
FIXATION TIME FOR AN EVOLUTION MODEL

ILIE GRIGORESCU1 AND MIN KANG2

Abstract. We study the asymptotic value as L → ∞ of the time for evolution τ , un-

derstood as the first time to reach a preferred word of length L using an alphabet with

N letters. The word is updated at unit time intervals randomly but configurations with

letters matching with the preferred word are sticky, i.e. the probability to leave the con-

figuration equals 0 ≤ γ ≤ 1, where γ may depend on the configuration. The model is

introduced in [5] in the case γ = 0, where it was shown that E[τ ] ∼ N ln(L). We first

give an alternative proof of the logarithmic scale, by evaluating the mode of τ . We then

answer positively a question posed by H. Wilf on whether τ is exponential whenγ 6= 0.

The natural scaling γ = O(L−1) gives rise to several finite order limits, including the

interacting model when γ depends linearly on the number of matches with the preferred

word. The scaling limit of the number of non-matching letters follows a Galton-Watson

process with immigration. In a related model, the empirical measure converges to the

solution of a discrete logistic equation with possible nonzero steady state.

1. Introduction

Let N be the size of an alphabet described as ZN = {0, 1, . . . , N − 1} and L the length

of a word formed with letters from the alphabet. On the state space S = ZLN we define

a stochastic process (Zn)n≥1 whose evolution in time indexed by n is sensitive to reaching

one special state. Without loss of generality, this will be equal to the null vector 0 =

(0, . . . , 0) ∈ S.
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1.1. The uniform model. Let Zjn ∈ ZN denote the components 1 ≤ j ≤ L of the con-

figuration at time n of the chain Zn = (Z1
n, . . . , Z

L
n ). In this first version of the model,

the components Zjn evolve independently, with Markovian updates of the random vector

Zn to Zn+1. Each component j 6= 0 moves by choosing another component with uniform

probability N−1. If j = 0, the updated character is j′ = 0 with probability 1− γ and any

other j′ 6= 0 with probability γ(N − 1)−1, i.e. conditional on moving away from zero, it is

uniformly distributed (explaining the name). Here 0 ≤ γ ≤ 1 is constant, but will depend

on the current configuration in Section 3 (interacting case).

The hitting time of state y ∈ S, respectively its mean value when starting from x ∈ S
are denoted by

(1.1) τ(y) = min{n > 0|Zn = y} , ρ(x, y) = Ex[τ(y)] ,

where the infimum over the empty set is +∞ (in our discussion the hitting times are finite

almost surely). We are interested in asymptotic estimates in L on the first hitting time

τ = τ(0) of the special state 0, more specifically on ρ(x,0), when starting from a generic

state x ∈ S.

A simple representation of the problem we are interested in emerges when the alphabet

is the set of alleles with N possible types arranged in a chromosome of length L. From

an evolutionary point of view, we assume that the state 0 is optimal. Random mutations

occur at unit time intervals until this state is reached at time τ . If no state is preferred

γ = 1− 1
N . Each update has probability N−L of achieving the state 0. By independence,

τ is geometric with mean value NL. The special case γ = 0 was studied in [5], starting

from the observation that an exponential τ may be too long for achieving evolution, since

it is stated that in genetical applications N is relatively small (∼ O(102)), while L is large

(∼ O(104)). Their result is more precise, containing also lower order terms, but we are

mostly interested in scaling as L → ∞. It is shown that when x is a state containing no

zeros, then ρ(x,0) ∼ N lnL.

The present paper studies the case γ > 0, seen as a selection parameter. Theorem 1

shows that for any other γ ∈ (0, 1) not depending on L, the mean time is again exponential,

Ex[τ ] ≥ CL, where C depends on the minimum value of the probabilities to reach zero in

one step, answering an open question [6] posed by one of the authors of [5].
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In some sense this is a negative result, since γ = 0 is an idealization and τ is too large

in all other cases. However, we may refine the setup by allowing dependence on L.

We believe it is important that even under scaling allowing a finite τ , the presence of

error γ leads to the possibly more realistic conclusion that genetic dynamics converges to

certain steady states not completely fixated at the optimal configuration. In other words,

even if there is time for evolution, equilibrium might not be optimal from an evolutionary

point of view.

