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Abstract. On an open interval we follow the paths of a Brownian motion which returns

to a fixed point as soon as it reaches the boundary and restarts afresh indefinitely. We

determine that two paths starting at different points either cannot collapse or they do so

almost surely. The problem can be modelled as a spatially inhomogeneous random walk

on a group and contrasts sharply with the higher dimensional case in that if two paths

may collapse they do so almost surely.
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1. Introduction.

In [2] we defined a diffusion process obtained by piecing together a countable sequence

of coupled Brownian motions killed at the boundary of an interval (a, b). Starting at a

point x ∈ (a, b) we follow a Brownian motion path until the boundary is hit. Then, as

soon as either a or b have been reached, we instantaneously go to a fixed point of return

in the interval, which we shall assume to be the origin, for convenience, and restart the

motion until the next boundary hit. The indefinite continuation of the evolution after

killing suggests the name of Brownian motion with rebirth. In this perspective, a particle

is created at the origin each time its predecessor was absorbed at the boundary.

Paths starting at distinct points in the interval, driven by the same Brownian motion,

stay parallel to each other between the boundary hits. A consequence is that they either

never intersect, or they coincide after a finite time Tc, the so called time of collapse. Two

paths are naturally coupled, but due to the rebirth dynamics, they are not simple translates

one of the other, like in the case of an unbounded Brownian flow. It is easy to see that

two paths may only meet, if they do at all, at the point of return. This paper proves that

only paths starting at points x, y from (a, b) with x − y ∈ Za,b, the additive subgroup of

R generated by the two endpoints, have a chance to join each other and in fact they will

meet with probability one. In dimension d > 1 the situation is similar in that there exists

a grid set G analogous to Za,b but the positive probability of collapse is never equal to one

(see [3]).

The case when b/a is rational is proven in [2]. It is much more difficult to see why

the same conclusion is true if b/a is irrational. The state space of all possible differences

between the paths becomes infinite. The problem can be converted into establishing recur-

rence properties for a spatially inhomogeneous random walk on the subgroup Za,b of (R, +)

generated by the two endpoints.

We can look at the evolution of the paths indexed by the starting points x ∈ (a, b) as a

stochastic flow. Suppose we start with a smooth mass profile. It would be interesting to

check if at some finite time the support of the random profile becomes countable, which is

equivalent to studying whether the sequence of collapsing times for the different classes has

finite limit. The answer should be negative. On the average over all paths, we know from

[2] that the process is exponentially ergodic, henceforth the initial empirical distribution
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will converge in law to a smooth profile, more exactly the Green function for the Dirichlet

Laplacian on the interval.

There is another view over the eventual collapse of two paths. We have seen (again

in [2]) that the rebirth process evolves on a pair of circles with one common point (the

origin), which is the figure eight (see [5]). Two points x, y in (a, b) are commensurate if

their difference x − y belongs to Za,b. Reaching zero from x − y is equivalent to winding

around the circle of perimeters |a| and b, respectively, the exact number of times needed

to “untangle” the distance between x and y. It is remarkable that Brownian motion will

perform any combination of integer winding numbers on each circle with positive probability

and will find itself at zero with probability one.

2. The results.

Let {W} be a family of Brownian motions indexed by points x ∈ R, more precisely the

collection of Wx = (wx(t, ω), {Ft}t≥0) such that P (wx(0, ω) = x) = 1 and let (a, b) be an

open interval with 0 ∈ (a, b). We shall define inductively the increasing sequence of stopping

times {τn}n≥0, together with the pair of adapted nondecreasing processes {Na
x (t, ω)}t≥0

and {N b
x(t, ω)}t≥0 and the process {zx(t, ω)}t≥0, starting at x ∈ (a, b). Let τ0 = Tx =

inf{t : wx(t, ω) /∈ (a, b)}, while for t ≤ τ0 we set Na
x (t, ω) = 1{a}(wx(t, ω)), N b

x(t, ω) =

1{b}(wx(t, ω)) and zx(t, ω) = wx(t, ω)− aNa
x (t, ω)− bN b

x(t, ω). By induction on n ∈ Z+

(2.1) τn+1 = inf{t > τn : wx(t, ω)− aNa
x (τn, ω)− bN b

x(τn, ω) /∈ (a, b)}

which enables us to define

(2.2)
Na

x (t, ω) = Na
x (τn, ω) + 1{a}(zx(t, ω)) ,

N b
x(t, ω) = N b

x(τn, ω) + 1{b}(zx(t, ω)) ,

as well as

(2.3) zx(t, ω) = wx(t, ω)− aNa
x (t, ω)− bN b

x(t, ω)

