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Abstract. The paper derives a functional central limit theorem for the em-

pirical distributions of a system of strongly correlated continuous martingales

at the level of the full trajectory space. We provide a general class of function-

als for which the weak convergence to a centered Gaussian random field takes

place. An explicit formula for the covariance is established and a characteri-

zation of the limit is given in terms of an inductive system of SPDEs. We also

show a density theorem for a Sobolev-type class of functionals on the space of

continuous functions.

1. Introduction

The classical law of large numbers for empirical measures states that, given a se-

quence of independent random variables Z1, Z2, . . . with values in a Polish space

E and common distribution α(dx) ∈ M(E), the random measures N−1
∑N

i=1 δZi

converge weakly in probability to α(dx) as N → ∞. Furthermore, the fluctuation

random field ξN = N− 1
2

∑N
i=1(δZi − α(dx)) converges to a centered Gaussian ξ in

the sense that, for any test function g ∈ Cb(E), the space of bounded continuous

functions on E,

(1.1)
(
g,

1√
N

N∑

i=1

(δZi − α(dx)
)

converges in distribution to a normal random variable with mean zero and variance

σ2
ξ (g, g) = Covα(g, g).

We are interested in deriving a central limit theorem when E is the path space

Ω = C([0, T ],R) up to time T > 0 and the random variables Z1, Z2, . . . are replaced
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with correlated processes. More precisely, the random field (1.1) can be calculated

for the random variables Zi = zN
i (·), designating the trajectory of a Markovian

system of coupled particles at times t ∈ [0, T ], which can be viewed as path valued

random variables. A first step is to extend the notion of fluctuation random field

to functionals of the path ω(·) ∈ C([0, T ],R) up to the time horizon T > 0 of the

particles, that is, at a minimum, to functionals depending of finitely many time

marginals G(ω(·)) = g(ω(t0), ω(t1), . . . , ω(tm)) for some positive integer m ≥ 1 and

g smooth.

The central limit theorem for empirical measures is well known for independent

random variables and has been studied as a distribution valued continuous process

for the case of Brownian motions by Itô in [8]. In [7], Holley and Stroock introduce

the theory of generalized Ornstein-Uhlenbeck processes and prove the central limit

theorems for various interacting particle systems. Other limits concerning fluctu-

ation random fields from the hydrodynamic profile of interacting particle systems

can be found in [4] for zero range processes in equilibrium, a non-equilibrium re-

sult for symmetric simple exclusion appears in [14] and [2] solves the problem for

Ginzburg-Landau lattice models. In all these results the limiting random field is a

time-indexed continuous Markovian process with values in the space of tempered

distributions, that is, can be obtained for the special case m = 0 and g ∈ C∞(R)

of Schwartz class.

The result which appears to be the closest in spirit to the present work is [16].

The limit is an infinite dimensional random field, but the coefficients individually

satisfy a one-dimensional central limit theorem, a feature due to the mean field

character of the model.

Because of the strong correlations (2.8) we cannot keep the bounded continuous

functions on Ω as index set. A natural answer is to use the class of functions

with bounded smooth derivatives C1
b (Ω) given in Definition 1. A price paid for the

generalization is that we adopt an example of correlated continuous martingales

described by (2.8) in order to have access to concrete calculations. However, this

example provides an additional benefit with the derivation of an explicit formula for

the covariance function (2.12). The paper has an important constructive component

since Sections 2, 3 and the imbedding Theorem 5 are laying the ground for an infinite

dimensional result in a general setting. Here they are used in establishing the main

result, Theorem 3.
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The immediate motivation of the present work is the scaling limit for the Brow-

nian motions with local interaction on the unit circle S1 from [5]. After calculat-

ing explicitly the asymptotic law of a single particle in the random environment

provided by the rest of the interacting system (the tagged particle problem) and

establishing that finite subfamilies of particles become independent in the scaling

limit (propagation of chaos) one has an immediate weak law of large numbers for

the empirical measures associated to the process at the level of the full trajectory

space C([0, T ], S1). The process has a product uniform invariant measure and the

actual law of the tagged particle process in that case is the Wiener measure on the

unit circle with uniform initial distribution. A natural question is whether one can

determine the limit for the fluctuation field from the mean, at least in equilibrium.

There is another reason why we need a result at the level of the full path space.

Due to the symmetry of interacting diffusions in [5], the hydrodynamic limit and

the fluctuation random field from the weak solution to the heat equation describing

the trajectory of the empirical measures indexed by time are the same as in the case

of independent Brownian motions. The quantities present are, from our viewpoint,

just one-dimensional marginals of the objects we are interested in. The interaction

surfaces only at the level of the path space, or when correlations between config-

urations observed at consecutive times are taken into account (the history of the

process). In a different formulation, the interaction becomes apparent when we

consider a multi-color version of the process, as coloring is a weak form of tagging

(see, in that sense, the comments in [6] and the approach used in [12] and [13] for

symmetric simple exclusion).

The proof of this particle model offers a hint into the nature of the scaling needed

for the fluctuation field. Through a path transformation, the system of particles

can be converted into a family of martingales on the Skorohod space, adapted to

the filtration of the original process. Since the correlations are of the order of the

inverse of the number of particles, they survive in the limit. This provides the

correct scaling limit (which is also the natural one from the classic CLT).

Unfortunately, even though the path transformation has a smooth asymptotic

value which is invertible pathwise, it is discontinuous before the limit and the error

from the continuum limit is once again of the order of the square root of the number

of particles, a finite but still too large a perturbation in order to establish a CLT

like Theorem 3. For our present purposes, one can summarize the example of the

induced martingales with the following construction.
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Let λ and ρ̄ be two positive constants. For every N ∈ Z+ we consider a set of

N2 independent Brownian motions on a probability space (W,F , P ), adapted to

a filtration {Ft}t≥0, as follows. We shall have, for 1 ≤ i ≤ N a collection βi(·),
plus another family of N(N − 1) independent Brownian motions wij(·), with 1 ≤
i 6= j ≤ N such that {βi(0)}1≤i≤N are i.i.d. with common probability distribution

µ(dx) and wij(0) = 0 P -almost surely. Let

(1.2) zN
i (t) = βi(t) +

(
ρ̄

λ + ρ̄

)
1
N

∑

j 6=i

(βj(t)− βi(t))+

+
( √

λρ̄

λ + ρ̄

)
1√
2N

∑

k 6=i

(wik(t)− wki(t)) .

The quadratic variation is

〈zN
i , zN

i 〉(t) =
λ

λ + ρ̄
t + O(

1
N

)t

and the cross variation processes for i 6= j are

〈zN
i , zN

j 〉(t) =
1
N

(
ρ̄

λ + ρ̄

)
t + O(

1
N2

)t .

It is clear that the construction satisfies assumptions (2.13) and (2.14). The martin-

gales generated in the original problem emulate the interacting diffusions very well

and in equilibrium they have identical limit of the empirical measures (in the sense

of Theorem 1). In the context of [5], the parameter ρ̄ represents the average density

of the particles on the unit circle and λ controls the intensity of the interaction.

The present paper determines the fluctuation limit in the case of correlated

Brownian motions like in the example from above. The discussion following the

main results Theorems 2 and 3 and especially Remark 2 after Theorem 3 are helpful

in completing the present discussion.

Naturally under weak conditions (Assumption 1), a finite-dimensional CLT will

hold, that is, for smooth cylinder test functions. It is remarkable that the covariance

can be given in a closed explicit formula (2.12). This fact can be generalized if the

limiting one-particle process Q has a time-only dependent generator, but cannot be

done along the same lines in the presence of path or spatial coordinate dependence.

The passage from cylinder functions to a convenient larger space needs much more

stringent conditions (Assumption 2), as it can be seen from Section 5.

Even though the correlated martingales are far from the complexities occurring

in interacting particle system, one hopes that, at least in equilibrium, formula (2.12)

will be the same. The function space C1
b (Ω) introduced in Definition 1 is a natural
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candidate for test functions if only we look at the one-dimensional case, for instance.

Also, the inductive construction presented in Sections 3 and 4 can be adapted to

essentially any Markovian model.

We give an outline of the way the paper is organized. Section 2 introduces the

spaces of cylinder functions, in particular the special cylinder functions of exponen-

tial or Schwartz type E(Ω), respectively S(Ω), in Definition 3. The Banach space

H(Ω, Q) presented in Definition 6 allows us to link the space of cylinder functions

and the space of test functions C1
b (Ω) (Definition 1) over which Theorem 3 (the

infinite dimensional case) is established through an imbedding result - Theorem 5,

Section 5. In addition, a few examples of relevant test functions are provided in

the remarks after Definition 6 and further down in Proposition 2.

Section 3 lays out an inductive characterization of the random fields through

Theorem 4, paired with an inductive characterization of the covariance function in

Proposition 3.

Propositions 5 and 6 in Section 4 prove Theorem 2, the central limit theorem

for cylinder functions in (S ∪ E)(Ω). In particular, Proposition 5 and 6 show that

the one-dimensional marginal of the limiting Gaussian random field ξ is a time-

continuous distribution - valued Markov process solving an Ornstein-Uhlenbeck

SPDE, which is consistent with [7] and [8]. Because S(Ω) is a linear space we

obtain that, for any linear combination
∑

l clGl of functions Gl ∈ S(Ω), the random

variables
∑

l cl(Gl, ξ
N ) converge to a Gaussian (

∑
l clGl, ξ). The actual covariance

of the limit is obtained after matching the inductive characterization with the actual

solution, which is done in Proposition 4. This identification offers an example of

a nontrivial solution of the inductive SPDE associated to the half Laplacian and a

specific bilinear form q̌(·, ·) in the sense of (3.4) in Definition 14.

