the assumption on {αn}. We have shown that εn → 0.

Equation (3.8) can be re-written in the form

(3.11)
β

α

(
βRabs

β 1(x)− 1
)

+
(
1− β

α

)(
I − αRabs

α

)(
βRabs

β 1(x)− 1
)

= αRabs
α 1(x)− 1 .
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Choose

βn = rn exp
(
i(

π

2
− δn)

)

with δn = arcsin( 1√
rn

). Then the second term from (3.11) applied to x = 0

∣∣∣
(
1− β

α

)(
I − αRabs

α

)(
βRabs

β 1(0)− 1
)∣∣∣

has the upper bound
∣∣∣1− β

α

∣∣∣‖I − αRabs
α ‖‖βRabs

β 1(0)− 1‖C(R) ≤
∣∣∣1− β

α

∣∣∣(1 + Mabs)M1

where we used (3.4) for the operator norm and (3.9)-(3.10) for the uniform norm. This

term vanishes as n →∞ since
∣∣∣1− βn

αn

∣∣∣ ≤ 2
∣∣∣ sin( δn+εn

2 )
∣∣∣.

The first term in (3.11) at x = 0 satisfies the bound
∣∣∣βn

αn

(
βnRabs

βn
1(0)− 1

)∣∣∣ ≤
∣∣∣βnRabs

βn
1(0)− 1

∣∣∣ ≤

E
[
e−<(βn)T0

]
= E

[
e−(rn sin(δn))T0

]
= E

[
e−
√

rnT0

]
→ 0 .

These estimates show that as n → ∞, the left hand side of (3.11) vanishes meanwhile

the right hand side approaches −1 by the assumption made on the sequence {αn}, which

is a contradiction. This concludes the proof of (3.7).

On the real axis, the function ĥ0(α) is the Laplace transform of the first hitting time

of the boundary, equal to 1 at α = 0 and non-increasing on (λabs
1 ,∞). The function is

analytic wherever Rabs
α is analytic, hence 1 − ĥ0(α) has no other zeros on a neighborhood

of (λabs
1 ,∞).

Since Rabs
α f is analytic in the union of U0 with the right half-plane <(α) > λabs

1 , the

denominator 1− ĥ0(α) from (3.3) has only isolated zeros. We conclude that all singularities

of the resolvent Rα contained in the resolvent set of the Dirichlet Laplacian are poles

coinciding with the zeros of the denominator.

(ii) and (iii). We can compute the residue at α = 0. Multiplying (2.22) by α, we get

αRαf(x) = αRabs
α f(x) +

αRabs
α f(0)

αRabs
α 1(0)

(1− αRabs
α 1(x))

Since Rabs
α f is analytic in a neighborhood of α = 0, it is enough to figure out the limit of

αRαf(x) as α → 0 along the positive real axis. By dominated convergence, or directly from

12



the continuity of the resolvent Rabs
α at α = 0, we see that limα→0+ αRabs

α f(x) = 0, and that

lim
α→0+

αRabs
α f(0)

αRabs
α 1(0)

=

∫
RG(0, y) f(y) dy∫
RG(0, y) dy

=
∫

R
ρ(y) f(y) dy

where ρ(y) = G(0, y)(
∫
RG(0, y) dy)−1.

All singularities, with the exception of zero, have negative real part. First, the sin-

gularities must be among the zeros of the denominator αRabs
α 1(0) = 1 − ĥ0(α) since the

resolvent (3.3) is a meromorphic function on U0 and the numerator is analytic. If <(α) > 0

then |ĥ0(α)| < 1. The case α = ik, with k ∈ R is equivalent to showing that the Fourier

transform of a probability density function f(t) can never attain the value one except at

k = 0. The transform is
∫∞
0 e−iktf(t)dt = 1 implies that

∫∞
0 (1 − cos(kt))f(t)dt = 0, a

contradiction. Let α∗, α∗∗ be the nonzero elements of the spectrum with the largest two

values of the real part, that is 0 > <(α∗) > <(α∗∗).

