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Abstract. We prove the diffusive scaling limits of some interacting particle systems in random
dynamical environments. The limits are identified as nonlinear parabolic systems, with coefficients
given by equilibrium variational problems. Three related models are studied that correspond to
different environments. All the models are of nongradient type, and one is nonreversible. The proofs
involve techniques of entropy production estimates, the nongradient method and asymmetric tools,
in particular a proof of the strong sector condition.
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1. Introduction. In this article we study the diffusive scaling limits of three
models of random walks with simple exclusion on a multidimensional lattice subject
to rapidly fluctuating jump rates determined by another system of similar walks. In
each of the three models there are two types of particles which we denote by η and ξ.
Each particle, independently of the others, waits a random, exponentially distributed
length of time and then attempts to jump to a neighbouring site. The interaction
enters in two ways. If a particle attempts to jump to a site already occupied by a
particle of the same type, the jump is suppressed. This hard core interaction between
particles of the same type is called simple exclusion. The second interaction is through
a speed change. The expected waiting time for a given particle depends on the local
configuration of particles of the other type. The three models differ in the exact form
of this speed change. It is more convenient to think of this in terms of the inverse
of the expected waiting time, or the rate of jumping. In Model 1, the rate for an η
particle to jump from a site x to a neighbouring site y is γ1 + ξx + ξy where ξx and
ξy are the numbers of ξ particles at x and y, while the ξ particles all jump at rate γ2.
Here γ1 and γ2 are two positive numbers. In other words, the ξ particles perform the
symmetric simple exclusion process and the η particles perform a “simple exclusion
in a symmetric simple exclusion environment”. In Model 2, the rate for an η particle
to jump from x to the nearest neighbour y is γ1 + 1

2 (ξx + ξy), and the rate for a ξ
particle to jump is γ2 + (1− 1

2 (ηx + ηy)). Hence the two processes dynamically drive
each other through the interdependence of the jump rates. Model 1 and 2 are in some
sense warm-ups for Model 3 in which an η particle jumps from x to nearest neighbour
y at rate γ1 + ξx and a ξ particle does the same at rate γ2 + 1− ηx.

Such models can be thought of as microscopic pursuit and evasion predator-prey
models. In Models 2 and 3, for example, the η particles represent prey and the ξ
particles represent predators. The predators jump fast until they find a prey and
then slow down, while the prey jump slowly until they see a predator, at which time
they speed up to run away. Very little work has been done on pursuit and evasion
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systems, as opposed to birth and death predator prey systems, where birth and death
rates are functions of the other species. Both types of predator prey systems are
usually modelled by continuum equations – systems of partial differential equations
– though particle systems are more realistic. There is quite a bit of work in the
probability literature on systems of birth and death processes with random walks [1]
and on speed change models with a scalar conservation law, but as far as we know,
no previous results on speed change (i.e. pursuit and evasion) systems. Parabolic
systems have much more interesting behaviour than scalar parabolic equations [9],
and are more relevant to biology.

With respect to modelling in biology using parabolic systems a question arises as
to whether one should use divergence or non-divergence form. Our models shed some
light on this issue: Microscopically they are in (discrete) non-divergence form, but
macroscopically the bulk equations take divergence form.

Another motivation for these models comes from the theory of homogenisation.
Let us recall two well known examples.

1. To each bond x, x + e of the multidimensional integer lattice Zd is associated
an independent random variable a(x, x+e) ≥ δ > 0. We let x(t) be a continuous time
random walk on Zd with generator Lf(x) =

∑
|e|=1 a(x, x+e)(f(x+e)−f(x)) and we

ask for the asymptotic behaviour of xε(t) = εx(ε−2t). This is the reversible case, in
which the rate of jumping from x to nearest neighbour x+e is the same as the rate of
jumping back, that is, a(x, x + e) = a(x + e, x). The uniform measure is an invariant
and reversible (unnormalized) measure and by standard methods of homogenisation
one finds that the limiting process is a Brownian motion with covariance ` · ā` =
inff

∑
e E[a(0, e)(e · ` + τef − f)2], the infimum ranging over stationary processes.

2. To each site x of Zd is associated an independent random variable a(x) ≥ δ > 0
and y(t) is a continuous time random walk with generator Lf(x) =

∑
|e|=1 a(x)(f(x+

e) − f(x)). This is the non-reversible case, in which the rate of jumping from x,
a(x) depends on x alone. Here the (unnormalized) invariant measure gives mass
a−1(x)/E[a−1] to site x. The rescaled process yε(t) = εy(ε−2t) again converges to
Brownian motion. The variance of yε(t) can be computed explicitly and an application
of the ergodic theorem tells us that the asymptotic variance in this case is E[a−1(0)]−1.
Now in each of the two models, suppose that we replaced the static random field by
one varying in time. Similar questions can be answered in the reversible case of
example 1, but in the non-reversible case of example 2 little is known. The problem
is that in the second case there is no invariant measure.

Interacting systems with two types of particles provide examples of dynamic ran-
dom environments which can be analyzed. In particular, the speed change in our
Model 3 is of the type of the second example.

The main results of the article are scaling limits for the diffusively rescaled density
fields in the three models. The limits are coupled parabolic systems, with diffusion
matrices which can be obtained from certain variational problems. We use the non-
gradient method ([10], [13]), and its adaptation to the mean zero non-reversible setting
[15]. The main idea is to consider the models as bounded perturbations of symmetric
simple exclusion and for this we have to assume γ1, γ2 > 0. The work [15] is unpub-
lished. The only other case we know treating the non-reversible, non-gradient case
using the strong-sector estimate to bound the asymmetry in terms of the symmetry
is in [6] where a very interesting model related to vortex flow ([7]) is studied. The
method used is the relative entropy method, which requires certain a priori regularity
for solutions of the hydrodynamic equation. However, to prove this one needs first
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some regularity of the diffusion coefficient as a function of the density, and this has
not been obtained for the model in [6] at the present time. Hence the proof is not
complete. For parabolic systems as considered in the present article, even some regu-
larity of the coefficients would not help, as the needed regularity results for solutions
are not available. Hence one is forced to use the method of [10],[13],[15]. Because
of the lack of references we have provided a sketch of the argument, refering to the
existing literature whenever possible.

2. The models. In each of the three models there are two types of particles
which we call η particles and ξ particles. The particles perform symmetric nearest
neighbour random walks on the multidimensional integer lattice Zd, with exclusion
within their type. In other words, each particle waits an exponential amount of time,
then attempts a jump to a neighbouring site chosen with equal probabilities. The
jump is only executed if the target site is free of a particle of the same type. If we
start with at most one particle of each type at each site, it will stay so forever, so
the state space of all three models is X = ({0, 1} × {0, 1})Zd

. Configurations will be
denoted (η, ξ), and for each x ∈ Zd, ηx ∈ {0, 1} and ξx ∈ {0, 1} denote the presence
or absence of a particle at that site.