1.2. The case γ = 0. In this setting, τ does not depend on x unless it contains some 0.

It has the distribution of the maximum of L independent geometric r.v. with probability

of failure q = 1 − 1/N . Heuristically, the order of magnitude lnL can be obtained as

follows. First, replace the geometric random variables with their continuous analogue, the

exponential random variables of intensity λ = | ln q|. We look at the expected value of the

maximum of L i.i.d. exponentials.

Starting with L nonzero sites, the mean waiting time for the first to reach fixation (at

zero) is equal to the mean value of the minimum of L exponential random variables. This

is an exponential r.v. with mean (| ln q|L)−1. Once a site is fixated, we continue from the

new configuration, having only L− 1 nonzero sites. Repeating L times, we obtain

1

| ln q|

(
1 +

1

2
+ . . .+

1

L

)
∼ 1

| ln q|
(lnL+ ce)

where ce = .5772 is Euler’s constant. This is not rigorous, because the starting configura-

tions at each step are themselves random.

A rigorous and still intuitive explanation of the logarithmic order of magnitude of τ can

be obtained by evaluating the mode of the extreme order statistic τ . We recall that the

mode of a distribution is the value maximizing its probability mass (density) function.

Proposition 1. The mode Tmax of the maximum τ of L independent geometric distributions

with probability of success 1− q, 0 < q < 1 satisfies

(1.2) Tmax =
lnL

| ln q|
+

ln( 1−q
q| ln q|)

| ln q|
+ c(q, L) +O(

1

L
) , |c(q, L)| ≤ 1

2
.

Remark. 1) When γ = 0, q = 1− 1
N and the leading term is of order N lnL, identical

to the one in the asymptotic of E[τ ] in [5].
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2) As q → 1 (i.e. N →∞) the middle term approaches 1/2, so the term of order one in

(1.2) is in [0, 1].

Proof. Since P (τ > n) = 1− (1− qn)L, we have to maximize

fτ (n) = (1− qn)L − (1− qn−1)L , n ≥ 0 .

The function g(α) = (1 − qα)L − (1 − α)L satisfies g(qn−1) = fτ (n) and its derivative

g′(α) = L((1−α)L−1− q(1− qα)L−1) vanishes only once in [0, 1]. More precisely, g′(0) > 0,

g′(1) < 0 and g′(α) = 0 has a unique solution α = (1 − q
1

L−1 )/(1 − q
L

L−1 ). Re-writing

qTmax−1 ∼ α and applying the logarithm we have that Tmax−1 is approximated by lnα/ ln q

with error c(q, L) to the nearest integer

Tmax − 1 = | ln q|−1 ln

(
1− q

L
L−1

1− q
1

L−1

)
+ c(q, L) , |c(q, L)| ≤ 1

2
.

The right hand side can be approximated with a Riemann sum of
∫ 1
0 q

sds = (q − 1)/ ln q

ln

(
1− q

L
L−1

1− q
1

L−1

)
= lnL+ ln

(
1

L

L−1∑
k=1

q
k−1
L−1

)
= lnL+ ln(

1− q
| ln q|

) +O(
1

L
) ,

giving (1.2). �

Before proceeding, we give a brief summary of the models under scaling.

In a first stage, γ = c/L, c > 0, independent of the configuration, since estimate (2.13)

suggests that the natural scaling for a finite τ as L → ∞ is γ ∼ O(L−1). We note that,

asymptotically, τ no longer depends on L, i.e. we have time of evolution of order one.

In a second stage, γ will depend on L and the number of non-zero characters u = L−e(x)

of the current configuration, where

(1.3) e(x) = # of components of x equal to zero .

Theorem 2 and its corollary obtain the limit as a Galton-Watson process when γ depends

linearly on u of the current configuration.

It is remarkable that according to the criticality of the limiting process, the genome may

degenerate moving away from the preferred state with positive probability; may have a

quasi-invariant distribution or, for suitable parameters, as in the case of Galton Watson

with immigration from Corollary 1, a proper invariant distribution. The same phenomenon
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occurs in Theorem 3, where the relative frequency (empirical measure) of the non-optimal

characters converges to a deterministic sequence with possibly a non-zero steady state.