Section 5 is based on Theorem 5 proved in the Appendix and the asymptotic

uniform bound (5.7) from Proposition 9. The latter needs (2.13) - (2.14) from

Assumption 2 in order to complete a martingale representation (2.15) through the

series of Lemmas 1 - 2.

Finally, the Appendix proves non-probabilistic results generally valid in function

spaces as well as Theorem 1 which is a trivial hydrodynamic limit in this context.
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2. Definition and results

Let Ω = C([0, T ], X) be the space of continuous paths up to time T > 0 on X

which will be either the real line R or the unit circle S1. The uniform norm on X

will be denoted by ‖ · ‖.

Definition 1. Let C be the set of complex numbers and let G ∈ C(Ω) = C(Ω,C) be

the space of complex valued continuous functions and ω ∈ Ω be fixed. Assume there

exists a continuous linear mapping η → ∇ηG(ω), for all η ∈ Ω, and a function

c(G,h) depending only on G and h such that, for any η ∈ Ω and h ∈ R

(2.1) |G(ω + h η)−G(ω)− h∇ηG(ω)| ≤ c(G,h)‖η‖2

with limh→0(c(G, h)/h) = 0. The Fréchet derivative will have the strong norm

(2.2) ‖∇·G(ω)‖ = sup
η 6=0

|∇ηG(ω)|
‖η‖ .

We shall say that G ∈ C1
b (Ω) if G(ω), ∇·G(ω) are uniformly bounded on Ω. The

space C1
b (Ω) is a normed linear space with the norm

(2.3) ‖G‖C1
b

= sup
ω∈Ω

(|G(ω)|+ ‖∇·G(ω)‖) .

The mappings ∇·G(ω) are signed measures on [0, T ] depending on ω and the norm

defined by (2.2) is the total variation norm.

Definition 2. We shall denote by E(R) the set all exponential functions of the form

x → eiαx, with α ∈ R, by C(R) the set of bounded infinitely differentiable functions

on R with bounded derivatives and by S(R) the Schwartz class of functions rapidly

decreasing at infinity.

Definition 3. The functional G ∈ C1
b (Ω) on the path space Ω will be said to be

C - class cylinder function on Ω (respectively of S - class or E - class) if there

exist a positive integer m, an increasing sequence of times 0 ≤ t1 < t2 < . . . < tm

and a family of functions gl(x) ∈ C(R) (respectively of S - class or E - class),

1 ≤ l ≤ m such that G(ω) = Πm
l=1gl(ω(tl)). The space of such functions will be

denoted by Ccyl(Ω) and the linear span of such functions will be denoted by C(Ω).

In the same way, the space (E ∪ S)(Ω) is the linear span of cylinder functions with

factors belonging either to E(Ω) or S(Ω).

For G ∈ Ccyl(Ω) we define a(ω(·)) = Πm−1
l=1 gl(ω(tl)) and t′ = tm−1 ≥ 0. We denote

Ms = σ[ω(u) : 0 ≤ u ≤ s] the σ - algebra generated by the continuous paths up
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to time s ∈ [0, T ]. Then a(ω(·)) is a Mt′ - measurable functional on Ω. We shall

look at the test function a(ω(·))g(ω(t)) for t ≥ t′ which we shall call the associate

marginal process of G starting at t = t′. We denote by

(2.4)
G(ω, t) = a(ω(·))g(ω(t)) , t ≥ t′ = tm−1 ,

∂G(ω, t) = a(ω(·))g′(ω(t)) and ∂2G(ω, t) = a(ω(·))g′′(ω(t))

the (inductive) cylindrical decomposition of G and its derivatives. In the same time,

any G ∈ C(Ω) can be written as the sum of functions from Ccyl(Ω) with the same

m > 0 by considering the union of all times t from all the terms in G and formally

factoring in some constant functions (provided that tm is indeed the largest time

present in G). This allows us to extend the definitions (2.4) to any G ∈ C(Ω).

We consider a probability space (W,F , P ), where F is a filtration {Ft}0≤t≤T on

W and take σ2 > 0.

Definition 4. We shall denote by {Q} the family of laws of the diffusion processes

Qν on Ω with respect to (W,F , P ), adapted to an extension of {Ft}t≥0, with genera-

tor σ2

2
d2

dx2 and initial distribution ν(dx), where ν(dx) is a probability measure on X.

In the following, Q0 will designate the Brownian motion with diffusion coefficient

σ2 starting at zero and Q = Qµ (without superscript) for simplicity.

Definition 5. For G ∈ C1
b (Ω) we define the linear functional on Ω

(2.5) η −→ 〈∇ηG〉Q =
∫

Ω

∇ηG(ω)dQ(ω) .

Remark: This definition is consistent pointwise since the gradient of G is bounded

by ‖η‖. The law Q of the diffusion is the Wiener measure on the path space Ω

and ω(·, w) is a random variable measurable with respect to (W,F), distributed

according to Q.

Definition 6. We shall denote by H(Ω, Q) the Banach space obtained by completion

of the space C1
b (Ω) under the norm ‖ · ‖H defined as

(2.6) ‖G‖2H =
∫

Ω

|G(ω)|2dQ(ω) +
∫

Ω

‖∇·G(ω)‖2dQ(ω) .

Remark 1: H(Ω, Q) is not a Hilbert space. However, for finite-dimensional

marginals, that is for cylinder functions g with m ∈ Z+, we obtain H1(Rm+1).

Remark 2: Proposition 2 provides a general class of examples of functionals in

H(Ω, Q) (cylinder functions). Also, an important case of test function G which
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belongs to H(Ω, Q) but not to S(Ω) is G(ω(·)) = ω(t), the projection at a given

time t. See also the remark after Corollary 1.

Remark 3: If b(·, ·) ∈ C0,2([0, T ], X), the functional G(ω) =
∫ t

0
b(s, ω(s))ds be-

longs to C1
b (Ω).

Proposition 1. The linear functional 〈∇ηG〉Q is square integrable with respect to

Q0 and

(2.7)
∫

Ω

|〈∇ηG〉Q|2dQ0(η) ≤ (2σ2T )‖G‖2H .

Proof:

|〈∇ηG〉Q|2 =
∣∣∣∣
∫

Ω

(∇ηG(ω)
‖η‖

)
‖η‖dQ(ω)

∣∣∣∣
2

≤
∣∣∣∣
∫

Ω

‖∇·G(ω)‖‖η‖dQ(ω)
∣∣∣∣
2

≤
(∫

Ω

‖∇·G(ω)‖2dQ(ω)
)
‖η‖2 .

We can take the expected value with respect to Q0(η) and obtain (2.7) using Doob’s

inequality (see in [15]). ¤
We would like to know how large H(Ω, Q) is. The set S(Ω) of Schwartz class

cylinder functions is a subset of the set of smooth cylinder functions C(Ω) which is

included in H(Ω, Q). Theorem 5 and Proposition 7 will show that S(Ω) is dense in

H(Ω, Q).

Proposition 2. Let m ∈ Z+ and g(x0, x1, . . . , xm) be a function in the space

H1(Rm+1), that is with g and its derivative in the sense of distributions square

integrable with respect to the Lebesgue measure. If µ(dx), the initial distribution of

Q, is absolutely continuous with respect to the Lebesgue measure and the density

ρ(x) defined as µ(dx) = ρ(x)dx is bounded, then G(ω) = g(ω(t0), . . . , ω(tm)) ∈
H(Ω, Q). Also, if G does not depend on the initial time t = 0 the statement is valid

for arbitrary µ(dx) as long as G depends on a finite number of times.

Proof of Proposition 2: Any function g ∈ H1(Rm+1) can be approximated by

gS ∈ C(Rm+1) in the H1 norm. The statement is proven if we can show it for a

Schwartz class function. The preceding lemma has shown that, for any two ω, η ∈ Ω

we have

∇ηG(ω) =
m∑

i=0

(∂xig(ω(t0), . . . , ω(tm)))η(ti) .

We see that

|∇ηG(ω)| ≤ (
m∑

i=0

(∂xig(ω(t0), . . . , ω(tm)))2)
1
2 (

m∑

i=0

(η(ti))2)
1
2 ≤
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≤ (m + 1)
1
2 ‖∇x̄g(ω(t0), . . . , ω(tm))‖Rm+1‖η‖ .

The conditions from the proposition make the joint probability density function

of the random variables (ω(t0), . . . , ω(tm)) be a bounded function on Rm+1. The

formula for the joint density is
[
µ(y0)Πm

i=1p(ti − ti−1, yi − yi−1)
]
dy0dy1 . . . dym

with p(t, y) the kernel of the heat equation ut = (σ2/2)uxx. Since the heat equation

semigroup produces smooth bounded functions for any t > 0 irrespective of the

initial distribution µ(dx) the inequality p(ti − ti−1, yi − yi−1) ≤ Const σ−1(ti −
ti−1)−

1
2 for i ≥ 2 finishes the proof. ¤

We need to introduce the general setting for Gaussian processes. Let X be a

Banach space with norm ‖ · ‖X . For any complex number z we denote by z its

complex conjugate.

Definition 7. A continuous bilinear form on X is a mapping q : X ×X −→ C such

that, for any F, G ∈ X , q(·, G) and q(F, ·) are linear and there exists a constant

c(q), independent from F and G, such that |q(F,G)| ≤ c(q)‖F‖X ‖G‖X . We shall

write q ∈ B(X ). The bilinear form is called symmetric if q(F, G) = q(G,F ) ,

nonnegative if q(G,G) ≥ 0 and positive if q(G,G) > 0 if G 6= 0.