The interaction is through the expected length of the holding time, which will
depend on the local environment. Let us introduce some notation. The operations
η 7→ ηx,y and ξ 7→ ξx,y exchange the occupation numbers at the two sites x and y.
More precisely, they are defined as ηx,y

x = ηy, ηx,y
y = ηx and ηx,y

z = ηz otherwise,
and analogously for ξ. It is convenient to use the η and ξ lattice gradients acting on
functions on X, which are given by

∇η
x,yf(η, ξ) = f(ηx,y, ξ)− f(η, ξ), ∇ξ

x,yf(η, ξ) = f(η, ξx,y)− f(η, ξ).(2.1)

We can now describe the three models (from easiest to hardest).
Model 1. The ξ particles attempt jumps to each neighbour at rate γ2. An η particle
at x attempts to jump to nearest neighbour y at rate γ1 + ξx+ξy

2 . The infinitesimal
generator is

L(1)f =
∑
x∼y

(γ1 +
ξx + ξy

2
)∇η

x,yf + γ2∇ξ
x,yf.(2.2)

The sum is over ordered nearest neighbour pairs x ∼ y.
Model 2. A ξ particle at x attempts to jump to nearest neighbour y at rate γ2 +1−
ηx+ηy

2 . An η particle at x attempts to jump to nearest neighbour y at rate γ1 + ξx+ξy

2 .
The infinitesimal generator is

L(2)f =
∑
x∼y

(γ1 +
ξx + ξy

2
)∇η

x,yf + (γ2 + 1− ηx + ηy

2
)∇ξ

x,yf.(2.3)

Model 3. A ξ particle at x attempts to jump to each nearest neighbour site at rate
γ2 + 1 − ηx. An η particle at x attempts to jump to each nearest neighbour site at
rate γ1 + ξx. The infinitesimal generator is

L(3)f =
∑
x∼y

(γ1 + ξxηx(1− ηy))∇η
x,yf + (γ2 + (1− ηx)ξx(1− ξy))∇ξ

x,yf.(2.4)

We shall use the generic notation L for the infinitesimal generator of the three
models, unless we need to differentiate between them (especially in Section 5.)
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Models 1 and 2 are reversible with respect to the family of product [Bernoulli]
measures πu,v = (mu ×mv)⊗Zd

N , u, v ∈ [0, 1] where mu(1) = u and mu(0) = 1 − u.
The corresponding Dirichlet forms

Du,v(f) = −Eπu,v [fLf ]

are given by

1
2

∑
x∼y

Eπu,v [(γ1 +
ξx + ξy

2
)(∇η

x,yf)2 + γ2(∇ξ
x,yf)2] (Model 1)

and

1
2

∑
x∼y

Eπu,v [(γ1 +
ξx + ξy

2
)(∇η

x,yf)2 + (γ2 + 1− ηx + ηy

2
)(∇ξ

x,yf)2] (Models 2 , 3).

We learned about Model 3 from Donatis Surgailis who also indicated the following
key fact, which is easy to check.

Proposition 2.1. (Surgailis) The product measures πu,v, u, v ∈ [0, 1] are in-
variant for L(3) in Model 3.

However L(3) is not reversible with respect to the πu,v. The generator of Model 2
is nothing but the symmetric part of the generator in Model 3.

One could of course consider much more general speed change models, where the
holding time of a particle is a general function of the local configuration. The basic
problem then becomes one of finding the set of invariant measures, which is extremely
hard in general.

On the other hand one can start with a family of invariant measures, and con-
struct appropriate Dirichlet forms. This produces dynamics for which the measures
are guaranteed to be reversible and invariant. However, dynamics for which we can
determine a nice family of measures which are invariant but not reversible are rare, a
fact underlying the importance of Model 3.

For each of the three models one can check that for γ1, γ2 > 0 the two particle
densities are the only conserved quantities. A consequence is that, on a box of side
length ε−1 with periodic or reflecting boundary conditions, once we fix the number of
η and the number of ξ particles, then the continuous time Markov chain (η(·), ξ(·)) is
ergodic and the distribution converges to the uniform distribution on configurations
with those numbers of particles.

We also have the obvious lower bound

D(f) ≥ γD(0)(f) , γ ≤ γ1 ∧ γ2

for each of the three Dirichlet forms in terms of the Dirichlet form D(0) of two inde-
pendent copies of the symmetric simple exclusion process,

D(0)
u,v(f) =

1
2

∑
x∼y

Eπu,v [(∇η
x,yf)2 + (∇ξ

x,yf)2].

We can also rewrite the Dirichlet form as D(2)(f) =
∑

x∼y Dx,y(f) where

Dx,y(f) =
1
2
E[(γ1 +

ξx + ξy

2
)(∇η

x,yf)2 + (γ2 + 1− ηx + ηy

2
)(∇ξ

x,yf)2] .(2.5)
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Since it is well known that on a box of side length ε−1, the spectral gap of
symmetric simple exclusions is bounded below by some constant multiple of ε2, we
immediately obtain for our three Dirichlet forms the Poincaré inequalities V ar(f) ≤
Cε−2D(f) on boxes of side length ε−1, uniformly in the density. For fixed γ1, γ2 > 0
we will prove diffusive scaling limits for the joint empirical densities of particles. The
limits are coupled systems of parabolic partial differential equations. The diffusion
matrices for limits of such systems cannot in general be expected to be elementary
functions of the densities. However we can obtain variational formulae for the diffusion
matrices and these can be used to show some structure of the equations.

This is made precise by the hydrodynamic scaling limit. To avoid technicalities
we work on the torus Td instead of Rd, though it is known how to deal with infinite
systems [3]. We are given functions u0(x) and v0(x) of x ∈ Td taking values in [0, 1].
The small scaling parameter ε > 0 represents the separation between macroscopic and
microscopic pictures. To keep ourselves on the torus we assume that ε−1 is an integer.
Macroscopic space and time variables x ∈ Td and t ≥ 0 are related to microscopic
variables x ∈ Zd/ε−1Zd and t ≥ 0 by

x = bε−1xc, t = ε−2t.

We assume that the initial distribution µε
0 of the process running on Zd/ε−1Zd

is such that the following law of large numbers holds: As ε → 0, in µε
0-probability,

the empirical density fields (ηbε−1xc, ξbε−1xc) converge weakly to (u0(x), v0(x)) where
u0(x) and v0(x) are some nice functions on the torus. Consider P̂ε, the distributions
of

t −→ (ηbε−1xc(ε−2t)dx, ξbε−1x(ε−2t)c)dx) ,(2.6)

seen as measures on D([0,∞); M(Td) × M(Td)), the Skorohod space of left-limit
and right-continuous maps from [0,∞) into M(Td) ×M(Td)), the space of pairs of
probability measures with the topology of weak convergence, indexed by the scaling
parameter ε > 0.

We shall denote by L
(i)
l , for i = 0, 1, 2, 3, the restrictions of the infinitesimal

generators of the processes confined to a box Λl of size l ∈ Z+ centered at the origin.
For fixed numbers of particles m and n, we denote by Pn,m,l the product Bernoulli
measure π% conditional on the hyperplane

∑
x∈Λl

ζx = (m,n) = b(2l + 1)d%c, where
ζx = (ξx, ηx), % = (u, v) ∈ [0, 1]× [0, 1].

Let F be the class of local functions f on the state space {0, 1}Zd × {0, 1}Zd

satisfying the bound

En,m,l[fh] ≤ C
∑

|x−y|=1 , |x|,|y|≤l′
D(0)

x,y(h) ,(2.7)

with a constant C > 0, uniformly over boxes of size l ∈ Z+ for functions with finite
support h (local functions). The integer l′ ≤ l stands for the largest integer such that
the box Λl′ + supp(f) be included in Λl. In particular, mean-zero local functions like
the gradients ∇ζ, the currents W0,ei and the fluctuations Lg for g local satisfy the
property.

We shall see in equation (3.25), Section 3 that, for any % = (u, v) ∈ [0, 1] × [0, 1]
and for i = 0, 1, 2, 3 we can define the equivalent semi-norms

〈f , f〉(i)−1,% = lim
(n(2l+1)−d , m(2l+1)−d)→%

(2l)−dEn,m,l[
∑

x≤l′
τxf , (−L

(i)
l )−1(τxf)] .(2.8)
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If N is the null space corresponding to i = 0, we denote the completion of the quotient
space F/N by H(i)

−1,%, a Hilbert space for the symmetric cases i = 0 and i = 2. The

null space is the same for all i due to the fact that L
(3)
sym = L(2) and equivalence of

the norms warranted by the strong sector condition described in Lemma 2.5.
We need the compressibility matrix

χ(%) = χ(u, v) =
(

u(1− u)Id 0
0 v(1− v)Id

)
,(2.9)

where Id is the d-dimensional identity matrix.
Theorem 2.2. (Model 1) Assume γ1, γ2 > 0. Then P̂ε ⇒ δu,v, the Dirac mass

on the trajectory (u(t,x), v(t,x))dx where (u, v) is the unique weak solution of

∂

∂t

(
u
v

)
= ∇

(
e(u, v) 0

0 γ2Id

)
∇

(
u
v

)
, x ∈ Td, t ≥ 0(2.10)

with (u(0,x), v(0,x)) = (u0(x), v0(x)), satisfying
∫ T

0

∫
Td [|∇u|2 + |∇v|2]dxdt < ∞.