for τn < t ≤ τn+1. We notice that zx(t, ω) = 0 for all t = τn. The construction is well

defined due to the following result from [2].
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Proposition 1. The sequence of stopping times τ0 < τ1 < . . . < τn < . . . are finite for

all n and limn→∞ τn = ∞, both almost surely. Also, the processes Na
x (t, ω) and N b

x(t, ω)

defined for t ≥ 0 have the properties

(i) they are nondecreasing, piecewise constant, predictable and right-continuous

(ii) P (Na
x (t, ω) < ∞) = P (N b

x(t, ω) < ∞) = 1.

The law of the process {zx(t, ω)}t≥0, adapted to {Ft}t≥0 will be denoted by Qx and the

family of processes {Qx}x∈(a,b) will be denoted simply by {Q}.

We shall recall the notation Za,b = {k = mb + na : m,n ∈ Z} the subgroup of (R, +)

generated by the numbers a and b. The case b/a rational is solved in [2]. If b/a is irrational

the correspondence between (m,n) ∈ Z × Z and k = mb + na is one-to-one and onto. Let

Z∗a,b = Za,b ∩ (a, b). For two points x and y in (a, b) we shall consider the coupled paths

{zx(t, ω)}t≥0 and {zy(t, ω)}t≥0 defined by construction in (2.2) and (2.3).

Theorem 1. Let {zx(t, ω)}t≥0 and {zy(t, ω)}t≥0 be two elements of the family of processes

defined by {Q} starting from x and y, two points in (a, b).

(i) In case x− y /∈ Z∗a,b the paths will never collapse.

(ii) In case x− y ∈ Z∗a,b the paths will collapse almost surely.

Corollary 1. A finite family of paths starting at points included in Z∗a,b will collapse almost

surely.

3. Proof of Theorem 1

We shall assume that b/a is irrational, b > 0 > a and without loss of generality that

b > |a|. We recall that Za,b = {k = mb + na : m,n ∈ Z} the subgroup of (R, +) generated

by the numbers a and b, Z∗a,b = Za,b ∩ (a, b).

The idea of the proof can be outlined in four steps. First we note that the collapse of the

original processes, starting from x and y respectively, can be considered as the recurrence

of the Markov chain {Yn}n≥0 defined as the non-zero location of the original processes in

Z∗a,b at each hitting times and described in (3.5). In the second step we reduce the Markov

chain {Yn}n≥0 on Z∗a,b to the equivalent random walk {Ln}n≥0 on Z \ {+1} with transition

probabilities (3.8)-(3.10). The third step establishes the general recurrence criterion of

Proposition 3. Finally, the fourth step calculates explicitly the general term of (3.12) using
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the notion of descending cycle (given Definition 1) and shows that the series has the same

nature as a series with terms equal to |k|, where {k} is a certain enumeration of Z∗a,b.

We start with the following lemma, essentially an exercise in [4], proved in [2].

Lemma 1. Let T (a) = inf{t > 0 : wx(t, ω) ≤ a}, T (b) = inf{t > 0 : wx(t, ω) ≥ b} and

Tx = min{T (a) , T (b)}. Then,

(i)

(3.1) Ex[e−αT (a)1T (a)<T (b)] =
sinh

√
2α(b− x)

sinh
√

2α(b− a)
,

(3.2) Ex[e−αT (b)1T (b)<T (a)] =
sinh

√
2α(x− a)

sinh
√

2α(b− a)

and

(ii)

(3.3) Px(T (a) < T (b)) =
b− x

b− a
, Px(T (b) < T (a)) =

x− a

b− a
.

(i) The difference between the two paths zx(t, ω) and zy(t, ω) will stay piecewise constant

between successive hits to the boundary by either of them. If the two were to collapse, this

could only happen at zero. From (2.3) we can see that

zx(t, ω)− zy(t, ω) = x− y − bN b
x(t)− aNa

x (t) + bN b
y(t) + aNa

y (t)

= x− y + a(Na
y (t)−Na

x (t)) + b(N b
y(t)−N b

x(t))

which proves (i).

(ii) We denote by Tc the time of collapse of two paths zx(t, ω) and zy(t, ω)

(3.4) Tc = inf{t : zx(t, ω) = 0 and zy(t, ω) = 0}

with the convention that Tc = ∞ if the paths never collapse.