A third stage would have to consider random updates where the non-preferred characters

are no longer chosen uniformly. The uniform model does not differentiate between non-

optimal characters: an allele is either 0 or not, for example. This setup allows that e(Zn)

be Markovian. Assume that mutations occur only to a nearest neighbor according to a

simple random walk. In order to know e(Zn), we need to know the number of nearest

neighbors of zero, and to know that number, we need, hierarchically, the number of second-

order neighbors and so on. On the other hand, the model is closable, i.e. an equation can

be written in terms of the empirical measure. In continuous time, under parabolic scaling

in N we obtain a family of L diffusions on a torus interacting with stickiness about the

origin. These directions will be pursued in a different paper.

2. The case γ 6= 0 independent of configuration

In this case γ > 0 and constant. The chain Zn, as well as its independent components,

are finite and recurrent.

Proposition 2. The unique invariant measure µ = (µi)0≤i≤N−1 of each component is

(2.1) µ0 =
1

1 + γN
, µj =

γN

N − 1
µ0 .

The dynamics of the Markov chain is reversible with respect to µ.

Proof. The chain is finite irreducible hence positive recurrent and the invariant probability

measure is unique and the weights (2.1) satisfy the master equations. Reversibility is easy

to check. �

Let Un = L−e(Zn), the number of non-zero components of Zn ∈ S. Under this dynamics,

Un is a Markov chain on {0, 1, . . . , L}. Its transition probabilities have generating functions

(2.2) P (sUn+1 |Un = u) =
( 1

N
+ (1− 1

N
)s
)u(

1− γ + γs
)L−u

= A(s)uB(s)L

with

(2.3) A(s) =
1
N + (1− 1

N )s

1− γ + γs
, B(s) = 1− γ + γs .
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In other word, the updated Un+1 is the sum of two independent binomials, one with Un

trials and probability of success (to remain non-zero) 1 − 1/N and one with L − Un trials

corresponding to the zero components, with probability of success (i.e. to convert into a

non-zero character) equal to γ.

It is easy to guess that Bin(L, 1− µ0), µ0 = (1 + γN)−1 is the invariant measure of Un.

We give a direct proof of this fact.

Since the chain is irreducible with finite state space, the identity

µ0 + (1− µ0)s =
(
µ0 + (1− µ0)A(s)

)(
1− γ + γs

)
shows that

(2.4) Einv[s
Un ] =

L∑
u=0

su
(
L

u

)
(1− µ0)uµL−u0 =

(
µ0 + (1− µ0)s

)L
=
(
µ0 + (1− µ0)A(s)

)L(
1− γ + γs

)L
=

L∑
u=0

A(s)uB(s)L
(
L

u

)
(1− µ0)uµL−u0

=

L∑
u=0

E[sUn+1 |Un = u]Pinv(Un = u) = Einv[s
Un+1 ] ,

where Einv is the expectation under the invariant measure.

Denoting gn(s) = E[sUn ] the generating and log-generating function of the chain, ψn(s) =

ln gn(s) and An(s) = A ◦ A . . . ◦ A(s), the n-fold composition of A with itself, A0(s) = s,

we verify the relation

(2.5) ψn+1 = ψn ◦A+ L lnB(s) ,

derived from

(2.6) gn+1(s) =
L∑
u=0

E[sUn+1 |Un = u]P (Un = u)

=
L∑
u=0

A(s)uB(s)LP (Un = u) = gn(A(s))B(s)L ,

parallel to the generating equation of a Galton-Watson branching processes, where A(s) is

replaced by the generating function of the distribution of the offspring of one individual
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and B(s) ≡ 1, a relation explored in more detail in Section 3. Solving the recurrence (2.6)

we obtain

(2.7) gn(s) = g0(An(s))Πn
k=1B

L(An−k(s)) .

Since A(s)− s has only one zero on [0, 1] at s = 1 and A(0) > 0, the sequence An(s)→ 1

for all s ∈ [0, 1]. Comparing the generating functions of the invariant measure with the

limit of the right-hand side of (2.7), we have shown the identity (after simplification by L)

(2.8) 1 + (1− µ0)(s− 1) = Π∞k=0(1 + γ(Ak(s)− 1)) .

Theorem 1. Let γ 6= 0. The time for evolution is exponential in L.