The matrix e(u, v) is continuous in u and v and is given by the variational formula,
for any r = (r1, . . . , rd) ∈ Rd:

re(u, v)r′ =

1
2u(1− u)

inf
g∈F

Eπu,v [
d∑

i=1

(γ1 +
ξ0 + ξei

2
)(ri(ηei − η0)−∇η

0,ei
Ωg)2 + γ2(∇ξ

0,ei
Ωg)2] .

Here Ωg =
∑

x∈Zd τxg with τx the shift operator.
Theorem 2.3. (Model 2) Assume γ1, γ2 > 0. Then P̂ε are tight and any limit

point is supported on the set of weak solutions of

∂

∂t

(
u
v

)
= ∇D(2)(u, v)∇

(
u
v

)
,

where x ∈ Td, t ≥ 0 with (u(0,x), v(0,x)) = (u0(x), v0(x)) satisfying
∫ T

0

∫
Td [|∇u|2 +

|∇v|2]dxdt < ∞. The diffusion matrix D(2)(u, v) is continuous in u and v, and is
given by

D(2)(u, v) =
(

(γ1 + v)Id 0
0 (γ2 + 1− u)Id

)
(2.11)

+
1
4

[B − (u(1− u)(γ1 + v) + v(1− v)(γ2 + 1− u))Id] χ−1(u, v)
(

Id Id

Id Id

)
,

where for any r = (r1, · · · , rd),

rBr′ =
1
2

inf
g∈F

Eπu,v [
d∑

i=1

(γ1 +
ξ0 + ξei

2
)(ri(ηei − η0)−∇η

0,ei
Ωg)2

+(γ2 + 1− η0 + ηei

2
)(ri(ξei − ξ0)−∇ξ

0,ei
Ωg)2].
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Before stating the third hydrodynamic limit, we need to recall that on hyperplanes∑
ζ = (n,m) for fixed nonnegative integers m and n, the generators L

(i)
l are invertible.

Theorem 2.4. (Model 3) Assume γ1, γ2 > 0. Then P̂ε are tight and any limit
point is supported on the set of weak solutions of

∂

∂t

(
u
v

)
= ∇D(3)(u, v)∇

(
u
v

)
, x ∈ Td, t ≥ 0(2.12)

with (u(0,x), v(0,x)) = (u0(x), v0(x)) satisfying
∫ T

0

∫
Td [|∇u|2 + |∇v|2]dxdt < ∞

where D(3)(u, v) is a 2d × 2d matrix valued function continuous in u and v given
by

(
D(3)(u, v)

)−1

χ(%) =(2.13)

lim
(n(2l+1)−d , m(2l+1)−d)→(u,v)

(2l)−dEn,m,l[
∑

x≤l′
τx∇ζ (−L

(3)
l )−1(τx∇ζ)] .

Furthermore, there exist 2d× 2d matrices Q and V , with V symmetric, such that

D(3)(u, v)Q = D(2)(u, v)V(2.14)

and Qsym < V in the sense of quadratic forms.
A comment related to the asymmetric diffusion coefficient D(3)(u, v) is included at
the end of Section 5.

Remark 1. (on uniqueness). Uniqueness of the hydrodynamic equations for
Models 2 and 3 is a hard problem and we have not pursued it here.

Remark 2. (on the degenerate case). If γ1 = γ2 = 0, then Model 2 and 3 are
no longer ergodic. For example, any configuration in which every site where there is
a ξ particle is also occupied by an η particle and there are η but no ξ particles in all
nearest neighbour[ing] sites is an absorbing state for Model 3. We can construct such
configurations which have macroscopic profiles, and since every state in our systems
has bounded specific entropy, it follows that the diffusion coefficients simply vanish.
It is an interesting question whether the scaling limit could hold after removing some
bad configurations from the space, but we do not know how to answer this. On the
other hand if only one of γ1 and γ2 vanish the situation is not so bad. One can check,
for example in Model 2, that the spectral gap on a box of side length ε−1 is correct,
say if γ1 = 0 but γ2 > 0, but with a factor Cvε2 where v is the density of ξ particles
and with a factor C(1−u)ε2 if γ1 > 0 but γ2 = 0. Analogous results hold for Model 1.
In a similar way, one can check that the diffusion matrices of Model 2 and 3 dominate

(
C(γ2)vId 0

0 γ2Id

)
(2.15)

if γ1 = 0 and
(

γ1Id 0
0 C(γ1)(1− u)Id

)
(2.16)

if γ2 = 0 for some C(d) > 0 for d > 0. For the rest of the article we concentrate
exclusively on the case

γ1, γ2 ≥ γ > 0.
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Remark 3. (on the birth-death model). Let a(η, ξ), b(η, ξ) be positive local
functions, and

Lreactionf(η, ξ) =
∑

x

a(τxη, τxξ)(f(ηx, ξ)− b(η, ξ)) + d(τxη, τxξ)(f(η, ξx)− f(η, ξ))

with ηx
x = 1 − ηx and ηx

y = ηy otherwise, and analogously for ξ. Let L
(i)
ε =

ε−2L(i) + Lreaction, i = 1, 2, 3. The hydrodynamic limit is a nonlinear reaction-
diffusion equation of the form

∂

∂t

(
u
v

)
= ∇D(i)(u, v)∇

(
u
v

)
+

(
F (u, v)
G(u, v)

)
,

where F (u, v) = Eπu,v [a(η, ξ)(1 − 2η0)], G(u, v) = Eπu,v [b(η, ξ)(1 − 2ξ0)]. See [5] for
details.

The method of proof for Models 1 and 2 which are reversible, non-gradient systems
is by now rather standard (in the sense that they have been worked out for the
Ginzburg-Landau model [13] and the symmetric simple exclusion process [14]). These
methods are all based on entropy and its rate of change. Fix % = (u, v) ∈ (0, 1)×(0, 1)
and let π% be a reference probability measure on the state space. If µ = fπ% is any
other probability measure on the state space we define its entropy as

H(f) = Eπ% [f log f ].

If µt = ftπ% denotes the marginal distribution of our process with Dirichlet form D(f)
then we have the general inequality

dH(ft)
dt

≤ −1
4
D(ft).

Changing to the macroscopic time scale t = ε−2t corresponds to multiplying the
generator, or Dirichlet form by a factor ε−2. Hence the initial entropy bound

H(f0) ≤ K(log 4)ε−d(2.17)

with K a constant independent of ε produces the bound
∫ ∞

0

D(ft)dt ≤ K(log 4)ε2−d.

The log 4 is just the maximum entropy per site in a model with 4 possible values at
each site (the constant K will take care of any arbitrary pair %0 = (u0, v0), but we can
assume u = v = 1/2 for this purpose). Now if γ1, γ2 ≥ γ > 0 for each of models the
Dirichlet form of the process dominates γD(0), the Dirichlet form of the symmetric
simple exclusion. Hence we have the entropy production bound

∫ ∞

0

D(0)(ft)dt ≤ γ−1(log 4)ε2−d.(2.18)

From this bound follow the key estimates for non-gradient reversible systems. These
will be described in Section 3 with references to the original proofs.

Model 3 is of non-gradient, non-reversible, mean zero type. For such models,
a method was developed in Xu’s thesis [15] , specifically applied to the mean zero
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asymmetric simple exclusion process. We did not have access to [15], but relied on
notes of Varadhan’s lectures on this topic at the Fields Institute [14]. Our proof
follows their ideas very closely. The main ingredient, which allows the extension of
the standard reversible machinery in these types of non-reversible systems, is the
following strong sector condition.