Let ε be a positive number, chosen sufficiently small to satisfy the following construction.

There exists a positive constant R∗
0 > max(R0, 2<(α∗∗)/ cosφ∗) and an angle φ∗ ∈ (π

2 , φ)

such that we can construct a piecewise smooth, continuous non-intersecting infinite contour

Lε with the following properties:

(1) Lε coincides with the half-lines {(x,± tan(φ∗)x) : x < 0} for |α| > R∗
0 ≥ R′, where

R′ is given in (3.5),

(2) supα∈Lε
<(α) ≤ <(α∗∗) + ε

2 ,

(3) the sets σ \ {α∗} and {α∗, 0} are separated by Lε, such that {α∗, 0} is contained in

the same component as the positive real axis,

(4) there exists a constant C > 0, independent of ε, such that the length of the contour

segment Lε ∩B(0, R∗
0) is bounded above by CR0.

The proof of part (iii) is analogous to that of part (iii) in Theorem 1 in [7]. Let R > R∗
0.

We denote by A± = (R cos(φ∗),±R sin(φ∗)) and B± = (α0,±R sin(φ∗)).

Proposition 3 provides an inversion formula for the resolvent Rα. For α0 > 0

(3.12) Stf(x) =
1

2πi

∫ α0+i∞

α0−i∞
eαtRαf(x)dα .

Apply Proposition 4 to f → Rαf and both poles ζ0 → 0 and ζ0 → α∗, with ζ ′1 = <(α∗∗)+ ε
2 ,

ζ1 = <(α∗∗) + ε < <(α∗), ζ2 = α0 − ε, and ζ ′2 = α0 − ε
2 , taking sectors with sufficiently

large aperture to include the infinite region to the left side of Lε. Notice that the bound

M in the proposition is a bound in operator norm, that is ||Rαf || ≤ M ||f ||. At α = 0 the
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resolvent has a simple pole, and let m be the (possibly greater than one) multiplicity of the

pole at α = α∗. Combining formulas (3.18) and (3.19) for the multiple pole α∗, we write

F∗(t, f)(x) = eα∗t
(
C1f(x) +

t

1!
C2f + . . . +

tm−1

(m− 1)!
Cmf

)
+ EF (t, f)(x)

with the error term EF (t, f)(x) such that sup||f ||≤1 ||EF (t, f)(x)|| ∼ o(e<(α∗∗)+εt) and Ci,

1 ≤ i ≤ m are bounded linear operators. Then, from the Cauchy formula,

(3.13) |Stf(x)−Res(0; eαtRαf(x))− F∗(t, f)(x)| ≤
1
2π

∣∣∣
∫

A−A+

eαtRαf(x)dα
∣∣∣ + E(t, R)‖f‖ .

The error term is the sum of the integrals over the horizontal segments A+B+ and A−B−,

which approach zero for large R, plus as the error corresponding to the infinite branches

|=(α)| >> R sin(φ∗) in the principal value (3.17). More precisely, there exists a positive

constant C0 independent of ε, t such that E(t, R) ≤ C0R
−1eα0t for any t.

Due to properties (1) - (4), the integral over A−A+ from (3.13) is bounded above by

(3.14) e(ε+<(α∗∗))t ‖f‖
(
M1(ε) + M2(ε, t)

)

where M1(ε) = (2π)−1CR0

(
supα∈B(0,R∗0)∩Lε

‖Rα‖
)

and

(3.15) M2(ε, t) =
(M̃ + Mabs)

πR∗
0

∫ ∞

R∗0
e[r cos φ∗−(ε+<(α∗∗))]tdr ≤ 2(M̃ + Mabs)

πR∗
0| cosφ∗|t e[−R∗0| cos φ∗|t

2
] .

In (3.15) we used (3.4)-(3.5) for the resolvent (3.3). We can further bound M2(ε, t) by a

constant M2(t0), independent from ε and t > t0. Finally, if M(ε, t0) = M1(ε) + M2(t0), we

have shown that

(3.16)
∣∣∣Stf(x)−

∫

R
ρ(y) f(y) dy − F∗(f)(x)

∣∣∣ ≤ e(ε+<(α∗∗))tM(ε, t0)‖f‖+ E(t, R)‖f‖ .