A random process indexed by A is, by definition, a collection of real-valued

random variables {ξ} = {ξa}a∈A on a probability space (W,F , P ). The sub-algebra

Σ generated by

Ca1,a2,...,an,B = {w ∈ W : (ξa1(w), . . . , ξan(w)) ∈ B} ∈ F ,

where n ∈ Z+, a1, a2, . . . , an ∈ A and B ∈ B(Rn) are arbitrary, allows us to define

a probability measure on RA with the σ - field generated by the finite dimensional

projections. For any finite set A0 = {a1, a2, . . . , an} ⊆ A we define the probability

measure on RF , called the finite dimensional distribution of ξ on A0 by

P̃A0(B) = P ((ξa1(w), . . . , ξan(w)) ∈ B) .

The consistency condition of the finite-dimensional distributions is respected. For

any two finite subsets of A such that A′0 ⊆ A0 we define πA′0 the projection of RA0

onto RA′0 and then

P̃A0 ◦ π−1
A′0 = P̃A′0 .
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Kolmogorov’s extension theorem shows that under these circumstances there exists

a probability measure on RA and the σ - field generated by the finite dimensional

cylinder functions denoted by P̃ such that, if F is a finite subset of A and πA0 is

the projection of RA onto RA0 , then

P̃ ◦ π−1
A0

= P̃A0 .

Definition 8. Let ξN = {ξN
a }a∈A defined for all N > 0 and a separate ξ = {ξa}a∈A

be random processes indexed by A. We shall say that ξN converges to ξ as N →∞ if

the finite dimensional distributions of ξN converge weakly to the finite dimensional

distributions of ξ.

Definition 9. The random process ξ indexed by A is called Gaussian (centered

Gaussian) if all linear combinations of ξa with a ∈ A are Gaussian (centered Gauss-

ian).

Definition 10. Let X be a Banach space. The random process ξ indexed by F ∈ X
with the property that the mapping F → ξF belongs to X ′, the space of linear

functionals on X , is called a random field on X and we shall write ξF = (F, ξ). In

case the random process defined this way is Gaussian (centered Gaussian) we shall

say that ξ is a Gaussian (centered Gaussian) random field.

For X equal to the space H(Ω, Q) and q(·, ·) a nonnegative continuous symmetric

bilinear form on H(Ω, Q), there exists a centered Gaussian random field ξ = ξ(w)

on X with covariance q(F − 〈F 〉Q, G − 〈G〉Q) for any two F, G ∈ H(Ω, Q). Here

and in the following 〈G〉Q =
∫
Ω

GdQ(ω). In this case we shall denote the variance

by σ2
ξ (·, ·).

We are now ready to formulate the assumptions needed for our results. For

every positive integer N , we consider a family of N continuous square-integrable

martingales with respect to P and {Ft}0≤t≤T , taking values in X, denoted by

{zN
i (·, w)}1≤i≤N . The cross variation processes {〈zN

i , zN
j 〉(t,w)}t≥0, 1 ≤ i, j ≤ N

can be written as

(2.8) 〈zN
i , zN

i 〉(t,w) =
∫ t

0

σ2
N,i(s, w)ds and 〈zN

i , zN
j 〉(t,w) =

∫ t

0

kij
N (s,w)ds ,

where σ2
N,i(·,w) and |kij

N (·, w)| are time-integrable a.s. with respect to P .
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Equivalently, by the martingale representation theorem, possibly by extending

the σ-field F , one can define the N -dimensional Brownian motion {z(·, w)} by

dzi(t,w) =
L∑

l=1

ril(t, w)dwl(t,w) , 1 ≤ i ≤ N , 1 ≤ l ≤ L

where L ∈ Z+ and {w(·, w)} = {wl(·, w)}1≤l≤L is an L-dimensional Brownian mo-

tion adapted to F and R(t, w)R∗(t, w) = (
∑

l ril(t, w)rlj(t,w))ij is the correlation

matrix of {z(·,w)} with elements given by the integrands from (2.8).

In order to derive a finite-dimensional central limit theorem for the empirical

measures associated to the family of martingales {zN
i (·)}1≤i≤N we shall only need

the following condition.

Assumption 1. (Finite dimensional CLT) There exist σ2 > 0 and γ > −1

such that

(2.9) lim
N→∞

E
[ ∫ T

0

N∑

i=1

(σ2
N,i(s, w)− σ2)2ds

]
= 0

and

(2.10) lim
N→∞

E
[ ∫ T

0

1
N2

∑

1≤i6=j≤N

(Nkij
N (s, w)− σ2γ)2ds

]
= 0 .

Theorem 1. Under Assumption 1, if there exists a probability measure µ(dx) on X

such that the initial empirical measures N−1
∑N

i=1 δzN
i (0) converge weakly to µ(dx)

in probability, then the empirical measure N−1
∑N

i=1 δzi(·) converges weakly to Q in

probability.

The proof of Theorem 1 is in the Appendix.

Theorem 2. Under Assumption 1, where (2.9) and (2.10) are satisfied with γ > −1

and the initial values of the martingales zN
1 (0), . . . , zN

N (0) are independent with

distribution µ(dx) on X, the random field

(2.11) ξN =
1√
N

N∑

i=1

(δzN
i (·) −Q)

on Scyl(Ω) converges in the sense of Definition 8 to a centered Gaussian random

field ξ on Scyl(Ω) with covariance

(2.12)
σ2

ξ (F, G) =
∫
Ω
(F (ω)− 〈F 〉Q)(G(ω)− 〈G〉Q)dQ(ω)

+γ
∫
Ω
〈∇ηF 〉Q〈∇ηG〉QdQ0(η)

for any F,G ∈ Scyl(Ω).
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A stronger set of condition is adopted for an infinite dimensional central limit

theorem.

Assumption 2. (Infinite dimensional CLT) There exist σ2 > 0 and γ > −1,

as well as constants C(σ,N), C(γ,N), for all N ≥ 1 independent from w ∈ W and

t ∈ [0, T ], with the property limN→∞ C(σ,N) = 0 and limN→∞ C(γ, N) = 0 such

that properties (2.13) and (2.14) are valid P -almost surely:

(2.13)
√

N max
1≤i≤N

[
sup

0≤t≤T

∣∣σ2
N,i(t,w)− σ2

∣∣
]
≤ C(σ,N)

and

(2.14) max
1≤i,j≤N

[
sup

0≤t≤T

∣∣∣Nkij
N (t, w)− σ2γ

∣∣∣
]
≤ C(γ, N) .

Remark 1: Lemma 1 ensures the existence of a system of martingales with these

properties, in other words, that the covariance matrix of the martingales stays

positive definite.

Remark 2: Assumption 2 implies Assumption 1.

Remark 3: In the following we shall omit the random element w when not neces-

sary.

Theorem 3. Under Assumption 2, where (2.13) and (2.14) are satisfied with γ >

−1 and the initial values of the martingales zN
1 (0), . . . , zN

N (0) are independent with

distribution µ(dx) on X, the random field (2.11) on C1
b (Ω) converges in the sense of

Definition 8 to a centered Gaussian random field ξ on C1
b (Ω) with covariance (2.12)

for any F, G ∈ C1
b (Ω). Furthermore, since the covariance (2.12) is continuous with

respect to the norm ‖·‖H, the limit ξ can be extended to a centered Gaussian random

field on H(Ω, Q).

Remark 1: The random field ξN is in fact a random measure on Ω for any N > 0.

As a consequence, ξN has values in (H(Ω, Q))′ almost surely. However, one cannot

carry out the limit uniformly over G ∈ H(Ω, Q) to prove that the limit ξ has values

in (H(Ω, Q))′ even in the independent case. Still, if we drop the requirement that

the measure on (H(Ω, Q))′ be countably additive (no longer a measure in the proper

sense) we can define a so-called cylindrical measure (see [1], Section 3.9).

Remark 2: Suppose we keep the correspondence σ2 = λ/(λ + ρ̄) and γ = ρ̄/λ, in

view of the example (1.2). Then we can see that, in the strong interacting case when

λ → 0, the first term of the covariance (2.12), corresponding to the classical central
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limit theorem (noncorrelated case) will vanish, while the second part, corresponding

to the correlation, will tend to one. This can be seen because, as the measure

QN converges to a degenerate measure, the factor EQ0
[(〈∇ηG〉Q)2] ∼ EQ0

[‖η‖2],
which is of the order of λ. Multiplied by γ = ρ̄/λ we obtain a limit of order

one. This is natural when the particles are, in fact, moving deterministically. The

remaining randomness originates from the classical CLT for the initial positions of

the particles. On the other hand, the case of very rare particles ρ̄ → 0 eliminates

correlation. The weak interaction case λ →∞ pushes the diffusion coefficient to one

(independent Brownian motions) and the asymptotic correlation vanishes again.