Lemma 2.5. There exists a constant C > 0 such that for any π = π%, % ∈
[0, 1]× [0, 1], f, g ∈ F , and any of our three models,

∣∣∣∣
∫

fLgdπ

∣∣∣∣ ≤ C
√
D(f)

√
D(g).(2.19)

Proof: For models 1 and 2 the result is immediate from the reversibility. We
prove it for Model 3 with γ1 = γ2 = 0. It then extends immediately to non-negative
γ1, γ2. We rewrite the generator as L =

∑
x∼y Lx,y where

Lx,yg(η, ξ) =
1
2
[(ξx + ξy)(g(η, ξx,y)− g(η, ξ)) + (ηxξx + ηyξy)(g(ηx,y, ξ)− g(η, ξx,y))].

Recall the Dirichlet form D(f) =
∑

x∼y Dx,y(f) from (2.5). We write E[fLx,yg] =
A + B where

A =
1
2
E [(ξx + ξy)(g(η, ξx,y)− g(η, ξ))f(η, ξ)] ,(2.20)

B =
1
2
E [(ηxξx + ηyξy)(g(ηx,y, ξ)− g(η, ξx,y))f(η, ξ)] .(2.21)

Applying the exchange operator ξ 7→ ξx,y to A and resumming we obtain

A = −1
4
E [(ξx + ξy)(g(η, ξx,y)− g(η, ξ))(f(η, ξx,y)− f(η, ξ))] .

Applying η 7→ ηx,y and ξ 7→ ξx,y simultaneously in B we obtain

B = −1
4
E [(ηxξx + ηyξy)(g(η, ξx,y)− g(ηx,y, ξ))(f(ηx,y, ξx,y)− f(η, ξ))] .(2.22)

We write B = B1 + B2 + B3 + B4 where

B1 =
1
4
E [(ηxξx + ηyξy)(g(ηx,y, ξ)− g(η, ξ))(f(ηx,y, ξx,y)− f(η, ξx,y))] ,

B2 =
1
4
E [(1− ηxηy)(ηxξx + ηyξy)(g(ηx,y, ξ)− g(η, ξ))(f(η, ξx,y)− f(η, ξ))] ,

B3 =
1
4
E [(1− ηxηy)(ηxξx + ηyξy)(g(η, ξ)− g(η, ξx,y))(f(ηx,y, ξx,y)− f(η, ξx,y))]

B4 =
1
4
E [(ηxξx + ηyξy)(g(η, ξ)− g(η, ξx,y))(f(η, ξx,y)− f(η, ξ))] .

Notice that in B2 and B3 we have slipped in the term 1− ηxηy which vanishes when
the lattice gradients vanish, but otherwise is 1. Now we have (ηxξx +ηyξy) ≤ (ξx +ξy)
and therefore by Schwartz’s inequality

|B1| ≤
√
Dx,y(f)

√
Dx,y(g).
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For B2 and B3 note that

(1− ηxηy)(ηxξx + ηyξy) ≤ (ξx + ξy) ∧ ((1− ηx) + (1− ηy)) .

Again by Schwartz’s inequality

|B2 + B3| ≤ 4
√
Dx,y(f)

√
Dx,y(g).

From (ηxξx + ηx+eξx+e) = −(1− ηx)ξx − (1− ηx+e)ξx+e + (ξx + ξx+e),

B4 + A = −1
4
E [((1− ηx)ξx + (1− ηy)ξy)(g(η, ξ)− g(η, ξx,y))(f(η, ξx,y)− f(η, ξ))] .

Since ((1− ηx)ξx + (1− ηy)ξy) ≤ (1− ηx) + (1− ηy), Schwartz’s inequality gives

|B4 + A| ≤
√
Dx,y(f)

√
Dx,y(g).

This proves that E[fLx,yg] ≤ 6
√Dx,y(f)

√Dx,y(g). Summing over nearest neighbour
pairs x and y, an application of Schwarz’s inequality completes the proof.

3. Non-gradient systems. Let ζ = (η, ξ) be the vector valued occupancy num-
ber. For each ε > 0 and initial distribution µε

0 our three models define Markov
processes ζ(t) with state space Xε = ({0, 1} × {0, 1})Zd/εZd

. We denote by Pε the
corresponding measure on D([0,∞); Xε), the space of right continuous paths with
left limits, equipped with the topology of convergence at continuity points. We are
primarily interested in the comportment of ζbε−1xc(ε−2t)dx. Let M(Td) be the set of
nonnegative measures on Td with total mass bounded above by 1 and P̂ε denote the
corresponding probability measure on D([0, T ];M(Td)×M(Td)).

In any such model we have

dζx(t) =
d∑

i=1

(
Wx−ei,x(t)−Wx,x+ei(t)

)
dt + dMx(t)(3.1)

where Wx,x+e = Wx,x+e(t), the (vector) rate of particle jumps from x to x + e, is
a local function of the form Wx,x+e = τxW0,ei = W i

x, and the Mx are martingales.
We use ei for the vector of unit length in the positive i direction on the lattice. The
precise form of W0,ei will be given later. Let φ be a smooth function on the torus
taking values in R2. We have

∫

Td

(
ζbε−1xc(ε−2t)− ζbε−1xc(0)

)
φ(x)dx =(3.2)

∫ t

0

∫

Td

∇εφ(x)ε−1Wbε−1xc(ε−2s)dxds + Mφ(t)

where (∇εφ)(x) = ε−1[φ(x+ εei)−φ(x] = ∇φ(x)+O(ε) and Mφ is a martingale with
variance

E[(Mφ(t))2] = εd

∫ t

0

∫

Td

|∇εφ|2(x)σ2
bε−1xc(ε

−2s)dxds(3.3)

where σx is a (bounded) local function specific to the model. Hence the martingale
term is of order εd/2 and is negligible in the limit. The problem is therefore to show
that as ε → 0,

ε−1Wbε−1xc(ε−2t) ⇀ D(%)∇%(3.4)
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where % = (u, v) is the weak limit of ζbε−1xc(ε−2t), and D = D(%) is the diffusion
matrix specific to the model. The symbol ⇀ is used to denote weak convergence. In
other words (3.4) means that for any smooth φ(x, t),

∫ t

0

∫

Td

φ(x, s)ε−1Wbε−1xc(ε−2s)dxds →
∫ t

0

∫

Td

φ(x, s)D(%(x, s))∇%(x, s)dxds

in probability.
At this point it helps to know what is W0,e, the current, in each specific model.

In Model 1 it is

W
(1)
0,e = ((γ1 +

ξ0 + ξe

2
)(η0 − ηe), γ2(ξ0 − ξe)) ,(3.5)

in Model 2 it is

W
(2)
0,e = ((γ1 +

ξ0 + ξe

2
)(η0 − ηe), (γ2 + 1− η0 + ηe

2
)(ξ0 − ξe))(3.6)

and in Model 3 the current is the pair W
(3)
0,e = (W (3),η

0,e ,W
(3),ξ
0,e ) where

W
(3),η
0,e = (γ1 + ξ0)η0(1− ηe)− (γ1 + ξe)ηe(1− η0) ,

W
(3),ξ
0,e = (γ2 + 1− η0)ξ0(1− ξe)− (γ2 + 1− ηe)ξe(1− ξ0) .

(3.7)

We shall denote the current generically as W0,e unless we need to differentiate between
the three models. Remember that the first coordinate is the current of the η particles
and the second is the current of the ξ particles. For some of the terms above a special
simplification occurs, for example, even in Model 3 there are some terms in the current
of the form η0ξ0−ηeξe. Since it is a difference of a shift τeh of a function h with itself,
called a gradient, a summation by parts reduces the key term on the right hand side
of (3.2) to

∫ t

0

∫

Td

∆φ(x)hbε−1xc(ε−2s)dxds .