For large t, we have ||F∗(t, f)|| ≤ e<(α∗)tPm(t), with Pm(t) =
∑m−1

i=0 (||Ci||/i!)ti + ε. Writing

N(t) = sup
||f ||C(R)≤1

∣∣∣Stf(x)−
∫

R
ρ(y) f(y) dy

∣∣∣

and C(t, ε, R) = e(ε+<(α∗∗))tM(ε, t0) + E(t, R), we have

e<(α∗)tPm(t)− C(t, ε, R) ≤ N(t) ≤ e<(α∗)tPm(t) + C(t, ε, R) .

Let R →∞, obtaining the inequalities

e<(α∗)t
(
Pm(t)− e(ε+<(α∗∗)−<(α∗))tM(ε, t0)

)
≤ N(t)
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and

N(t) ≤ e<(α∗)t
(
Pm(t) + e(ε+<(α∗∗)−<(α∗))tM(ε, t0)

)
.

Taking the logarithm, dividing by t and letting t → ∞ we conclude the proof of the

theorem. ¤

Finally, we give the statement of the classical inversion theorems for the Laplace trans-

form ([2]).

Proposition 3. Let F (t) be a continuous function defined for t > 0 such that there exists

an x0 ∈ R with the property that
∫ ∞

0
e−x0t|F (t)|dt < ∞ .

Then, the Laplace transform F̂ (α) is analytic in the half-plane Re(α) > x0 and the following

inversion formula is valid

(3.17) F (t) = P.V
1

2πi

∫ x+i∞

x−i∞
eαtF̂ (α)dα

where x ≥ x0 is arbitrary.

We recall the definition of the sector U0 = U0(φ) with angle φ from (2.18) and denote

Uζ = ζ + U0 the sector originating at ζ ∈ C.

Proposition 4. Let ζ ′1 < ζ1 < ζ0 < ζ2 < ζ ′2 and let f(α) be analytic in the domain

V = Uζ′1 \ U ζ′2 with the exception of α = ζ0 which is a pole of order m ∈ Z+ with the

principal part of the Laurent expansion about ζ0 equal to

(3.18)
c1

(α− ζ0)
+ . . . +

cm

(α− ζ0)m
.

Assume that there exist R0 > 0 and M > 0 with the property |f(α)| ≤ M if |α− ζ0| ≥ R0.

Then there exists a T > 0 such that the integral (in principal value sense)

F (t) =
1

2πi

∫

L(ζ2)
eαtf(α)dα

is uniformly convergent for t ≥ T and for t →∞ we have the asymptotic expansion

(3.19) F (t) = eζ0t
(
c1 +

c2

1!
t + . . . +

cm

(m− 1)!
tm−1

)
+ o(eζ1t) .
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4. The one dimensional case

In d = 1, let R = (a, b), with a < 0 < b as in [7]. Let λk = kπ/(b − a), k = 1, 2, . . . ,

and σabs = {−λ2
k/2 : k = 1, 2, . . .} be the spectrum of the half Laplacian with absorbing

boundary conditions with transition kernel (2.7)

(4.1) pabs(t, x, y) =
2

b− a

∞∑

k=1

e−(λ2
k/2)t sinλk(x− a) sinλk(y − a) ,

and resolvent kernel

(4.2) p̂abs(α, x, y) =
2

b− a

∞∑

k=1

1
α + λ2

k/2
sinλk(x− a) sin λk(y − a) .

The Laplace transform of the first exit time (3.1) can be written in two forms (see [7])

(4.3) ĥx(α) =
2π

(b− a)2
∑

k=1, odd

k

α + λ2
k/2

sinλk(x− a) =
cosh

√
2α

(
x− b+a

2

)

cosh
√

2α
(

b−a
2

)

and the kernel of the resolvent (2.22) of the process given by the transition kernel (2.19) is

then

(4.4) p̂(α, x, y) = p̂abs(α, x, y) + p̂abs(α, 0, y)H(α, x)

where

(4.5) H(α, x) =
ĥx(α)

1− ĥ0(α)
=

cosh
√

2α
(
x− b+a

2

)

cosh
√

2α
(

b−a
2

)
− cosh

√
2α

(
b+a
2

) .