Theorem 3 extends the finite dimensional result of Theorem 2 to the infinite

dimensional space C1
b (Ω). Theorem 5 imbeds the space of cylinder functions into

H(Ω, Q), providing a density theorem S(Ω)H ⊇ C1
b (Ω), where the subscript desig-

nates the norm (2.6). In order to make use of this imbedding, we need an uniform

bound (also a tightness estimate) with respect to N on the second moments of

the random field ξN . This is done through (5.7) from Proposition 9. In order to

understand better Assumption 2 we have to write

(2.15) zN
i (t) = yN

i (t) +
1√
N

dN
i (t) , 1 ≤ i ≤ N

as in Lemma 2, where {yN
i (·)}1≤i≤N are independent Brownian motions and the

continuous martingales {dN
i (·)}1≤i≤N have asymptotically bounded moments of

some order r > 2. The construction can be viewed as an orthonormalization pro-

cedure. Assumption 2 is sufficient for this construction as well as for a certain

simplicity of the result. Following the proof of Proposition 9 and Lemmas 1 and 2

one can try to relax the assumptions (2.13) - (2.14) to

(2.16) E




∫ T

0

(
σ2

N,i(s,w)− σ2
)2

ds +
∑

j 6=i

∫ T

0

(
kij

N (s, w)− σ2γ

N

)2

ds


 ∼ o(

1
N

)

uniformly in 1 ≤ i ≤ N . However, this weaker set of conditions complicates the

proof of Proposition 8. We shall not pursue this direction in the present paper.

3. Inductive characterization of a random field

The following definitions formulate the main conditions needed for the characteriza-

tion of a centered Gaussian random field by induction on the maximum number of

times m appearing in the test functions from C(Ω). We recall that Q is a Brownian

motion as in Definition 4.
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Definition 11. Let q(·, ·) ∈ B(C1
b (Ω)) be symmetric, nonnegative and continuous

in the H(Ω, Q) norm as in Definition 7. For any pair of functionals F, G ∈ C1
b (Ω)

of the form

(3.1) F (ω(·)) = f(ω(0)) and G(ω(·)) = g(ω(0))

with f, g ∈ C1
b (X), the bilinear form q0(f, g) = q(F, G) is well defined, symmetric,

nonnegative and continuous with respect to the induced norm ‖·‖H(X,µ) on H(X, µ).

This one-dimensional bilinear form will be called the one-dimensional marginal of

q(·, ·) at t = 0.

Definition 12. A bilinear form u(·, ·) ∈ B(C1
b (Ω)) is said translation invariant if

u(F + c, G) = u(F, G) and u(F,G + c) = u(F,G) for any c ∈ C.

Definition 13. Let q̌(·, ·) ∈ B(C1
b (Ω)) be a positive symmetric bilinear form contin-

uous with respect to the H(Ω, Q) norm. We shall say that u(·, ·) solves inductively

the differential equation for the operator (σ2/2)∆ and the bilinear form q̌(·, ·) with

initial marginal at time t = 0 denoted by q0(·, ·) if

(3.2)

u(F (ω, t), G(ω, t))− u(F (ω, t′), G(ω, t′)) =

σ2

2

∫ t

t′

(
u(∂2F (ω, s), G(ω, s))+

u(F (ω, s), ∂2G(ω, s)) + 2q̌(∂F (ω, s), ∂G(ω, s))

)
ds

for all F, G ∈ E(Ω) and u0(F, G) = q0(F, G) as in Definition 11.

Proposition 3. Let q̌(·, ·) ∈ B(C1
b (Ω)) be a positive continuous symmetric bilinear

form and q0(·, ·) is its one-dimensional marginal. If there exists a translation in-

variant bilinear form u(·, ·) on C1
b (Ω) starting at q0(f −〈f〉µ, g−〈g〉µ) in the sense

of Definition 11 satisfying the inductive equation (3.2), then u(·, ·) is unique.

Remark 1: The inductive partial differential equation is valid for all smooth cylin-

der functions. What Proposition 3 and later Theorem 4 imply is that it is enough

to verify it for the E - class cylinder functions. Given that q(·, ·) is continuous in

the ‖ · ‖H norm, we can go from E(Ω) to S(Ω) and finally to H(Ω, Q).

Remark 2: Proposition 3 is valid if we assume equation (3.2) is verified for pairs

(F, G) with F = G.

Proof of Proposition 3: The difference v(·, ·) of two solutions of (3.2) is a translation

invariant bilinear form starting at zero and is a solution of the same equation (3.2)
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where the term in q̌(·, ·) is cancelled, namely a solution to

(3.3) v(F (ω, t), G(ω, t))− v(F (ω, t′), G(ω, t′)) =

σ2

2

∫ t

t′

(
v(∂2F (ω, s), G(ω, s)) + v(F (ω, s), ∂2G(ω, s))

)
ds .

We want to show that such a solution is zero. To prove this fact, we concentrate

on purely cylindrical functions and proceed by induction on the number of fac-

tors present. For all G ∈ S(Ω) one can write G(ω(·)) =
∑

l Gl(ω(·)), where we

made the assumption that the summation runs through a finite set, with Gl ∈
Scyl(Ω). Any function Gl can be written, according to (2.4), in the form Gl(ω, t) =

aG,l(ω(·))gG,l(ω(t)) where t ≥ t′ is the largest time variable present in G and t′ is

the next time smaller than t. This implies that

G(ω, t) =
∫

R

∑

l

[(aG,l(ω) exp (iαω(t)))ĝG,l(α)]dα ,

for α ∈ R and the analogous formulas are valid for F ∈ S(Ω). Then, we replace

F (ω, t) by
∫
R aF (ω)eiαω(t)ĝF (α)dα and G(ω, t) by

∫
R aG(α̃)eiα̃ω(t)ĝG(α̃)dα̃ where

(α, α̃) ∈ R2.

We first prove the uniqueness in the case of Fα(ω, t) = aF (ω)eiαω(t) and Gα̃(ω, t) =

aG(ω)eiα̃ω(t). We look at (3.3) as an ordinary differential equation with unknown

q(Fα(ω, t), Gα̃(ω, t)). We can calculate explicitly the solution which is unique and

equal to zero as long as the induction hypothesis on the values at time t = t′ is

satisfied. The solutions will be bounded and hence we can write the full formula in

terms of Fα(ω, t) = aF (ω)eiαω(t) and Gα̃(ω, t) = aG(ω)eiα̃ω(t) as

v(F (ω, t), G(ω, t)) =
∫

R

∫

R
v(Fα(ω, t), Gα̃(ω, t))ĝF (α)ĝG(α̃)dαdα̃

by using the bilinearity of v(·, ·) and passing to the limit in the Riemann integral

over R2, which proves our assertion. The extension to all F,G ∈ S(Ω) is granted

by linearity. Theorem 5 and Proposition 7 show us that S(Ω) is dense in H(Ω, Q)

in the ‖ · ‖H norm. This is enough to extend the result to H(Ω, Q), under the ‖ · ‖H
norm since we know that the unique solution to (3.3) is continuous in the ‖ · ‖H
norm. This concludes the proof. ¤

Definition 14. Let q̌(·, ·) ∈ B(C1
b (Ω)) a nonnegative symmetric continuous bilinear

form on C1
b (Ω) and ξ(w) a random field on C1

b (Ω), measurable with respect to

(W,F , P ). Assume that for any G ∈ Ccyl(Ω) there exists a standard Brownian

motion {β(t,w)}t≥0 adapted to the filtration {Ft}t≥0 such that, if G(ω(·)) is written
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G(ω, t) = a(ω(·))g(ω(t)) as in (2.4), the process {(G(ω, t), ξ(w))}t≥t′ starting at

t = t′ from (a(ω(·))g(ω(t′)), ξ(w)) ∈ Ft′ (also called the associate marginal process

of G) satisfies the SPDE

(3.4)

d(G(ω, t), ξ(w)) =
σ2

2
(∂2G(ω, t), ξ(w))dt + σ

√
q̌(∂G(ω, t), ∂G(ω, t))dβ(t, w) .

Then we shall say that ξ satisfies the inductive SPDE (3.4) with correlation q̌(·.·)
with respect to Q.

Remark 1: For any time t the functional of ω(·) equal to G(ω, t) = a(ω(·))g(ω(t))

belongs to Ccyl(Ω) if a(·), g(·) belong to the continuous class (respectively Ecyl(Ω)

if a(·), g(·) belong to the exponential class) so (G(ω, t), ξ(w)) is well defined.

Remark 2: For proving our main result we only need q̌(·, ·) defined in (4.2).

However, Theorem 4 is true for a general C1
b (Ω) - valued bilinear form q̌(·, ·).

Theorem 4. Let q̌(·, ·) ∈ B(C1
b (Ω)) be a positive symmetric bilinear form con-

tinuous with respect to the H(Ω, Q) norm. Assume also that q(·, ·) ∈ B(C1
b (Ω)),

a positive symmetric bilinear form continuous with respect to the H(Ω, Q) norm,

solves inductively the equation (3.2) for q̌(·, ·) with initial marginal q0(·, ·) as in

Definition 13. If Z = Z(w) is a random field on C1
b (Ω), measurable with respect to

F , such that

(i) the one-dimensional restriction Z0 of Z at time t = 0 is a centered Gaussian

with covariance q0(f − 〈f〉µ, g − 〈g〉µ) and

(ii) Z satisfies the inductive SPDE (3.4) for all G ∈ E(Ω),

then Z can be uniquely extended to a centered Gaussian random field on H(Ω, Q)

with covariance

σ2
Z(F, G) = q(F − 〈F 〉Q, G− 〈G〉Q) ,

for any two F,G ∈ H(Ω, Q).

Remark 1: The condition that Z be a random field on C1
b (Ω) is weaker than Z

be indexed by the Banach space H(Ω, Q). However, the iterated SPDE, Theorem

5 and the fact that q(·, ·) can be extended to B(H(Ω, Q)) will show that Z is a

random field on H(Ω, Q).

Remark 2: This is a uniqueness theorem only. For the covariance prescribed in our

problem (2.11) - (2.12) the existence is proven by direct verification of the conditions

of Theorem 4 applied to q(·, ·) from (2.12) with q̌(·, ·) given in (4.2). We note that

in the proof of Proposition 4 the bilinear form q̌(·, ·) is split in two components
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(4.3) and (4.4) corresponding to the “independent” and “coupled” parts of the

covariance.