The difficult ε−1 is absorbed into the gradient on the test function through an inte-
gration by parts, and the much easier problem is now to show that

hbε−1xc(ε−2t) ⇀ h̄(%)(3.8)

where h̄(%) = Eπ% [h]. A system whose currents are of this form is called a gradient
system (see [14] for a discussion of the question).

Notice that all three systems we are studying are of non-gradient type. So we
have to prove (3.4). One way to do it might be to generate a microscopic variable
which we knew converged to D(%)∇% and then show that the difference between it
and the field ε−1Wbε−1xc(ε−2t) converges weakly to zero.

The simplest candidate is the following. Let ` be a positive integer and let ζ̄`
x

denote the average value of ζ on a box Λ` of side length ` around site x and let

Ξ`
x =

( d∑

j=1

aij(ζ̄`
x)(ζ̄`

x+ej
− ζ̄`

x)
)

1≤i≤2d
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where D(%) = (aij(%))1≤i,j≤d is the diffusion coefficient in the model. Then
ε−1Ξ`

bε−1xc(ε
−2t) is our natural candidate. On the other hand, for a given δ > 0

it is an easy computation using Ito’s formula to show that if L is the generator of
the process and g(%, ζ) is any function continuous in the density % and depending
only locally on ζ, then the field ε−1Lg(ζ̄δε−1

bε−1xc, τbε−1xcζ)(ε−2t) converges weakly to 0.

Here ζ̄δε−1

x is just the empirical density on a box of side length δε−1 around x (the
intermediate scale between the micro- and macroscopic levels). Hence we can replace
our simple candidate by a linear combination of gradient-type terms plus a negligible
part

Ξ`,g
x =

( d∑

j=1

aij(ζ̄`
x)(ζ̄`

x+ej
− ζ̄`

x) + τxLg(ζ̄`, ζ)
)

1≤i≤2d
(3.9)

with coefficients aij dependent on % = (u, v) which determine the diffusion matrix
D(%) = (aij(%))1≤i,j≤d uniquely. The problem can now be reduced to the following
three lemmas.

Lemma 3.1. There exists a sequence gn of local functions such that

ε−1
[
Wbε−1xc(ε−2t)− Ξ`,gn

bε−1xc(ε
−2t)

]
⇀ 0(3.10)

in Pε probability, as ε → 0 followed by ` →∞ and n →∞.
Lemma 3.2. The sequence of probability measures P̂ε, as defined in (2.6), is

relatively compact, and every limit point P̂ is concentrated on absolutely continuous
paths with marginal densities %(t,x) satisfying

EP̂

[∫ T

0

∫
(|∇%(t,x)|2dxdt

]
< ∞.(3.11)

We recall the definition of the Hilbert space H(0)
−1,% from (2.8).

Lemma 3.3. Let P̃ε,` denote the joint distribution of the fields

(ζbε−1xc(ε−2t), Ξ`
bε−1xc(ε

−2t))

as elements of H(0)
−1,%. The sequence is tight and any limit measure is concentrated on

fields of the form (%,D(%)∇%).
Suppose we have a functional Fε,K depending on ε and some additional parameters

which we denote by K and we want to show that limK limε→0 EPε [Fε,K ] = 0. We now
recall the standard machinery which reduces such problems to eigenvalue estimates.
Recall that Qε denotes the equilibrium process, with initial distribution π1/2,1/2 and
that we have the entropy bound H(Pε/Qε) ≤ (log 4)ε−d (see (2.17)).

Lemma 3.4. Suppose that Pε and Qε are probability measures with

H(Pε/Qε) =
∫

log
dPε

dQε
dPε ≤ Cε−d.

If for any λ > 0,

lim
K

lim sup
ε→0

εd log EQε
[
exp{λε−dFε,K}

] ≤ 0(3.12)
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then

lim
K

lim sup
ε→0

EPε [Fε,K ] = 0.(3.13)

Proof: This follows from the entropy inequality

EPε [F ] ≤ log EQε [exp F ] + H(Pε/Qε).(3.14)

Lemma 3.5. Let Q be a Markov process ζ(s), s ≥ 0 with generator L which is in
equilibrium with invariant measure µ. Let D denote the corresponding Dirichlet form
D(f) = −Eµ[fLf ]. Let V (s, ζ) be bounded. Then

EQ

[
exp

{∫ t

0

V (s, ζ(s))ds

}]
≤ exp{

∫ t

0

λ(V (s))ds}(3.15)

where λ(V ) is the principal eigenvalue of S+V , S = (L+L∗)/2, given by the Raliegh-
Ritz formula

λ(V ) = sup
f≥0,

∫
fdµ=1

{∫
V fdµ−D(

√
f)

}
.(3.16)

Proof: By the Feynman-Kac formula, u(t, ζ) = Eζ [exp{∫ t

0
V (t − s, ζ(s))ds}]

solves the equation ∂tu = [A + V ]u with u(0, ζ) = 1. Hence

d

dt

∫
u2dµ = 2

{∫
V u2 −D(u)

}
≤ 2λ(V )

∫
u2dµ.(3.17)

Therefore

EQ[exp{
∫ t

0

V (t− s, ζ(s))ds}] =(3.18)

∫
u(t)dµ ≤

√∫
u2(t)dµ ≤ exp

∫ t

0

λ(V (t− s, ζ(s)))ds.

In our applications t = ε−2t and hence after rescaling the variational formula
becomes

sup
f≥0,

∫
fdµ=1

{
ε−d

∫
V fdµ− ε−2D(

√
f)

}

so that we can restrict the variational problem to f with Dε(
√

f) ≤ Cε2−d, which is
the same as (2.17).

Since all of our Dirichlet forms have a lower bound in terms of the Dirichlet form
D(0) of symmetric simple exclusions, we can use D(0) instead of the real Dirichlet
form D in the variational problem to get an upper bound. Thus the key lemmas are
reduced to eigenvalue problems for the generator of the symmetric simple exclusion
process.
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Next we state the standard one and two block estimates in our context (see
Chapter 5 of [4] for a proof).

Lemma 3.6. Suppose fε is a sequence of densities of the particle system on
Zd/ε−1Zd with respect to invariant measures π = πu,v for some fixed 0 < u < 1,
0 < v < 1 and satisfying

D0
ε (

√
fε) ≤ Cε2−d.

Let g be a local function and ḡ(%) = Eπ% [g]. Then

lim sup
`→∞

lim sup
ε→0

Efεπ
[
Avx∈Zd/ε−1Zd

∣∣Av|y−x|≤`g(τxζ)− ḡ(ζ̄`
x)

∣∣] = 0.

Let F be a continuous function on [0, 1]× [0, 1]. Then

lim
δ→0
`→∞

lim
ε→0

Efεπ
[
Avx∈Zd/ε−1Zd

∣∣∣Av|y−x|≤δε−1F (ζ̄δε−1

y )−Av|y−x|≤`F (ζ̄`
y)

∣∣∣
]

= 0.

Here Av denotes the average and ζ̄`
x = Av|y−x|≤`ζy, the average over y in a box of

size `.
Now we return to the key replacement which is Lemma 3.1 which in microscopic

variables takes the form

ε1+d/2

∫ ε−2t

0

∑

x∈Zd/ε−1Zd

Ωx(s)ds

where Ωx(s) = φ(εx, ε2s)[Wx − Ξx]. Where for gradient systems the key replacement
(3.8) is a local law of large numbers, which is proved in the one/two block estimates,
for nongradient systems the key replacement is a local central limit theorem.