(i) In the worst case scenario in x ∈ S

(2.9) max
x 6=0

ρ(x,0) ≥ (1 + γN)L − 1

1− (1− γ)L
;

(ii) For any x ∈ S, x 6= 0, ρ(x,0) ≥ ρ0(N, γ, L), where

(2.10) ρ0(N, γ, L) =

{
N( 1

1−γ )L−1 , if 0 ≤ γ < 1− 1
N

NL , if 1− 1
N ≤ γ ≤ 1

.

Remark. 1) The two estimates (2.9) and (2.10) are not a consequence of each other.

Even though (2.9) is a larger lower bound that (2.10), it applies to maximal values of the

expected time while the (2.10) applies to any initial configuration, i.e. including minimal

expected times.

2)The first case of (2.10) is the most interesting since we expect γ to be small and N a

positive integer. The asymptotic value depends linearly of N , but the dependence between

L and γ is more relevant.

3) Estimates (2.9) and (2.10) coincide with NL in the uniform case N(1− γ) = 1.

4) One can see that (2.10) defines a continuous nondecreasing function of γ with value

(1− γ)−L = NL at the critical γ = 1− 1
N .

5) The estimate of order logL from [5] cannot be obtained as γ → 0.

Proof. Part (i). Since the invariant measure of Zn is the product measure of the invariant

measures over the components, m(x) = Pinv(Zn = x) = ΠL
l=1µx(l), where x(l) is the l - th

component of x ∈ S and µ is defined in (2.1). As is well known in Markov chain theory,
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the mean time of return to a state y is the reciprocal of the weight at y, implying that

(2.11) ρ(0,0) = (1 + γN)L .

We note that µ is correctly identified when γ → 0 as the delta measure at 0, but the

following estimates are not available for γ = 0, since positive recurrence is required.

A lower bound of the worst case scenario can be determined

ρ(0,0) = 1 +
∑

x∈S,x6=0

P0(Z1 = x)ρ(x,0) ≤ 1 + P0(Z1 6= 0) max
x 6=0

ρ(x,0)

which gives the exponential lower bound in L (2.9).

Part (ii). Estimate (2.9) can now be improved to include any initial state and not just

the worst case scenario (i.e. the maximum). The time τ(0) is equal to the time the chain

Un defined in (2.2) needs to reach the state zero when starting from an arbitrary state

U0 = L− e(x), where x = Z0 6= 0.

Let q0 be the upper bound of the probability to reach state 0 from an arbitrary state

configuration containing at least one non-null character, more precisely

(2.12) P (Un+1 = 0|Un = u) = (
1

N
)u(1− γ)L−u =

(1− γ)L

[N(1− γ)]u
≤ q0 , u ≥ 1

where the inequality is satisfied in all three cases for q−10 = ρ0(N, γ, L) from (2.10).

Applying the Markov property, it follows that

ρ(x,0) =
∞∑
n=0

P (τ(0) > n) ≥
∞∑
n=0

(1− q0)n =
1

q0

which gives the lower bounds (2.10) for the time to reach the null state configuration.

�

Formulas (2.9) and the last line of (2.10) suggest the scaling γ = c/L, c > 0, leading to

(2.13) lim inf
L→∞

max
x 6=0

ρ(x,0) ≥ ecN − 1

1− e−c
≥ N

since the lower bound is increasing in c.
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3. Case when γ depends on configuration

In this section we look at the dependence of ρ(x,0) on e(x). We consider γ = γ(u) =

cu/L, c ≥ 0, when selection acts by making more stable (γ small) better genomes (with

few nonzero entries).

Theorem 2. As L→∞ the process Un converges weakly to a Galton-Watson process where,

independently, each individual alive at generation n dies and gives birth to a number X of

offsprings where X ∼ Y +Z where Y ∼ Bin(1− 1
N , 1) (i.e. Bernoulli) and Z ∼ Poisson(c),

Y , Z independent. The process is subcritical (critical) if Nc < 1 (Nc = 1) and supercritical

when Nc > 1.

Proof. To formalize the convergence in law, we note that the state space of the family of

processes U
(L)
N , indexed by L, is N and the time is discrete. The only requirement in order

to prove tightness of the family of processes is that for any n, limM→∞ P (U
(L)
n > M) = 0.

Since the number of offspring per individual has exponential moments, this is a consequence

of Chebyshev’s inequality.