Proof of Theorem 4: Let’s denote the value of (G(ω, t), Z(w)) by Z(G(ω, t)) for

cylinder functions G ∈ (E ∪S)(Ω). In general, we shall suppress w in the following.

We shall apply the Itô formula to the function φ(Z(G(ω, t)), with φ(x) = x2 and

obtain, after taking the expected value, that

d E[Z(G(ω, t))2] =
(
σ2E[Z(G(ω, t))Z(∂2G(ω, t))] + σq̌(∂G(ω, t), ∂G(ω, t))

)
dt .

This proves that E[Z(G(ω, t))Z(F (ω, t))] satisfies (3.2) by polarization. Next, the

uniqueness argument of Proposition 3 implies that

E[Z(F (ω, t))Z(G(ω, t))] = q(F − 〈F 〉, G− 〈G〉) ≤ C‖F‖H‖G‖H .

We need to show that Z(G(ω, t)) is a centered Gaussian. For all G ∈ S(Ω)

one can write G(ω(·)) =
∑

l Gl(ω(·)), where we made the assumption that the

summation runs through a finite set, with Gl ∈ Scyl(Ω). This implies that G(ω, t) =
∫
R

∑
l[(al(ω) exp (iαω(t)))ĝl(α)]dα exactly as detailed in the proof of Proposition

3. Then, equation (3.4) gives the SPDE satisfied by the process {Z(G(ω, t))}t≥t′

starting at t = t′ from Z(a(ω(·))g(ω(t′))) (also called the associate marginal process

of G)

(3.5) dZ(G(ω, t)) =
σ2

2
Z(∂2G(ω, t))dt + σ

√
q̌(∂G(ω, t), ∂G(ω, t))dβ(t) .

The inductive SPDE (3.4) for a function of type al(ω) exp (iαω(t)) reduces to a

classical Ornstein-Uhlenbeck process. We know by the induction hypothesis that

at start t = t′ the process was a centered Gaussian. Let’s denote by Z(Gα,l(ω, t))

the solution to (3.4) for Gα,l(ω, t) = al(ω) exp (iαω(t)). The first two terms of the

equation are linear. The quadratic form q(·, ·) has the property

q(∂Gα,l(ω, t), ∂Gα,l(ω, t)) = |α|2q̌(Gα,l(ω, t), Gα,l(ω, t)) .

We derive that

Z(Gα,l(ω, t))− Z(Gα,l(ω, t′)) +
α2σ2

2

∫ t

t′
Z(Gα,l(ω, s))ds−

−|α|σ
∫ t

t′

√
q̌(Gα,l(s), Gα,l(s))dβ(s) = 0 .
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The initial Z(G(ω, t′)) is a mean zero normal random variable by the induction

hypothesis. We integrate the Ornstein-Uhlenbeck SDE t → Z(G(ω, t)) and obtain

(3.6) Z(G(ω, t)) =
∫

R

∑

l

Z(Gα,l(ω, t))ĝl(α)dα

=
∫

R

∑

l

Z(Gα,l(ω, t′)) exp (−α2σ2

2
(t− t′))ĝl(α)dα

+σ

∫ t

t′

∫

R

∑

l

exp (−α2σ2

2
(t− s))(

√
q̌(Gα,l(s), Gα,l(s)))|α|ĝl(α)dαdβ(s) .

We need to justify the integration along the real line of the solutions Z(Gα,l(ω, t)).

Let G ∈ Ccyl(Ω), G(ω, t) = a(ω)g(ω(t)) such that a(ω) ∈ C(Ω), g ∈ S(X) and, for

any r ∈ Z+, let

(3.7) Rr(G(ω, t)) = a(ω)
∑

−r2≤k≤r2

eiαkω(t)ĝ(αk)(αk+1 − αk)

be the Riemann sum for the partition ∆r obtained by dividing the interval [−r, r]

into 2r2 equal subintervals with partition points denoted by αk, −r2 ≤ k ≤ r2.

Then, Rr(G(ω, t)) ∈ C(Ω) and

lim
r→∞

‖Rr(G(ω, t))−G(ω, t)‖H = 0 .

This follows from the properties of the inverse Fourier transform on the real line,

since a(ω) is a bounded smooth functional.

The real integral

(3.8) G(ω, t) =
∫

R

( ∑

l

(al(ω) exp (iαω(t)))ĝl(α)
)
dα

is the ‖·‖H - limit of Riemannian sums Rm(
∑

l Gl(ω, t)) (equation 3.7). Since there

exists a constant C such that E[Z(G)2] ≤ C‖G‖2H, we can derive that the sequence

{Z(
∑

l Rm(Gl(ω, t)))}m≥1 is tight with limit Z(G(ω, t)). A similar reasoning proves

that the last integral involving the bilinear form q̌(·, ·) can be integrated along α ∈ R
as a consequence of Plancherel’s identity for g′(x).

We notice that if

V (ω, t′) = E
[∑

l

al(ω)gl(ω(t)) | Ft′
]

then
∫

R

∑

l

Z(Gα,l(ω, t′)) exp (−α2σ2

2
(t− t′))ĝl(α)dα = 2πZ(V (ω, t′))
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which implies from the induction hypothesis that the first term in (3.6) is a zero

mean Gaussian measurable with respect to Ft′ . V (ω, t′) is indeed in S(Ω) as the

summation of convolutions of functions in S(Ω) with the transition probability of

Q from time t′ to time t. The second term is a stochastic integral of a deterministic

function of time depending on G against a Brownian motion on [t′, t], that is a

process with independent increments. The sigma fields they are supported on are

independent. This concludes the induction step needed to prove that the solution

is a mean zero normal random variable.

By piecing together the time marginals present in any G ∈ S(Ω) we have shown

that there exists a unique mean zero Gaussian random field satisfying the inductive

SPDE (3.4) for any G ∈ S(Ω) provided we start at time t = 0 with a random

field compatible with q(·, ·), that is, having the one dimensional bilinear form equal

to the marginal bilinear form of q(F − 〈F 〉µ, G − 〈G〉µ) at t = 0 (Definition 11).

It has been shown in the first part of the proof that the covariance is exactly

q(F − 〈G〉Q, F − 〈G〉Q). This and the continuity of q(·, ·) with respect to the H
norm enables us to extend Z to H(Ω, Q), which concludes the proof. ¤

Corollary 1. Let q(·, ·), q̌(·, ·) and q0(f−〈f〉µ, g−〈g〉µ) be exactly like in Theorem

4. If there exists a random field Z on C1
b (Ω) such that the restriction Z0 of Z to

one-dimensional functionals of the type (3.1) is a centered Gaussian with covariance

q0(f − 〈f〉µ, g − 〈g〉µ) and for any F,G ∈ E(Ω) the processes

Z(G(ω, t))− Z(G(ω, t′))− σ2

2

∫ t

t′
Z(∂2G(ω, s))ds

and

Z(F (ω, t))Z(G(ω, t))− Z(F (ω, t′))Z(G(ω, t′))−
σ2

2

∫ t

t′

(
Z(∂2F (ω, s))Z(G(ω, s)) + Z(F (ω, s))Z(∂2G(ω, s))+

2q̌(∂F (ω, s), ∂G(ω, s))
)
ds

are (Ft, P ) - martingales, then Z is unique and has covariance q(F − 〈F 〉Q, G −
〈G〉Q).

Remark: It is easy to see that G(ω) = πt(ω) = ω(t) belongs to H(Ω, Q) for any

time t ≥ 0. The corollary implies that Z(πt(ω)) is a Brownian motion with respect

to the filtration of the process.
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4. The proof for a special class of functions

The proof of Theorem 2 is the main result of this section.

Proposition 4. The bilinear form q(·, ·) ∈ B(H(Ω, Q)), defined in (2.12) as

q(F, G) =
∫

Ω

(F (ω)− 〈F 〉Q)(G(ω)− 〈G〉Q)dQ(ω)+

+γ

∫

Ω

〈∇ηF 〉Q〈∇ηG〉QdQ0(η)

is symmetric, nonnegative, translation invariant and satisfies the inductive equation

(3.2) starting at q0(f, g) = Cov(f, g) for any f, g ∈ C1
b (X), where

(4.1) Cov(f, g) =
∫

X

(f(x)− 〈f〉µ)(g(x)− 〈g〉µ) µ(dx)

with correlation

(4.2) q̌(F, G) =
∫

Ω

F (ω)G(ω)dQ(ω) + γ

∫

Ω

〈∇ηF 〉Q〈∇ηG〉QdQ0(η) .

Proof: Let

(4.3) q1(F,G) = EQ
[
(F (ω)− 〈F 〉)(G(ω)− 〈G〉)

]

and

(4.4) q2(F, G) = EQ0
[
(〈∇ηF 〉Q)(〈∇ηG〉Q)

]
.

We want to show that both satisfy the inductive equation (3.2) with

q̌1(∂F, ∂G) = EQ[(∂F (ω))(∂G(ω))]

and

q̌2(∂F, ∂G) = (EQ[∂F (ω)])(EQ[∂G(ω)]) .