Since the initial distance between the piecewise parallel paths is x− y < b− a we notice

that after each time the boundary is hit the distance will change into a new value from Z∗a,b.

The boundary is hit by one of the paths at a time, otherwise their distance would have

already been b− a which is impossible. This implies that the union of increasing sequences

of a.s. finite times of hitting the boundary {τx
n} and {τy

n}, corresponding to x and y from
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the interval (a, b) can be rearranged in increasing order. The new increasing sequence of

stopping times will be simply denoted by {τn}.
At each such hitting time, one of the paths will go back to zero, while the other one will

be in the set Z∗a,b. It is important to recall that the two paths can only collapse at 0, since

they evolve in parallel fashion between the times τn. In other words, Tc ∈ {τn}n≥0.

These considerations allow us to define a Markov chain Yn(ω) = zr(τn, ω), where r is

either x or y in such a way that zr(τn, ω) is the point which is not situated at zero at time

τn for τn < Tc and Yn(ω) = 0 for τn ≥ Tc.

The chain has transition probability

(3.5) Pk,j =





|a|−|k|
b+|a|−|k| if j = b− |k| and k < 0

b
b+|a|−|k| if j = a + |k| and k < 0

|a|
b+|a|−|k| if j = b− |k| and k > 0

b−|k|
b+|a|−|k| if j = a + |k| and k > 0

1 if j = k = 0

0 otherwise

.

The probabilities are derived from the formulas (3.3) applied to the intervals associated to

the strip determined by the two paths. We only have to prove that Pk0(Yn = 0 : n < ∞) = 1

for any initial state k0 ∈ Z∗a,b of the Markov chain, since we know that the hitting times

{τn} are finite almost surely.

Proposition 2. If two paths of the process {Q} starting at x, y ∈ (a, b) never collapse then

the chain Yn(ω) generated by the pair x, y will never reach zero. More precisely,
{

ω : Tc(ω) = ∞
}
⊆

{
ω : min{n > 0 : Yn(ω) = 0} = ∞

}
.

Proof. Since the two paths never collapse, they will not collapse at the time of the first

boundary hit. From the construction of the chain Yn(ω) it follows that Yn 6= 0 for any

n > 0. ¤

Due to the uniqueness of the representation k = mb + na with m, n ∈ Z for any k ∈ Z∗a,b

we can denote the two integer coefficients as functions of k: m = m(k) and n = n(k). Let

l = l(k) = m(k) + n(k) be the sum of the two integer coefficients.

The following lemma establishes the one-to-one correspondence between Z∗a,b and Z \ {+1}
in a constructive fashion. The proof is elementary and will be omitted.
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Figure 1. Ladder structure of {Ln}n≥0

Lemma 2. The function l = l(k) = m(k)+n(k), defined for all k ∈ Z∗a,b is one-to-one and

takes all the values in Z \ {+1}. Its inverse k = k(l) is defined as follows. We construct

the increasing sequence of positive integers 1 = q0 < q1 < q2 < . . . qn < qn+1 . . . by

(3.6) qn = max
q∈Z+

{nb + qa > a} n ≥ 1 .

For a given l ∈ Z+ \ {+1} we identify n such that

(3.7) (qn + n) + 1 ≤ l < (qn+1 + n + 1) + 1 then k(l) = (n + 1)b + (l − n− 1)a ,

while for l < 0 we generate l′ = −l+1 ≥ 2 and k(l) = b−k(l′) if k(l′) > 0 and k(l) = a−k(l′)

if k(l′) < 0. Finally the case for l = 0 is obvious, with m = n = 0.

Definition 1. According to the construction of the function k(l) described in (3.6) and

(3.7), after every addition of the term b > 0 the sequence of actual values of k, corresponding

to the numbers l which follow until we cross over into the negative side again, is decreasing

by |a| at each step. A sequence of such l for which k sees a decreasing row of k(l) will be

called a descending cycle.

We define the derived Markov chain {Ln(ω)}n≥0 with state space Z \ {+1} as Ln(ω) =

l(Yn(ω)). The chain is a random walk with transition probabilities

(3.8) P (Ln+1 = l′ |Ln = l) =





|a|−|k(l)|
b+|a|−|k(l)| if l′ = l + 1

b
b+|a|−|k(l)| if l′ = 1− l

when k(l) < 0,

(3.9) P (Ln+1 = l′ |Ln = l) =





b−|k(l)|
b+|a|−|k(l)| if l′ = l + 1

|a|
b+|a|−|k(l)| if l′ = 1− l
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when k(l) > 0 and

(3.10) P (Ln+1 = l′ |Ln = l) =

{
1 in case l′ = l = 0

0 in all cases other than (3.9) and (3.10)
.