By examining (2.2), the limit as L→∞ of the generating function of Un+1, conditional

upon Un = u coincides with the generating function φ(s)u of a sum of u i.i.d. random

variables distributed as Y + Z in the theorem.

Once tightness was established, the unique weak limit must solve the martingale problem

for the limiting transition probabilities. This is a unique well defined process. Convergence

in law follows.

This shows that the limiting process (Un)N≥0 is a Galton-Watson branching process with

characteristic function

φ(s) =
( 1

N
+ (1− 1

N
)s
)
e−c(1−s) .

Let mX = E[X] = 1 − 1
N + c the expected value of the number of individuals in a new

generation and p0 = P (τ < ∞) the probability of eventual extinction. Criticality depends

on the sign of mX −1, which reduces to the sign of Nc−1 like in the theorem. Since X has

finite variance and P (X < 2) < 1 (which is always true for c > 0 and N ≥ 1), all standard

asymptotic results for Galton-Watson processes are applicable (see [1]). The probability

of extinction is the smallest positive solution p∗ of φ(p) = p and is known to be one when

mX ≤ 1 and 0 < p∗ < 1 when mX > 0. In the super-critical case limn→∞ Un/m
n
X = V

9



a.s., where V is a mixed r.v. with point mass P (V = 0) = p∗ > 0 at zero and continuous

otherwise. �

Remark. In the supercritical case with probability 1− p∗ > 0 the a.s. limit is infinity -

a way of formalizing, under scaling where Un << L already, the possibility of devolution.

It is interesting to consider the limit

(3.1) lim
n→∞

P (Un = u |n < τ < +∞) = ν(u) , u ≥ 0 ,

known to exist in all cases but trivial in the critical case (i.e. ν(u) ≡ 0). Otherwise, both

in the sub- and super-critical cases, the limit is a probability measure on Z+, known as the

quasi-invariant measure. Its generating function Gν(s) satisfies cf. [2]

Gν(p−10 φ(p0s))− 1 = mX(Gν(s)− 1) .

In the critical case, the limit (3.1) in distribution when Un is replaced by Un/n is an

exponential with mean σ2X/2.

Corollary 1. If γ(u) = (cu+ b)/L, c, b > 0, then as L→∞ the process (Un) converges in

law to the Galton-Watson process from Theorem 2 with immigration at the Poisson rate b.

In the subcritical case Nc < 1, the process has a unique invariant probability measure.

Proof. Let H(s) = exp(b(s − 1)) be the generating function of the immigration variable.

Based on [1] p. 264, the necessary and sufficient condition for the existence of the invariant

probability measure is ∫ 1

0

1−H(s)

φ(s)− s
ds <∞ .

In our setup, the integrand is actually continuous since its limit at s → 1 is equal to

bN/(1−Nc). �

3.1. The empirical measure. Let γ : [0, 1]→ R be a bounded function and (Un)n≥0 the

process with transition probabilities (2.2), where γ = γ(Un/L) is a function of the relative

frequency function Un/L. We note that the case γ constant is just a special case of this

setup.

The transition probabilities (2.2) admit a scaling as L → ∞ of the relative number of

non-zero sites un = u
(L)
n = Un/L, where the superscript is suppressed to keep notation
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simple. For z ∈ (0, 1], the generating function E[zun+1 |un] of u
(L)
n+1, given u

(L)
n , can be

derived from (2.2) by substituting z = s
1
L . It is

(3.2) E[zun+1 |un] =
( 1

N
+ (1− 1

N
)z

1
L

)L(Un
L

)(
1− γ + γz

1
L

)L(1−Un
L

)

which reduces to

(3.3) =
(

1 + (1− 1

N
)(z

1
L − 1)

)Lun(
1 + γ(un)(z

1
L − 1)

)L(1−un)
.

Theorem 3. Assume that u
(L)
0 = U0/L converges in probability as L → ∞, to the deter-

ministic state u ∈ [0, 1] and γ = γ(u), 0 ≤ u ≤ 1 is continuous. Then, as L → ∞, the

Markov process U
(L)
n = Un/L, n ≥ 0, with state space [0, 1], converges in distribution to the

deterministic process (un)n≥0 on [0, 1] satisfying the discrete recurrence

(3.4) un+1 = (1− 1

N
)un + γ(un)(1− un) , u0 = u .