The equation for q̌1(∂F, ∂G) is obtained as in the case of uncorrelated martingales

by Itô formula. We look at q2(·, ·) only. Let G(ω, t) = aG(ω)gG(ω(t)) and F (ω, t) =

aF (ω)gF (ω(t)). Then, if 〈·〉ω denotes the expected value with respect to Q,

(4.5) 〈∇ηG〉Q = 〈∇ηaG(ω)gG(ω(t))〉ω + 〈aG(ω)g′G(ω(t))〉ωη(t) ,

(4.6)
d
dt 〈∇ηaG(ω)gG(ω(t))〉ω = σ2

2 〈∇ηaG(ω)g′′G(ω(t))〉ω
d
dt 〈aG(ω)g′G(ω(t))〉ω = σ2

2 〈aG(ω)g′′′G (ω(t))〉ω
.
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The analogous formulas hold for F . The dt term from the quadratic variation of

the Brownian motion η(·) is

σ2
(
〈aF (ω)g′F (ω(t))〉ω〈aG(ω)g′G(ω(t))〉ω

)
dt ,

equal to σ2q̌2(∂F (ω, t), ∂G(ω, t))dt. We superpose the two solutions and obtain

(3.2) for our random field ξ. ¤
Remark. An alternate way to prove the proposition is to consider a pair of i.i.d.

Brownian motions ω1(·), ω2(·) with law Q = Qµ and another independent Brownian

motion η(·) with law Q0, write the Itô formula for (4.3) - (4.4) (before averaging)

for the three dimensional system, and finally take the expected value.

Proposition 5. For any G ∈ (E ∪ S)(Ω), that is such that there exists a positive

integer m and a function g(x0, x1, . . . , xm) in the linear span of cylinder functions

obtained as products of either S(R) or E(R) for which G(ω) = g(ω(t0), . . . , ω(tm)),

(4.7) lim sup
N→∞

E|(G, ξN )|2 ≤ c(G)

with c(G) depending only on g and T .

Proof of Proposition 5: We shall proceed by induction to show (4.7). If m = 1

and t0 = 0 we have the classical central limit theorem. Assume (4.7) is valid for

G depending on at most m − 1 times. In general we only need to do the proof

for cylinder functions since the extension to the general class of functions needed

in the proposition is done by linearity and depends, as required, only on g and

T . To make things precise g(x0, x1, . . . , xm) = Πm
i=0gi(xi) and the constant c(g, T )

corresponding to Πm−1
i=0 gi(xi) is denoted by c(g, m− 1, T ). Also we denote tm−1 by

t′. Even though we need g(x) in the Schwartz class, we shall investigate first the

case g(x) = exp (iαx) where i =
√−1. We shall use the notation G(ω, t) = Gα(ω, t)

for such a test function later on in the proof when needed.

For any F,G ∈ C(Ω) we can write the generalized Itô formula for stochastic integrals

with respect to martingales (see [9]) for the product {(F (ω, t), ξN )(Ḡ(ω, t), ξN )}t≥t′ .

We recall that for every finite N the random fields ξN are finite random measures

on the path space Ω and

∂

∂t
〈G(ω, t)〉Q =

σ2

2
〈∂2G(ω, t)〉Q .

Then

(4.8) (F (ω, t), ξN )(Ḡ(ω, t), ξN )− (F (ω, t′), ξN )(Ḡ(ω, t′), ξN ) =
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1
2N

∫ t

t′

∑

1≤i,j≤N

[(σ2
N,i(s)∂

2F (zi(·), s)− σ2〈∂2F 〉Q)(Ḡ(zi(·), s)− 〈Ḡ〉Q)

+(F (zi(·), s)− 〈F 〉Q)(σ2
N,j(s)∂

2Ḡ(zj(·), s)− σ2〈∂2Ḡ〉Q)]

2
∫ t

t′
[
1
N

∑

1≤i≤N

(∂F (zi(·), s))(∂Ḡ(zi(·), s))(σ2
N,i(s))]ds

[
1

N2

∑

1≤i,j≤N

(∂F (zi(·), s))(∂Ḡ(zj(·), s))(Nkij
N (s))]ds + MN (t)

where MN (t) is a martingale. We can re-write the above formula as

(F (ω, t), ξN )(Ḡ(ω, t), ξN )− (F (ω, t′), ξN )(Ḡ(ω, t′), ξN ) =

σ2

2
1
N

∫ t

t′

( ∑

1≤i,j≤N

[(∂2F (zi(·), s)− 〈∂2F 〉Q)(Ḡ(zj(·), s)− 〈Ḡ〉Q)

+(∂2Ḡ(zj(·), s)− 〈∂2Ḡ〉Q)(F (zi(·), s)− 〈F 〉Q)]

2[
1
N

∑

1≤i≤N

(∂F (zi(·), s))(∂Ḡ(zi(·), s))]
)
ds

+σ2γ

∫ t

t′
[

1
N2

∑

1≤i,j≤N

(∂F (zi(·), s))(∂Ḡ(zj(·), s))]ds + MN (t) + EN (t) .

The error term is

(4.9) |EN (t)| ≤ C(F,G)
1
N

N∑

i=1

∫ t

t′
(
√

N |σ2
N,i(s)− σ2|)ds+

+
1

N2

∑

1≤i,j≤N

∫ t

t′
|Nki,j

N (s)− γσ2|ds ,

where C(F, G) is a constant depending on the supremum over Ω of the functions F ,

∂F , ∂2F and the analogue values for G. More precisely EN (t) =
∫ t

t′ eN (s)ds with

(4.10) lim sup
N→∞

E[E2(t)] ≤ TE
[ ∫ T

0

e2
N (s)ds

]

by Schwarz inequality for the time integral. The latter bound goes to zero as

N → ∞ from formula (4.9) plus Assumption 1, equations (2.9)-(2.10), and once

more by Schwarz applied to the average over N .

Let F = G = a(ω)g(ω(t)) with g(x) = exp (iαx). If we denote uN (t) =

E|(G(ω, t), ξN )|2 we derive

(4.11) uN (t)− uN (t′) = −α2σ2

∫ t

t′
uN (s)− q(G(ω, s), G(ω, s))ds + EN (t)

where we denote, for simplicity,

q(s) = q(G(ω, s), G(ω, s)) =
∫

Ω

G(ω, s)Ḡ(ω, s)dQ(ω)+
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+γ

(∫

Ω

G(ω, s)dQ(ω)
∫

Ω

Ḡ(ω, s)dQ(ω)
)
≤ 2( sup

x̄∈Rm+1
|g(x̄)|)2 .

We differentiate, solve the ODE and obtain

(4.12) uN (t) = uN (t′) exp (−α2σ2(t− t′)) + α2σ2

∫ t

t′
q(s) exp (−α2σ2(t− s))ds

+
∫ t

t′
eN (s) exp (−α2σ2(t− s))ds .

This shows that

(4.13) lim sup
N→∞

uN (t) ≤ lim sup
N→∞

uN (t′)+α2σ2Tcm(g) = c(g, m−1, T )+α2σ2Tcm(g)

where we denoted 2(supx̄∈Rm+1 |g(x̄)|)2 by cm(g).

Since lim supN→∞ uN (t′) ≤ c(g,m − 1, T ) by the induction hypothesis, relation

(4.12) proves the tightness of {(G(ω, t), ξN )}N in the special case g(x) = exp (iαx).

Let g(x) be a function in the Schwartz space and let g(x) =
∫
R ĝ(α) exp (iαx)dα

where ĝ(α) ∈ S(C) as well. Before passing to the limit as N → ∞ the random

fields ξN are finite random measures on Ω. The integration over the real line of α

can be viewed as the limit of finite Riemann sums converging in the uniform norm

on Cb(Ω), since, for a finite N , the random fields ξN are finite measures on Ω. We

can write

(G(ω, t), ξN ) =
∫

R
(Gα(ω, t), ξN )ĝ(α)dα .

The sequence will be tight if lim supN→∞E|(G(ω, t), ξN )|2 < ∞. We calculate

E|(G(ω, t), ξN )|2 = E|
∫

R
(Gα(ω, t), ξN )ĝ(α)dα|2 ≤

≤
∫

R
E|(Gα(ω, t), ξN )|2ĝ2(α)dα .

Then, according to equation (4.13),

lim sup
N→∞

E|(G(ω, t), ξN )|2 ≤

≤
∫

R

(
c(g, m− 1, T ) + α2σ2Tcm(g)

)
ĝ2(α)dα ≤ c(g, m, T ) .

The very last step is to consider a general function G which will be a finite sum of

cylinder functions. The bound we obtain will depend on the number of terms in

G, determined exclusively by the test function g and the endpoint T of the time

interval. ¤
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Proposition 6. For any pair F, G ∈ (E ∪ S)(Ω) as in Proposition 5, the fami-

lies of processes {(F (ω, ·), ξN )}N>0 and {(G(ω, ·), ξN )}N>0 defined for t ≥ t′ (as

in formula (2.4) ) are tight and any pair of limit points, denoted by Z(F (ω, ·))
and Z(G(ω, ·)) respectively, satisfy the inductive SPDE (3.4) with correlation form

(4.2).

Proof of Proposition 6: The m = 0 and t = 0 case is the classic central limit theorem.

At time t = t′ the functionals (G(ω, t′), ξN ) are uniformly square integrable in N

either by the induction hypothesis or directly from Proposition 5. The differences

(G(ω, t), ξN )− (G(ω, s), ξN ) will be treated analogously with (4.8).