To help understanding the special structure of the random walk {Ln}n≥0 we provide the

Figure 1 representing {Ln}n≥0 as a Markov chain on a ladder. The arrows connect all the

possible positions which a given site (initial point of the arrow) can access in one step.

For any l, l′ ∈ Z \{+1} we shall write briefly pl, l′ = P (Yn+1 = l′ |Yn = l) and notice that

for l 6= 0, pl, l′ > 0 if and only if l′ = l + 1 or l′ = −(l− 1). The passage from l to l + 1 shall

be called the short jump, while the passage from l to 1− l shall be called the long jump.

Let Tl = inf{n > 0 : Yn = l} the first hitting time of the state l ∈ Z \ {+1}. We denote

by Pu(dω) the conditional probability P (· |Y0 = u), for u ∈ Z \ {+1}. Also, denote

(3.11) cl =
pl,l+1

p−l,−l+1
dl =

pl,−l+1

p−l,−l+1

for l ≥ 2 and set c1 = 1 and d1 = (1− |a|
b )−1.

Proposition 3. The probability that two paths of the process {Q} never collapse is

(3.12) P (Tc = ∞) = lim
l→∞

P−1(Tl+1 < T0) =
( |a|

b− |a|
)( ∞∑

l=1

dl

Πl
j=1cj

)−1
.

Remark: Note that the formula (3.12) is actually a general recurrence criterion for Markov

chains on a ladder. The transition probabilities of our chain {Ln}n≥0 are not homogeneous,

but it is interesting to compare this case with the homogeneous Markov chains on a ladder,

which reduce to correlated random walks, where the probability to move up or down depends

on whether the last step was up or down. For a recent reference in this direction, see Böhm

[1].

Proof. From (3.8), (3.9) and the construction of k(l) given in Lemma 2, equation (3.7), we

see that we can reach l = −1 and l = 0 with positive probability from any initial state of

the chain {Ln}. Denote Pu(Tl < T0) the probability that starting from u we get to l before

getting to zero. For l ≥ 2,

P−1(Tl+1 < T0) = P−1(Tl < T0)Pback ,
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where Pback is the probability of making a finite number of excursions in the interval [−l+1, l]

from l and coming back. It is to prove that once at −l + 1, we cannot reach l̃ > l for the

first time without passing through all l′ such that l ≤ l′ ≤ l̃.

Let M ∈ Z+ and −l + 1 = l0, l1, . . . , lM , lM+1 = l̃ a realization of the process {Yn} with

positive probability going from −l + 1 to l̃, l̃ > l, such that lj 6= l̃ for any j = 0, 1, . . . , M .

This implies that the transitions between successive states have positive probability (ac-

cording to (3.8) and (3.9)). We want to show that |lj | < l̃ for any j = 0, 1, . . . , M . If j = 1

we see that l1 = −l + 2 or l1 = l, henceforth the statement is true. Let j′ with 1 < j′ ≤ M

the first rank in the sequence which would not satisfy the property.

1) If lj′ > 0 then lj′ ≥ l̃ and then lj′−1 = lj′ − 1 or lj′−1 = −(lj′ − 1). In both cases we

shall have |lj′ − 1| < l̃ or simply lj′ − 1 ≤ l̃ − 1, hence lj′ = l̃. This is impossible.

2) If lj′ < 0 then −lj′ ≥ l̃ and then lj′−1 = lj′ − 1 or lj′−1 = −(lj′ − 1). In both cases we

shall have |lj′ − 1| = −lj′ + 1 ≤ l̃ − 1 implying that l̃ + 1 ≤ l̃ − 1, again impossible.

Now we want to show that if l̃ = l + 1 then the state l is reached by the sequence −l + 1 =

l0, l1, . . . , lM . Since lM+1 = l + 1 we have the possibility that lM = l, in which case we are

done, or that lM = −l. The case lM−1 = −l − 1 cannot happen since | − l − 1| = l̃ = l + 1.

Hence lM−1 = l + 1, again impossible.

We have shown that if l ≥ 2, the only possible ways to reach l + 1 for the first time if we

start from −l + 1 are the union over k = 0, 1, 2, . . . of realizations of the chain which reach

l and then return to −l +1, reach l again from −l +1, repeat the excursion k times in total

and then go directly to l + 1 from l. By Markov property, this implies that

Pback = pl,l+1

(
P (no excursion) + P (one excursion) . . .