Proof. The stochastic process (u
(L)
n )n≥0 has a compact state space un ∈ [0, 1], which implies

it is tight. Since the time is discrete n ∈ Z+, convergence in distribution is equivalent to

the convergence of the transition probabilities. For g ≥ 0 continuous on [0, 1], let

(3.5) Φg,L(u) =
(

1 + g(u)(z
1
L − 1)

)Lu
, and Φg(u) = zug(u) .

We notice that 0 ≤ Φg(u) ≤ 1 and there exists a constant C(g, z) such that

(3.6) |Φg,L(u)− Φg(u)| ≤ C(g, z)L−1 , |Φg,L(u)| ≤ C(g, z) + 1 .

For g1(u) = 1− 1
N , g2(u) = γ(u) we denote Ci = C(gi, z), i = 1, 2, C ′(z) = (C1 + 1)C2 +

(C2 + 1)C1 and then we have the estimate

(3.7) |Φg1,L(u)Φg1,L(u)− Φg1(u)Φg2(u)| ≤ C ′(z)L−1 .

Let n0 > 0 arbitrary but fixed and for 0 ≤ n ≤ n0 let (un)n≥0 be a limit point of

the process (u
(L)
n )n≥0 on [0, 1]{0,1,...,n0}. For h ∈ Cb(Rn+1), the definition of conditional

probability says that (3.2)-(3.4) are equivalent to

(3.8) E[zu
(L)
n+1h(u(L)n , u

(L)
n−1, . . . , u

(L)
0 )] = E[Φg1,L(u(L)n )Φg2,L(u(L)n )h(u(L)n , u

(L)
n−1, . . . , u

(L)
0 )] .

Due to (3.7), the right-hand side is equal to

(3.9) E[Φg1(u(L)n )Φg2(u(L)n )h(u(L)n , u
(L)
n−1, . . . , u

(L)
0 )] +O(L−1)
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where the error is uniform in the variables u. Tightness together with the fact that zuh(·)
and Φg1(u)Φg2(u)h(·) are continuous bounded functions implies that the limit as L → ∞
of the left-hand side of (3.8) and the first term of (3.9) are equal, i.e.

E[zun+1h(un, un−1, . . . , u0)] = E[Φg1(un)Φg2(un)h(un, un−1, . . . , u0)]

with no superscript (L). This means E[zun+1 |un] = zu(g1(un)+g2(un)) for the limiting process.

Since u0 is deterministic, the uniqueness of generating functions proves the result. �

Corollary 2. (i) If γ(u) = γ, then

(3.10) un = (u+ 1− µ0)[1− (
1

N
+ γ)]n + (1− µ0) ,

where µ0 = (1 + γN)−1 is defined in (2.1).

(ii) If γ(u) = cu, 0 ≤ c ≤ 1, then (un) solves the discrete logistic equation

(3.11) un+1 = (1− 1

N
+ c)un − cu2n .

For 0 ≤ c ≤ 1
N , the solution becomes extinct in finite time, and for 1

N < c ≤ 1, the solution

converges to the stable stationary state u∗ = 1− 1
Nc .

Remark. From the point of view of the genetical model, the criticality in (ii) is remark-

able. Since N = O(102), for about 99% of the spectrum of values c, the empirical measure

un = Un/L of non-optimal states Un approaches a positive value. Even though the time

scale is finite versus L → ∞, the system does not achieve the evolutionary state u = 0.

At the same time, since the coefficient 1 − N−1 + c < 2 the behavior is not periodic, nor

chaotic.

Proof. Part (i) is immediate. In (ii) we notice that when c ≤ 1
N the sequence is strictly

decreasing, unless u0 = 0, in which case un ≡ 0, n ≥ 0. Since (un) is bounded below, the

only possible limit is the steady state u = 0. When c > 1
N , we normalize the sequence by

vn = c
kun, k = (1−N−1 + c) ∈ (0, 1) as long as N > 1, which is always true since N = 1 is

trivial. It is well known [3, 4] that the canonical discrete logistic equation vn+1 = kvn(1−vn),

vn ∈ [0, 1] has a stable steady state (k − 1)−1 when k ∈ (1, 3).

�
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