Set γ = −λ2
1/2 = −π2(

√
2(b − a))−2. Then we write σabs = {γk2 : k ∈ Z+} for the

spectrum of the absorbing Brownian kernel and

σH = {0} ∪ {4(1 + |a|/b)2γk2 , 4(1 + b/|a|)2γk2 : k ∈ Z+}

for the zeros of cosh
√

2α
(

b−a
2

)
− cosh

√
2α

(
b+a
2

)
. In addition, σodd

abs and σeven
abs denote the

subsets of σabs for k odd and k even, respectively. It is easy to see that when b/a /∈ Q, then

σH ∩ σabs = ∅. In dimension d = 1, we can describe the spectrum σ exactly.

Proposition 5. The spectrum σ of the Brownian motion with return is σeven
abs ∪ σH . As a

consequence, the largest nonzero point of the spectrum is −λ2
2/2 = 4γ.
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Proof. Part 1. We prove that if β ∈ σH , then p̂abs(α, 0, y) is analytic and nonzero at α = β.

For β ∈ σH \ σabs, we only have to show that p̂abs(β, 0, y) 6= 0, which is evident since

p̂abs(β, 0, y), as an element in L2[a, b], has nonzero Fourier coefficients. If β ∈ σH ∩ σabs,

then there exists a positive integer k such that β = −k2γ = −λ2
k/2, λk = kπ/(b − a) and

cosλk( b−a
2 )(1 − cosλka) + sinλk( b−a

2 ) sin λka = 0. For k odd, (−1)
k−1
2 sinλka = 0 and for

k even (−1)
k
2 (1− cosλka) = 0. In all cases sinλka = 0, which proves our claim.

Part 2. Since σ ⊆ σabs ∪ σH , we divide the proof in three steps.

(i) σH \σabs ⊆ σ. Let p = 1, 2, . . . be the multiplicity of the pole denoted by β of H(α, x).

Then

(4.6) lim
α→β

{
(α− β)pp̂abs(α, x, y) + p̂abs(α, 0, y) [(α− β)pH(α, x)]

}
= p̂abs(β, 0, y)H̄(β, x)

where limα→β(α− β)pH(α, x) = H̄(β, x) 6= 0. Since p̂abs(α, 0, y) 6= 0, β is a pole.

(ii) Let β = −λ2
k/2 ∈ σabs ∩ σH . We know that β is not a pole of p̂abs(α, 0, y). If p > 1,

since pabs has only simple poles, the limit (4.6) is of the same type as in case (i). When

p = 1, the limit (4.6) is

2(b− a)−1 sinλk(x− a) sin λk(y − a) + p̂abs(−λ2
k/2, 0, y)H̄(−λ2

k/2, x)

where the last factor is nonzero. As a function of y in L2[a, b] the limit is not identically

zero, so β is a pole.

(iii) Let β = −λ2
k/2 ∈ σabs \ σH . The limit (4.6) with p = 1 gives

2(b− a)−1 sinλk(y − a)
[
sinλk(x− a)− sinλkaH(−λ2

k/2, x)
]
.

In this case, we have

(4.7) lim
α→β

H(α, x) =
cosλk(x− a) cos λk( b−a

2 ) + sinλk(x− a) sin λk( b−a
2 )

cosλk( b−a
2 )(1− cosλka) + sinλk( b−a

2 ) sin λka
.

The bracket is equal to (sin λka
2 )−1 cosλk(x − a

2 ) 6= 0 for k even and vanishes for k odd,

which implies that σeven
abs ⊂ σ and σodd

abs ∩ σ = ∅.
Part 3. We notice that sup{β ∈ σH} < 4γ, the second eigenvalue of pabs, and 4γ

corresponds to k = 2, the first even value in the spectrum. ¤
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