)

= pl,l+1

(
1 + (pl,−l+1P (l))1 + (pl,−l+1P (l))2 . . .

)
=

pl,l+1

1− pl,−l+1P (l)
where P (l) = P−l+1(Tl < T0). We also have

(3.13) P−1(Tl+1 < T0) = P−1(Tl < T0)
1− pl,−l+1

1− pl,−l+1P (l)
.

We want to calculate

P (l + 1) = p−l,−l+1

(
P (l)pl,l+1 + P (l)2pl,−l+1pl,l+1 + . . . P (l)jpj−1

l,−l+1pl,l+1 + . . .
)

+ p−l,l+1

= p−l,−l+1
P (l)pl,l+1

1− pl,−l+1P (l)
+ p−l,l+1 .
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Notice that p−l,l+1 = 1− p−l,−l+1 hence

(3.14) 1− P (l + 1) = p−l,−l+1
1− P (l)

1− pl,−l+1P (l)
,

that is

1− P (l + 1) = p−l,−l+1

( 1
1− P (l)

− pl,−l+1
P (l)

1− P (l)

)−1

or

(1− P (l + 1))−1 = (1− P (l))−1 pl,l+1

p−l,−l+1
+

pl,−l+1

p−l,−l+1
.

This gives yl+1 = clyl + dl for the sequence yl = (1− P (l))−1 with cl = pl,l+1/p−l,−l+1 and

dl = pl,−l+1/p−l,−l+1. From (3.13) we know that

(3.15) P−1(Tl+1 < T0) = P−1(T2 < T0)Πl
k=2

1− pk,−k+1

1− pk,−k+1P (k)

and P−1(T2 < T0) = P (2) = |a|/b. We see that Πl
k=2(1− pk,−k+1P (k))−1 is

(
Πl

k=2

1− P (k + 1)
1− P (k)

)
Πl

k=2p
−1
−k,−k+1 =

1− P (l + 1)
1− P (2)

Πl
k=2p

−1
−k,−k+1

from equation (3.14). Combining the two we have

(3.16) P−1(Tl+1 < T0) = (
|a|
b

)(1− P (2))−1 1
yl+1

Πl
k=2

1− pk,−k+1

p−k,−k+1

=
( |a|

b− |a|
) 1

yl+1
Πl

k=2

pk,k+1

p−k,−k+1
.

We recall that pk,k+1

p−k,−k+1
= ck from (3.11) which permits to calculate yl by recursion

(3.17) yl+1 = dl + dl−1cl + dl−2cl−1cl + . . . dl−jΠl
j′=l−j+1cj′ + . . . + (Πl

j′=2cj)y2

while y2 = (1− |a|/b)−1. It follows that

P−1(Tl+1 < T0) =
( |a|

b− |a|
)(

(1− |a|/b)−1 + d2c
−1
2 + . . . dl−1(Πl−1

j=2cj)−1 . . . dl(Πl
j=2cj)−1

)−1

which implies (3.12). ¤

Proposition 4. The series from equation (3.12) has the same nature as
∑∞

l=2 |k(l)|. As a

consequence, the paths will collapse with probability one if and only if the series
∑∞

l=2 |k(l)|
diverges, which is equivalent to the recurrence of the inhomogeneous random walk {Ln(ω)}.
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Proof. We want to write explicitly the general term of the series (3.12), namely

pl,−l+1

p−l,−l+1

(p−2,−1

p3,4

p−3,−2

p4,5
· · · p−l+1,−l+2

pl,l+1

)p−l,−l+1

p2,3
.

It can be simplified to

p−1
2,3(1− pl,l+1)Πl

j=3rj with rj =
p−j+1,−j+2

pj,j+1
=

1− p−j+1,j

1− pj,−j+1
.

The product p−1
2,3(1− pl,l+1) is bounded above and below by positive constants independent

of l ∈ Z+. The nature of the series is the same as for the product Πl
j=3rj . Lemma 3 and

Proposition 5 complete the calculation of the general term. From (3.21) and (3.22) we can

see that Πl
j=3rj is equal to a constant times the factor |k(l)|(b + |a| − |k(l)|), and for all l,

|a| ≤ b + |a| − |k(l)| ≤ b + |a|. ¤

Lemma 3. If k = k(l) < 0,

(3.18) rl =
|k|(b + |a| − |k|)

(b + |k|)(|a| − |k|)
and if k = k(l) > 0

(3.19) rl =
|k|(b + |a| − |k|)

(b− |k|)(|a|+ |k|) .