Let us make this more rigorous. For any vector local function g define

Ω`,g
x = φ(εx, ε2s)τx[

1
(2`′ + 1)d

∑

|y|≤`′
Wy −D(ζ̄`

0)(ζ̄
`′
e − ζ̄`′

0 )− 1
(2`′ + 1)d

∑

|y|≤`′
τyLg]

where `′ = `−|supp(g)| so that Ω`,g depends only on variables in a box of side length
2` + 1 about 0 ∈ Zd. Let L

(0)
` denote the generator of the process where the η and

ξ particles independently perform symmetric random walks with simple exclusion
on a box of side length ` with reflecting boundary conditions. Let En,m,` denote
expectation with respect to the canonical measure u`

n,m, the uniform distribution on
configurations on this box with n particles of type η and m of type ξ. Since the system
is ergodic when restricted to such a set of configurations and Ω`,g has mean 0, we can
define a nonnegative definite matrix

σ2
n,m,`(g) = E`,n,m[Ω`,g(−L

(0)
` )−1Ω`,g].(3.19)

Let L be the generator of a Markov process Xt, t ≥ 0, on a state space S, reversible
with respect to a probability measure µ and with Dirchlet form D(f) = −Eµ[fLf ].
Given a function V on S, let λ(εV ) be the principal eigenvalue of L+ εV , as in (3.16).
Let m = Eµ[V ] and

σ2(V ) = Eµ[V (−L)−1V ]

= lim
T→∞

1
2
Eµ




(
1√
T

∫ T

0

V (Xt)dt

)2



= sup
f
{2Eµ[V f ]−D(f)} .
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We now make this more precise. Let γ be the spectral gap of L,

γ = inf
f
{D(f)/V ar(f)} .

The Rayleigh-Schrodinger perturbation series is

λ(εV ) = εm + ε2σ2(V ) + · · · .

We are interested in the following result, which can be found in [13] and also in [4].
Lemma 3.7. Assume that L has a spectral gap γ > 0. Let V be bounded with

Eµ[V ] = 0. Then

0 ≤ λ(εV ) ≤ ε2

1− 2εγ−1‖V ‖∞σ2(V ).

Returning to the setup of our problem, recall the definition (3.19) of σ2
n,m,`(g).

Lemma 3.8. To prove Lemma 3.1 and Lemma 3.3, it suffices to prove that

inf
g

lim sup
`→∞

sup
0≤n,m≤(2`+1)d

`dσ2
n,m,`(g) = 0(3.20)

Proof: If φ is a smooth test function it is clear that
∫ T

0

∫

Td

φ(x)Wbε−1xc(ε−2t)dxdt and
∫ T

0

∫

Td

φ(x)W `
bε−1xc(ε

−2t)dxdt

will have the same limit where

W `
0 =

1
(2`′ + 1)d

∑

|y|≤`′
Wy.

Let

V `
x = ε−1D(ζ̄`

x)(ζ̄`′
x+e − ζ̄`′

x ).

By an elementary re-summation
∑

x φ(εx)[V ε−1δ
x − V `

x ] = ε−1
∑

x Bx∇ζx, where ∇ζx

is the vector whose ith entry is ζx+ei − ζx and

Bx = Av|y−x|≤ε−1δD(ζ̄ε−1δ
y )ϕ(ε−1y)−Av|y−x|≤`′D(ζ̄`

y)ϕ(ε−1y).

There is a very simple integration by parts formula which says that for any function
f(η, ξ), E`,n,m[(ηx+e−ηx)f(η, ξ)] = − 1

2E`,n,m[(ηx+e−ηx)(f(ηx,x+e, ξ)−f(η, ξ))] and
analogously for ξ. Since Bx is invariant under the transformations η 7→ ηx,x+ei and
ξ 7→ ξx,x+ei for any c > 0 there exists a C < ∞ so that

|E[Bx∇ζxf ]| ≤ CE[|Bx|2f ] + ε−2 c

2

d∑

i=1

D(0)
x,x+ei

(
√

f).(3.21)

Hence for any c > 0, f , and bounded φx

εd−1E[
∑

x

φx(V ε−1δ
x − V `

x )f ]− cεd−2D(0)(
√

f)

≤ Cεd
∑

x

E[|Bx|2f ]− c

2
εd−2D(0)(

√
f).
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From the continuity of D(%), this vanishes uniformly over densities f , in the limit
ε → 0, followed by δ → 0, by the two block estimate.

Remark. In order to use the two-block estimate from above, one needs the
continuity of the diffusive coefficient D(u, v). We refer the reader to Theorem 5.8
from [4].

By applying Lemma 3.4 and Lemma 3.5, to prove Lemma 3.1 it suffices to verify
that for any δ > 0 and bounded φx

inf
g

lim sup
`→∞

lim sup
ε→0

sup
f
{εd−1Eπ% [

∑
x

Ω`,g
x f ]− δεd−2D(0)(

√
f)} ≤ 0.(3.22)

The state space here is ({0, 1} × {0, 1})Zd/ε−1Zd

and the expectations are with re-
spect to a product measure with some fixed 0 < u < 1, 0 < v < 1. If we denote
D(0)

` =
∑
|x|≤`,|x+e|≤`,|e|=1D(0)

x,x+e(
√

f) where the expectation is with respect to the
product measure π`

u,v on configurations on a box of side length 2` + 1, then we have∑
xD(0)

` (
√

τ−xf) ≤ LdD(0)(
√

f) where L = 2` + 1, and therefore

εd−1E[
∑

x

Ω`,g
x f ]− δεd−2D(0)(

√
f)(3.23)

≤ εd−2δ

Ld

∑
x

sup
f
{Ldε

δ
E[Ω`,g

x f ]−D(0)
` (

√
f)}

The expectation is with respect to π`
u,v, but we could instead use the canonical measure

u`
n,m. Since the product measure is just a linear combination of the latter, if we prove

it uniformly over n and m we have the result. Now by the previous lemma and the
fact that the spectral gap of the exclusion process on a box of side length L is of order
L−2,

εd−2δ

Ld

∑
x

sup
f
{Ldε

δ
E[Ω`,g

x f ]−D(0)
` (

√
f)} ≤ Cδ−1Ldσ2

n,m,`(g).

Letting ` →∞ we obtain the desired result.

The previous lemma reduces the proof of the hydrodynamic limit to the evaluation
of the asymptotics of certain central limit theorem variances. We now describe how
to make these computations. Note that Ω`,g is an average of shifts of local functions
f of three types: 1. The current W ; 2. The microscopic density gradients ∇ζ; 3.
Incoherent fluctuations Lg. All three have the property that their expectation is zero
with respect to any canonical measure on any box containing their support. They also
satisfy the following integration by parts formulas with respect to any such measure:
For any local h, and nearest neighbours x and y, E[Wx,yh] = − 1

2E[Wx,y(h(ηx,y, ξx,y)−
h(η, ξ))], E[(ζy − ζx)h] = − 1

2E[(ζy − ζx)(h(ηx,y, ξx,y) − h(η, ξ))], and E[Lx,ygh] =
− 1

2Dx,y(g, h). In particular, each of the three functions f satisfies a bound

E[fh] ≤ C
∑

|x−y|=1,|x|,|y|≤R

D(0)
x,y(h)(3.24)

for some C, R < ∞, uniformly over boxes containing |x|, |y| ≤ R and over the canonical
measures on that box. The class of local functions f satisfying a bound of type (3.24)
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was denoted by F in (2.7). Note that this corresponds to local functions for which
the asymptotic variance

〈f, f〉(0)−1,% = lim
`→∞

( n
(2`+1)d

, m
(2`+1)d

)→%

1
(2`)d

En,m,`[
∑

x≤`′
τxf, (−L

(0)
` )−1(

∑

|x|≤`′
τxf)],(3.25)

is finite. For any g, h in F we can define 〈g, h〉(0)−1,% by polarisation, giving a semi-inner

product on F and ||g||(0)−1,% = (〈g2〉(0)% )
1
2 becomes a semi-norm. Let N = {g ∈ F :

||g||(0)−1,% = 0}. The completion of the quotient space F/N , denoted byH(0)
−1,%, is thus a

Hilbert space. The first part of the following result first appeared in [10]. A complete
proof can be found in [4] so we will not prove it again here. The second part was first
proved in a different context (mean zero asymmetric simple exclusion) by [15]. A nice
review is [14] [Theorem A [Varadhan’s Lecture 5, page 2, at Fields].