(4.14) (G(ω, t), ξN )− (G(ω, s), ξN ) =

1
2
√

N

∫ t

s

∑

1≤j≤N

(σ2
N,j(u)∂2G(zj(·), u)− σ2〈∂2G(ω, u)〉Q)

+
1√
N

∫ t

s

∑

1≤j≤N

∂G(zj(·), u)dzj(u)

which can be written as

(4.15) (G(ω, t), ξN )− (G(ω, s), ξN ) =

σ2

2
√

N

∫ t

s

∑

1≤j≤N

(∂2G(zj(·), u)− 〈∂2G(ω, u)〉Q)+

1√
N

∫ t

s

∑

1≤j≤N

∂2G(zj(·), u)dzj(u) +
∫ t

s

eN (G, u)du

with error term less than (4.9). We compute the square of the expectation of the

difference. The right hand side terms behave as follows.

lim sup
N→∞

E

∣∣∣∣∣∣
1√
N

∫ t

s

∑

1≤j≤N

(∂2G(zj(·), u)− 〈∂2G(ω, u)〉Q)du

∣∣∣∣∣∣

2

≤

∫ t

s

lim sup
N→∞

E
∣∣(∂2G(ω, u), ξN )

∣∣2 du ≤ (t− s)C(∂2G)

according to Proposition 5 (we recall that C(∂2G) did not depend on any particular

time t). The martingale term will satisfy a similar inequality due to Lemma 3,

equation (6.2). We use the fact that

(4.16)
 1√

N

∫ t

s

∑

1≤j≤N

∂G(zj(·), u)dzj(u)




2

− 1
N

∫ t

s

∑

1≤j≤N

(∂G(zj(·), u))2σ2
N,i(u)du−
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− 1
N2

∫ t

s

∑

1≤i 6=j≤N

(∂G(zi(·), u))(∂G(zj(·), u))(NkN
i,j)(u)du

is a martingale. We can substitute σ2
N,i(u) with σ2 and NkN

i,j(u) by γσ2 due to

(4.9) and (4.10). In the limit as N →∞, the law of large numbers (Proposition 5)

yields a quadratic variation equal to exactly σ2
ξ (∂F, ∂G).

We have shown, based on Proposition 5, that for any F, G ∈ C(Ω) we can con-

sider a weak limit of (F, ξN ) and (G, ξN ) denoted by Z(F ) and Z(G), respectively.

Formulas (4.15) and (4.16) imply that Z(G(ω, t)) satisfies the inductive SPDE:

(4.17) Z(G(ω, t))− Z(G(ω, t′)) =
σ2

2

∫ t

t′
Z(∂2G(ω, s))ds+

+σ

∫ t

t′

√
q̌(∂G(s), ∂G(s))dβ(s)

with q(F, G) defined in (4.2). The calculations involved in determining the covari-

ance are direct consequences of Proposition 4. The analogous formula holds for

F and the product ū(F,G) = Z(F (ω, t))Z(G(ω, t)) satisfies the inductive property

that

(4.18)

ū(F (ω, t), G(ω, t))− ū(F (ω, t′), G(ω, t′))−
σ2

2

∫ t

t′

(
ū(∂2F (ω, s), G(ω, s)) + ū(F (ω, s), ∂2G(ω, s))

+2q̌(∂F (ω, s), ∂G(ω, s))

)
ds

is an (P,Ft)-martingale. Taking the expected value, equation (4.18) becomes (3.2).

¤

Proof of Theorem 2. Proposition 5 proves that the fluctuation random fields

{ξN}N>0 are tight in the weak* topology over the space of special functions (E ∪
S)(Ω). Proposition 6 proves the conclusion of the theorem for functions in the

special class (E ∪ S)(Ω) based on Theorem 4 in Section 3 after identifying the

covariance function from Proposition 4. ¤

5. Extension to C1
b (Ω)

This section proves Theorem 3 via Proposition 10. Suppose we can figure out

the covariance of the limiting random field in the central limit theorem for cylinder

functions. If the covariance is continuous in some norm on C1
b (Ω), then we can define

directly the limit as a Gaussian on the completion of the new space. Identifying

the limit in Theorem 2 does not provide us with a class of functions for which the
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central limit theorem takes place, except for Schwartz or exponential class cylinder

functions, which may be a rather poor space. However, Proposition 9, together

with the density result from the next theorem overcome this difficulty and enable

us to prove Theorem 3 in an infinite dimensional setting using the test function

space C1
b (Ω).

The proof of Proposition 9 requires that we evaluate the L2 norm of the renormal-

ized differences (amplified by a factor of
√

N) between the martingales {zi(·)}1≤i≤N

and the limiting Brownian motions distributed according to Q from the decompo-

sition Lemma 2, which is the missing link between Theorem 5 and Proposition 9

- see also the comment related to (2.15). It seems hard to connect the supremum

norm of the path space Ω and the expectation of its square except by assuming

that the error terms are essentially martingales with quadratic variation of O( 1
N )

and using Doob’s inequality with an exponential bound guaranteed by Proposition

8. Proposition 10, which finishes the proof of Theorem 3 is based on Proposition 9.

Theorem 5. Let G ∈ C1
b (Ω). If K is a compact with K ⊆ Ω, then for any ε > 0

there exists a function GS
ε ∈ S(Ω) such that ‖GS

ε ‖C1
b
≤ 2‖G‖C1

b
and

(5.1) sup
ω∈K

{
(|G(ω)−GS

ε (ω)|+ ‖∇·G(ω)−∇·GS
ε (ω)‖)

}
< ε

The proof of Theorem 5 is in the Appendix.

Proposition 7. The space S(Ω) is dense in H(Ω, Q).

Proof of Proposition 7: Q is a Brownian motion hence it is supported on the

countable union of compacts of the form Kα = Ω0 ∩ B(0, α), where B(0, α) is the

ball of radius α centered at ω = 0 and α > 0 converges to ∞ meanwhile Ω0 is

the set of Hölder continuous paths ω ∈ Ω with exponent ν̃ ∈ (0, 1
2 ). These sets

are equicontinuous and bounded in the supremum norm, which implies they are

compact by Arzelà’s theorem. The functions G ∈ C1
b (Ω) have finite ‖ · ‖H norm.

For every G the measures (|G(ω)|2 + ‖∇·G(ω)‖2)dQ(ω) are absolutely continuous

with respect to Q and
∫

Ω0

|G(ω)|2 + ‖∇·G(ω)‖2dQ(ω) =
∫

Ω

|G(ω)|2 + ‖∇·G(ω)‖2dQ(ω) ,

hence

lim
α→∞

∫

Kc
α

|G(ω)|2 + ‖∇·G(ω)‖2dQ(ω) = 0
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by dominated convergence. This implies that there is a compact Kα0 with the

property
∫

Kc
α0

dQ(ω) < ε and
∫

Kc
α0

|G(ω)|2 + ‖∇·G(ω)‖2dQ(ω) < ε .

Finally, for this compact we pick a GS
ε ∈ S(Ω) such that (5.1) and ‖GS

ε ‖C1
b
≤

2‖G‖C1
b

are satisfied. This and the Schwartz inequality imply that

‖G−GS
ε ‖2H ≤

∫

Kα0

[
|G(ω)−GS

ε (ω)|2 + ‖∇·(G(ω)−GS
ε (ω))‖2

]
dQ(ω)

+2ε + 2‖GS
ε ‖2C1

b

∫

Kc
α0

dQ(ω) ≤ (3 + 8‖G‖2C1
b
)ε .

The claim is proven. ¤
Lemma 1 is an independent result valid in any inner product space. It is not

essential that the space be complete (hence Hilbert). We shall use the standard

notation ‖ · ‖ for the norm. This should not be confused with the supremum norm

on Ω the path space of continuous functions. The heuristic argument relating it to

our proof is that the inner product is analogous to the quadratic variation.

Lemma 1. Let X̃ be an inner product space with inner product denoted by (·, ·).
The associated norm will be denoted by ‖ · ‖. For any positive integer N ∈ Z+ we

shall consider a family of vectors {vN
i }1≤i≤N with the property that there exist two

numbers σ > 0 and γ > −1, independent of N such that

(5.2) lim
N→∞

√
N max

1≤i≤N
|(vN

i , vN
i )− σ2| = 0

and

(5.3) lim
N→∞

max
1≤i,j≤N

|N(vN
i , vN

j )− γσ2| = 0 .

Then, for N sufficiently large, the matrix V N with elements V N
ij = (vN

i , vN
j ) is

positive definite and there exists an orthonormal system of N vectors {wN
i }1≤i≤N

and a constant C, independent of N , such that

max
1≤i≤N

‖vN
i − σwN

i ‖2 ≤
C

N
.

Proof: the proof of Lemma 1 is in the Appendix.
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Lemma 2. Assume that conditions (2.13) and (2.14) are met. Then, for any N ∈
Z+ there exist N (P,Ft)- martingales {yN

i (·)}1≤i≤N such that {σ−1yN
i (·)}1≤i≤N

is a standard N -dimensional Brownian motion with the property that the renor-

malized differences dN
i (·) =

√
N(zN

i (·) − yN
i (·)) are continuous square-integrable

martingales with quadratic variations 〈dN
i , dN

i 〉(·) for which there exists a constant

C, independent of N , the time t ∈ [0, T ] and the indices 1 ≤ i ≤ N , such that

(5.4) 0 ≤ d

dt
〈dN

i , dN
i 〉(t) ≤ C

P -almost surely.

Remark: The martingale representation theorem implies that the quadratic vari-

ation process of a square-integrable martingale relative to the filtration {Ft}t≥0 is

absolutely continuous P -almost surely with respect to the Lebesgue measure.

Proof of Lemma 2: The martingale representation theorem (in [9], page 84) and

the fact that the covariance matrix of the martingales {zN
i (·)}1≤i≤N is positive

definite (Lemma 1) ensure the existence of a system of N independent Brownian

motions β1(·), . . . , βN (·) on (W, P,F), adapted to the original filtration {Ft}t≥0,

and a set of progressively measurable square integrable system of functions ψN
il (t),

with 1 ≤ l ≤ N and 1 ≤ i ≤ N such that, P -almost surely,

zN
i (t) = zN

i (0) +
N∑

l=1

∫ t

0

ψN
il (s)dβl(s) .