Proof. If k = k(l) < 0, then

1− pl,−l+1 =
|a| − |k|

(b + |a| − |k|)
since the chain must do the long jump to reach −l + 1 which is equivalent to hitting a. It

implies that k′ = k(−l + 1) = a + |k| = a − k < 0. To reach l from −l + 1 we need to

perform once again a long jump, hence

1− p−l+1,l =
|a| − |k′|

(b + |a| − |k′|) =
|k|

b + |k|
which implies (3.18). We derive (3.19) analogously. ¤

We recall the Definition 1 of a descending cycle.

For a given n ∈ Z+, let’s denote by

(3.20) k = nb− qn|a| k′ = (n + 1)b− qn|a| k′′ = (n + 1)b− (q − 1)|a| q ≤ qn+1
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the first negative element of the nth descending cycle, the first positive element of the

(n + 1)th descending cycle and a given positive element of the (n + 1)th descending cycle,

respectively.

Proposition 5. The factors rk and rj, for k′ ≤ j ≤ k′′ are

rk =
|k|(b + |a| − |k|)

(b + |k|)(|a| − |k|) and Πk′′
j=k′rj =

k′′(b + |a| − k′′)
(k′ + |a|)(b− k′)

while

(3.21) Πk′′
j=krj =

((n + 1)b− (q − 1)|a|
nb− (qn − 1)|a|

)( −nb + q|a|
−(n− 1)b + qn|a|

)
.

If q = qn+1, k′′ = k′′n+1 denotes the last positive element from the descending cycle n + 1

and, with this notation,

(3.22) Πk′′
j=krj =

k′′n+1(b + |a| − k′′n+1)
k′′n(b + |a| − k′′n)

.

Lemma 4. If a and b are two real numbers such that b/a is negative and irrational, then

the set Z+
a,b = {mb + na : m,n ∈ Z+} is dense on the real line.

Proof. It is well known that the additive subgroup of R generated by a rational and an

irrational, with no restriction on the coefficients, is dense in R. We shall make sure that we

can take positive coefficients and prove the result on the way. Without loss of generality

we assume b > |a|. Let r0 = b and r1 = |a|. Set m1 = 1 and n1 will be the largest positive

integer such that r0 − n1r1 ∈ (0, |a|). Let r2 = r0 − n1r1 and we proceed by defining

rj+1 as the remainder of the integer division of ri−1 by ri, for any i ≥ 2. The coefficients

mj and nj of b and a, respectively, are derived from the recursion by noticing that all

{rj}j≥1 ⊆ Za,b. More explicitly, if rj = mjb + nja, rj−1 = mj−1b + nj−1a then rj+1 =

(mj−1b + nj−1a) − qj(mjb + nja) implying mj+1 = mj−1 − qjmj and nj+1 = nj−1 − qjnj ,

where qj = [rj+1/rj ]. The sequence {rj} is positive and decreasing and is bounded by

|a|. This implies that the pair (mj , nj) can only be in the first quadrant or in the third

quadrant. The first pair is in the first quadrant. It is easy to check that the second pair

will be in the third quadrant. This implies, according to the recursion, that all the odd

terms of the sequence of pairs are in the first quadrant and, moreover, the positive sequences

{m2j+1} and {n2j+1} are increasing. A similar argument makes the negative even sequences

decreasing. We want to show that we can find a sequence of positive numbers in Z+
a.b which

converges to zero. If the decreasing sequence {rj} converges to zero we are done. If it
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converges to a positive constant, we use the monotonicity of the sequences of coefficients

and take differences of terms approaching that positive limit. The rest of the argument is

standard. ¤

We are ready to conclude the proof of Theorem 1.

Proof. The problem is reduced by Proposition 2 to showing that Yn(ω) reaches zero in finite

time almost surely. Lemma 2 converts the problem into the question of recurrence for the

random walk {Ln}. Proposition 3 gives the recurrence condition (3.12) and Proposition 4

simplifies the problem to the study of the nature of the series
∑∞

l=2 |k(l)|. Lemma 4 says

that k = mb + na is dense everywhere, in particular in (a, b). But any point in Za,b ∩ (a, b)

is a valid k = k(l) for our summation. The terms of the series cannot converge to zero. ¤
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