Theorem 3.9. For each % = (u, v) ∈ (0, 1)× (0, 1),
1) the closure of L(0)F in H(0)

−1,% is a linear subspace of codimension 2d and the
orthogonal subspace is provided by the span of ∇ζ.

2) the closure of L(i)F , i = 1, 2, 3 in H(0)
−1,% is a linear subspace of codimension

2d and a complementary subspace is provided by the span of ∇ζ.
Proof: We only prove 2). From 1), it suffices to prove the triviality of the kernel

K of the orthogonal projection from L(0)F to LF . Let g ∈ K and δ > 0. Since
g ∈ L(0)F there is an f ∈ F with ‖ g − L(0)f ‖(0)−1,%≤ δ. From the equivalence of

the Dirichlet forms D(i), i = 0, 1, 2, 3 we have ‖ L(0)f ‖(0)−1,%≤ (γ−1〈L(0)f, Lf〉(0)−1,%)
1/2.

Since g ∈ K, 〈L(0)f, Lf〉(0)−1,% = 〈L(0)f − g, Lf〉(0)−1,% ≤ δ. By Schwarz’s inequality,

〈L(0)f − g, Lf〉(0)−1,% ≤ δ ‖ Lf ‖(0)−1,%. Hence ‖ L(0)f ‖(0)−1,%≤ γ−1δ ‖ Lf ‖(0)−1,%. By the

strong sector condition Lemma 2.5, ‖ Lf ‖(0)−1,%≤ C ‖ L(0)f ‖(0)−1,%. Letting δ ↓ 0, we

have ‖ g ‖(0)−1,%= 0.

4. Tightness.. Hence the diffusion coefficient can be identified by the formula
W0,ei −D(i)(%)∇ζ ∈ L(i)F in H(0)

−1,%. In the final section we derive more explicit ex-
pressions for D. It only remains to prove compactness of the density fields, Lemma 3.2.
We start with a general lemma. For a pure jump function x(·) with a finite number of
jumps, the polygonalization x̂(·) is obtained by linearly interpolating between values
at successive jumps.

Lemma 4.1. Let {(Qε, Pε)}ε>0 be probability measures on D([0, T ];R) which are
supported on pure jump functions, such that for some C1, C2 < ∞, H(Qε/Pε) ≤
C1ε

−d. If, for any 0 ≤ s < t ≤ T , and any λ > 0,

EPε
[
exp{λε−d(x(t)− x(s))}] ≤ exp{C2ε

−dλ2(t− s)},(4.1)

then there exists C3 < ∞ so that, for any 0 < δ ≤ T ,

lim sup
ε→0

EQε

[
sup

|t−s|<δ, 0≤s,t≤T

|x̂(t)− x̂(s)|
]
≤ C3

√
δ log δ−1.

Proof: The Garsia-Rodemich-Rumsey inequality [12] states that if x(t) is a
continuous function and ψ(x) a strictly increasing function such that ψ(0) = 0,
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limx→∞ ψ(x) = ∞, if

B =
∫ T

0

∫ T

0

ψ
(
|x(t)− x(s)|/

√
|t− s|

)
dsdt

then

sup
|t−s|<δ 0≤s,t≤T

|x(t)− x(s)| ≤ 4
∫ δ

0

ψ−1
(
4Bu−2

)
u−1/2du.

Choosing ψ(x) = exp{ε−dx} − 1 one obtains after some computation that

4
∫ δ

0

ψ−1
(
4Bu−2

)
u−1/2du ≤ εdC4(δ)(1 + log(4B + δ2) ∨ 0)

where C4(δ) = 32
√

δ log δ−1. Applying this to the polygonalization of x(t),

EPε

[
exp

{
λε−d sup

|t−s|<δ,0≤s<t≤T

|x̂(t)− x̂(s)|
}]

≤ EPε
[
exp{λC4(δ)(1 + log(4B + δ2))}]

By choosing λ = 1/C4(δ), the right side is bounded by C5(T )ε−d for some C5(T ) < ∞
for each T > 0, from (4.1). It only remains to apply the entropy inequality (3.14).

Lemma 4.2. Let P eq
ε be the process starting from equilibrium on Zd/ε−1Zd and let

Vx = τxV where V is any local function satisfying a bound of the form (3.24). Then
there exists a constant C < ∞ such that for any smooth test function φ : [0,T]×Td →
R,

EP eq
ε

[
exp

{
ε−d

∫ t

s

∫

Td

φ(u,x)Vbε−1xc(ε−2u)dxdu
}]

≤ exp{Cε−d‖φ(u)‖2L2([s,t]×Td)}.

Proof: By stationarity and Lemma 3.5 exp{2(t − s)Λε} is an upper bound for
the left hand side, where

Λε = sup
Eπ% [f ]=1, f≥0

{
ε−(d+1)

∫

Td

φ(x)Eπ% [Vbε−1xcf ]dx− ε−2D(
√

f)
}

.

By (3.24) and a− b = (
√

a−
√

b)(
√

a +
√

b) we obtain the result.
Theorem 4.3. P̂ε is tight.
Proof: By (3.1),

P̂ε

(
sup

0≤s<t≤T, |t−s|<δ

|
∫

Td

[ζbε−1xc(ε−2t)− ζbε−1xc(ε−2s)]φ(x)dx| ≥ 4ε

)

≤ P̂ε

(
sup

0≤s<t≤T,|t−s|<δ

|
∫ t

s

∫

Td

∇eφ(x)ε−1Wbε−1xc(ε−2u)dxdu| ≥ 2ε

)

+ P̂ε

(
sup

0≤s<t≤T
|Mφ(t)−Mφ(s)| ≥ 2ε

)
.

The third term is of order εd by Doob’s inequality. By the previous lemmas applied
to the second term we obtain (3.12). By Lemma 3.4 this suffices.
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5. Diffusion Coefficient. In this section we derive formulae for the various
diffusion coefficients. For any two vector functions g,h, we write

〈g,h〉−1,% = (〈gi, hj〉−1,%)i,j .(5.1)

The current is given by W = (W η,W ξ) where

W η = (W η
0,e1

, . . . , W η
0,ed

) , W ξ = (W ξ
0,e1

, . . . ,W ξ
0,ed

) .

The diffusion coefficient in each of the three models i = 1, 2, 3 is defined by the
equation W (i) − D(i)∇ζ ∈ ⊗L(i)F as elements of H(0)

−1,%. We can also define spaces

H(i)
−1,%, i = 1, 2, 3 by using the analogue of (3.25) as in (2.8) with

〈f, f〉(i)−1,% = lim
`→∞

1
(2`)d

En,m,`[
∑

x≤`′
τxf, (−L

(i)
` )−1(

∑

|x|≤`′
τxf)] .

Since the corresponding Dirichlet forms are equivalent,H(1)
−1,% andH(2)

−1,% are equivalent

to H(0)
−1,%. Hence we can solve W (i) −D(i)∇ζ ∈ ⊗L(i)F in H(i)

−1,% for i = 1, 2. Model
1 is more straightforward, so we describe the details in the case of Model 2 and leave
Model 1 to the reader.

Model 2. In Model 2, the two components of the current (3.6) read

W
(2),η
0,e = (γ1 +

ξ0 + ξe

2
)(ηe − η0), W

(2),ξ
0,e = (γ2 + 1− η0 + ηe

2
)(ξe − ξ0).

For any local g and any 1 ≤ i ≤ d, we can compute explicitly

〈W (2),η
0,ei

, L(2)g〉(2)−1,% =
1
2
Eπ% [(γ1 +

ξei + ξ0

2
)(η0 − ηei)∇η

0,ei

∑
x

τxg],(5.2)

〈W (2),ξ
0,ei

, L(2)g〉(2)−1,% =
1
2
Eπ% [(γ2 + 1− ηei + η0

2
)(ξ0 − ξei)∇ξ

0,ei

∑
x

τxg],(5.3)

〈L(2)g, L(2)g〉(2)−1,% =
1
2

d∑

j=1

E
[
(γ1 +

ξej + ξ0

2
)(∇η

0,ej

∑
x

τxg)2(5.4)

+(γ2 + 1− ηej + η0

2
)(∇ξ

0,ej

∑
x

τxg)2
]
,(5.5)

〈∇ζ, L(2)g〉(2)−1,% = 0.(5.6)

〈W,W 〉(2)−1,% =
(

(γ1 + v)Id 0
0 (γ2 + 1− u)Id

)
χ(%)(5.7)

〈W,∇ζ〉(2)−1,% = χ(%).(5.8)

Theorem 5.1. 1). D(2)(%)〈∇ζ,∇ζ〉−1,% = χ(%).
2). For any r ∈ Rd ×Rd,

rχ(%)D(2)(%)r′ = inf
g

d∑

i=1

D0,ei(r
∑

x

xζx −
∑

x

τxg).(5.9)
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The infimum is over local functions g. Note that
∑

x τxg makes no sense alone, however
since g is local, only finitely many terms in the sum are nonzero after applying the
discrete gradients ∇0,ei .

Proof: Since W (2) −D(2)(%)∇ζ is in the closure of LF ,

〈W (2) −D(2)(%)∇ζ,∇ζ〉−1,% = 0.

1) then follows from (5.8). 2) then follows from (3.9) and (5.2), (5.3) and (5.5).
We still need to obtain the simpler formula (2.11) for Model 2. Note that if

r = (r1
1, . . . , r

1
d, r2

1, . . . , r
2
d), then D0,ei

(r
∑

x xζx −
∑

x τxg) is given explicitly by

1
2
E[(γ1 +

ξei
+ ξ0

2
)(r1

i (ηei
− η0)−∇η

0,ei

∑
x

τxg)2

+ (γ2 + 1− ηei
+ η0

2
)(r2

i (ξei
− ξ0)−∇ξ

0,ei

∑
x

τxg)2].

Now for any constants a, b,

(a(ηe − η0)−∇η
0,e

∑
x

τxg)2 =
(

a− b

2

)2

(ηe − η0)2

+

(
a + b

2
(ηe − η0)−∇η

0,e

∑
x

τxg

)2

+
a2 − b2

2
(ηe − η0)∇η

0,e

∑
x

τxg

(b(ξe − ξ0)−∇ξ
0,e

∑
x

τxg)2 =
(

a− b

2

)2

(ξe − ξ0)2

+

(
a + b

2
(ξe − ξ0)−∇ξ

0,e

∑
x

τxg

)2

+
b2 − a2

2
(ξe − ξ0)∇ξ

0,e

∑
x

τxg

Now we claim that for any local function g,

Eπ% [(
ξe + ξ0

2
(ηe − η0)∇η

0,e

∑
x

τxg − (1− ηe + η0

2
)(ξe − ξ0)∇ξ

0,e

∑
x

τxg] = 0.(5.10)

To prove it we transfer the ∇0,e onto the ∇ζ to obtain Eπ%
[
(ηeξe − η0ξ0)

∑
x∈Λ τxg

]
where the sum is over some large but finite box Λ. Now use the translation invariance
of the measure to rewrite this as Eπ%

[∑
x∈Λ (ηx+eξx+e − ηxξx)g

]
. The first term is

a telescoping sum and we end up with Eπ% [fg] where f is mean zero and does not
depend on variables ζx in a box A around the origin, while g depends only on ζx, x ∈ A.
Since π% is a product measure, Eπ% [fg] = Eπ% [f ] Eπ% [g] = 0 which proves (5.10).
[Then] (2.11) follows from this and the explicit form of D0,ei(r

∑
x xζx−

∑
x τxg) after

a little computation.
Model 3. We now show the last part of Theorem 2.4.
Proof: First, we remind a general fact about matrices. Let L be an invertible

matrix and Ls = (L∗ + L)/2 its symmetrisation. One can check that [(L−1)s]−1 =
L∗L−1

s L, or in variational form

< f, (−L)−1f >= sup
g

inf
h
{2 < f − Lh, g > − < h, Lh >} .
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In particular, taking h = −g we have

< f, (−L)−1f >≤< f, (−Ls)−1f > .

We will apply this in our particular situation where L
(2)
` = (L(3)

` )s. Let T` =
L

(2)
` (L(3)

` )−1. This makes sense for any mean zero function of configurations on |x| ≤ `

with n particles of type η and m particles of type ξ, and 〈T`f, (−L
(2)
` )−1T`f〉 =

〈f(−L
(3)
` )−1f〉 ≤ 〈f(−L

(2)
` )−1f〉, since on such hyperplanes the operators L

(i)
l are in-

vertible. Hence T` is bounded and therefore has a limit T defined on H(2)
−1,% which has

the property that TL(3)F = L(2)F and TW (3) = W (2) and whose norm is bounded
by 1. The diffusion coefficient is defined by W (3)−D(3)(%)∇ζ ∈ ⊗2d

i=1 L(3)F in H(2)
−1,%.

Applying T gives

W (2) −D(3)(%)T∇ζ ∈
2d⊗

i=1

L(2)F ,(5.11)

which implies that [D(3)(%)T−D(2)(%)]∇ζ ∈ ⊗2d
i=1 L(2)F or

D(3)(%)〈T∇ζ,∇ζ〉(2)−1,% = D(2)(%)〈∇ζ,∇ζ〉(2)−1,%.(5.12)

For r ∈ Rd ×Rd,

〈T
∑

i

ri∇ζi,
∑

j

rj∇ζj〉(2)−1,% =
∑

i

∑

j

〈T∇ζi,∇ζj〉(2)−1,%rirj

≤
∑

i

∑

j

〈∇ζi,∇ζj〉(2)−1,%rirj

due to the bound ‖T‖ ≤ 1. We also notice that the upper bound (in the sense of
quadratic forms) is achieved if and only if T∇ζ = ∇ζ. This would imply that T∇ζ ∈⊗2d

i=1 L(2)F . This leads to a contradiction, due to the property that 〈T∇ζ, L(2)g〉 6= 0
(see [2], Section 5). This fact implies that D

(3)
s 6= D(2).

Remark. The relation between the asymmetric and symmetric diffusion coeffi-
cients D(3) and D(2) is discussed in the context of (one-type particles) asymmetric
simple exclusion in Section 5 of [8] and the references within. In that context D(2)

is diagonal and becomes a multiple of the identity in the isotropic case, when the
transition probabilities to the neighboring sites in the exclusion process are identical
along all possible axes and not just direction-wise (which is the symmetric case). The
two properties coincide in dimension d = 1. Only in this special situation one can
derive that D(3) ≥ const I in the sense of quadratic forms. The property is significant
because it shows that the hydrodynamic limit exhibits diffusivity in excess of the one
introduced by the random walk (Laplacian). Even though we are able to prove (5.12)
we cannot derive that [D(3)]sym ≥ D(2) except in weak sense, as in Theorem 2.4,
meaning that there exist matrices Q (not necessarily symmetric) and V (symmetric)
such that D(3)Q = D(2)V and V > Qsym.

The difficulties in our model come from two sources. First, we have two types of
particles, which have distinct densities in equilibrium, henceforth the compressibility
matrix χ(%) (see Theorem 5.1) is diagonal but not proportional to the identity. Second,
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we do not have the option of proving the result in one dimension (like in the one-type
particle models).

Under general conditions, without further knowledge of the properties of the
matrices Q = 〈T∇ζ,∇ζ〉 and V = 〈∇ζ,∇ζ〉, (5.12) implies [D(3)]sym ≥ D(2) is false.
In order to preserve the inequality sign between two matrices in the sense of quadratic
forms we would need, for example, that the factors be commutative with the terms
of the inequality, at a minimum that QV = V Q in this case, which is not available to
us.
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