Let HN be the subspace generated by the martingales {βi(·)}1≤i≤N in L2(Ω, P ),

that is, the completion under the L2(W, P ) norm of the martingales of the form

(5.5) M(t) = M(0) +
N∑

l=1

∫ t

0

rl(s)dβl(s)

with rl(s) , 1 ≤ l ≤ N a family of bounded progressively measurable functions with

respect to {Ft}t≥0. Let M(·) be an element from HN . M(t) can be written in

terms of square integrable functions rl(s) as in (5.5). For every u ∈ [0, T ] we shall

define the mapping Su from HN to RN by

Su(M(·)) = (r1(u), . . . , rN (u)) .

If M1(·) and M2(·) are two elements of HN , the quadratic variation will be the

time integral of the Euclidian inner product on RN for the vectors Su(M1(·))
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and Su(M2(·)). The martingale representation theorem implies that any square-

integrable martingale will have an absolutely continuous quadratic variation P -

almost surely. As a consequence, we can evaluate the derivative of the quadratic

variation process for any martingale in HN directly from the Euclidian norm of the

vector Su(M(·)). Let N− 1
2 dN

i (·), for 1 ≤ i ≤ N be the differences between the

original martingales and the orthonormal set of martingales produced by Lemma

1. All the transformations involved in the procedure are progressively measurable.

We always can start our orthonormal set of martingales and the original set of

martingales from the same points so that the differences actually start at zero.

Assumptions (2.13) and (2.14) imply that the conditions of Lemma 1 are satisfied

with nonrandom bounds independent from N and the indices 1 ≤ i ≤ N for all

{Su(zN
i (·))}. This implies that the difference processes {dN

i (·)}1≤i≤N will satisfy

the property

(5.6) 0 ≤ d

du
〈dN

i , dN
i 〉(u) ≤ C

P -almost surely for some universal constant C. This proves the lemma. ¤

Proposition 8. Let {mN (·)}N be a family of continuous square integrable martin-

gales with respect to (P, {Ft≥0}t≥0) starting from a sequence of uniformly bounded

values mN (0). For any N ∈ Z+ there exist random functions aN (t) and a constant

K > 0 independent from N , such that the cross-variation process of mN (·) satisfies

〈mN , mN 〉(t) =
∫ t

0

aN (s)ds

with |aN (t)| ≤ K P -almost surely. Then, for any t > 0 and ` ∈ R,

lim sup
N→∞

E[exp (`|mN (t)|)] < ∞ .

Proof of Proposition 8: Since exp (|z|) ≤ exp (z) + exp (−z) it is enough to check

what happens for exp (`mN (t)) with ` ∈ R. We apply the Itô formula to the

function z −→ exp (`z) and obtain

exp (`mN (t))− exp (`mN (0))− `2

2

∫ t

0

exp (`mN (s))aN (s)ds

is a martingale with respect to the same filtration and P . The expected value shows

that if we denote wN (t) = E[exp (`mN (t))] then

wN (t) ≤ wN (0) +
K`2

2

∫ t

0

wN (s)ds
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which, in its turn, proves that wN (t) ≤ wN (0) exp (K`2t
2 ) for all 0 ≤ t ≤ T . Since

wN (0) and t are bounded quantities we are done. ¤

Remark: Proposition 8 is much stronger than what we need, that is the r -

integrability of mN (t) for some r ≥ 4.

Proposition 9. There exists a constant C depending only on T such that for any

G ∈ C1
b (Ω)

(5.7) lim sup
N→∞

E[|(G, ξN )|2] ≤ C‖G‖2H .

Proof of Proposition 9: Let yN
i (·), 1 ≤ i ≤ N be the independent Brownian motions

from Lemma 2.

1√
N

N∑
1

(G(zN
i (·))− 〈G〉Q) =

1√
N

N∑
1

(G(zN
i (·))−G(yN

i (·))

+
1√
N

N∑
1

(G(yN
i (·))− 〈G〉Q) .

Let’s denote dN
i (·) =

√
N(zN

i (·)− yN
i (·)). We decompose the first term into

(I) =
1√
N

(
N∑
1

G(zN
i (·))−G(yN

i (·))− 1√
N
∇GdN

i (·)(y
N
i (·))

)

and

(II) =
1
N

N∑
1

∇dN
i (·)G(yN

i (·)) .

Again, we look at the two terms in this formula separately. We recall (2.1) from

Definition 1 and see that we can write an upper bound for |(I)| as

1√
N

N∑
1

∣∣∣∣G(zN
i (·))−G(yN

i (·))− 1√
N
∇GdN

i (·)(y
N
i (·))

∣∣∣∣ ≤

≤
√

Nc(G,
1√
N

)

(
1
N

N∑
1

‖dN
i (·)‖2

)
.

This quantity goes to zero as N →∞ as soon as the martingales dN
i (·) have a finite

second moment. This is guaranteed by Proposition 8 (the uniformity in N and j)

and Doob’s maximal inequality regarding any Lr norm of martingales (r > 1) for

all 1 ≤ i ≤ N :

(5.8) (E[| sup
0≤t≤T

di(t)|r]) 1
r ≤ r

r − 1
(E[|di(T )|r]) 1

r .
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The term

E[|(II)|2] = E

[
1
N

N∑
1

∇√N(zN
i (·)−yN

i (·))G(yN
i (·))

‖√N(zN
i (·)− yN

i (·))‖ · ‖
√

N(zN
i (·)− yN

i (·))‖
]2

can be estimated if we expand the square after taking the supremum norm for the

linear operators ∇·G(yN
i (·)) (as in Definition 1)

(5.9) E

[
1
N

N∑
1

‖∇·G(yi(·))‖‖dN
i (·)‖

]2

≤ E
[ 1
N2

N∑
1

(‖∇·G(yi(·))‖‖dN
i (·)‖)2

]
+

1
N2

∑

1≤i 6=j≤N

E
[
(‖∇·G(yi(·))‖‖∇·G(yj(·))‖)(‖dN

i (·)‖‖dN
j (·)‖)

]
.

The first term can be bounded by using the supremum c1(G) of all ‖∇·G(ω(·))‖
(Definition 1). The bound is

c1(G)2
1

N2

∑

1≤i6=j≤N

E[(‖dN
i (·)‖2)] = O(

1
N

) .

The second term can be bounded in terms of the L2 norm of ‖∇·G(yi(·))‖ due to the

crucial fact that yi(·) and yj(·) are independent Brownian motions by construction.

The upper bound is obtained by Schwarz’s inequality

1
N2

∑

1≤i 6=j≤N

(E[(‖∇·G(yi(·))‖2‖∇·G(yj(·))‖2)]) 1
2 (E[(‖dN

i (·)‖‖dN
j (·)‖)2]) 1

2

≤ ‖G‖2H
1

N2

∑

1≤i 6=j≤N

DiDj

where Di = (E[‖di(·)‖4]) 1
4 for all 1 ≤ i ≤ N . These norms are bounded. We use

again Doob’s inequality (5.8) and Proposition 8 to ensure uniformity in both N

and i. Finally

lim sup
N→∞

E

[
1√
N

N∑
1

(G(yN
i (·)− 〈G〉Q)

]2

≤ E[G2 − (E[G])2] ≤ 2‖G‖2H

due to the central limit theorem variance for independent random variables. The

last two bounds provide an upper bound of the form C · ‖G‖2H with the constant

independent from N and G. This concludes the proof of the proposition. ¤

Proposition 10. Let {ξN}N>0 be a family of random fields on C1
b (Ω) defined in

(2.11) and q(·, ·) ∈ B(H(Ω, Q)) be the bilinear form (2.12). Then, for any pair

FS , GS ∈ S(Ω)

(i) (FS , ξN ) and (GS , ξN ) converge weakly to mean zero normal random variables

with covariance q(FS − 〈FS〉Q, GS − 〈GS〉Q)
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(ii) limN→∞E[(FS , ξN )(GS , ξN )] = q(FS − 〈FS〉Q, GS − 〈GS〉Q).

(iii) for any G ∈ C1
b (Ω), the sequence {(G, ξN )}N>0 is tight, and if F, G ∈ C1

b (Ω)

then the random variables (F, ξN ), (G, ξN ) converge weakly to centered Gaussians

with covariance q(F −〈F 〉Q, G−〈G〉Q). As a consequence, the unique limit ξ of the

sequence {ξN}N>0 is a centered Gaussian random field on H(Ω, Q) with the same

covariance.

Proof of Proposition 10: Proposition 6 and Theorem 4 show that the sequence

{(GS , ξN )}N>0 converges weakly to a centered normal random variable Z(GS).

Moreover, Z(GS) has variance equal to q(GS − 〈GS〉Q, GS − 〈GS〉Q). This proves

(i) and (ii).

Let l ∈ Z+. Theorem 5 and Proposition 7 indicate that for any G ∈ C1
b (Ω) we

can choose the appropriate GS
ε for ε = 1

l , which we shall denote by GS
l , such that

(5.10) ‖G−GS
l ‖2H ≤

1
l

.

Equation (5.10) implies that liml→∞ ‖GS
l −G‖H = 0, which also guarantees that GS

l

are uniformly square integrable, hence the sequence of centered Gaussian random

variables {Z(GS
l )}l∈Z+ is tight. Let ZS(G) be a limit point. This has to be a

centered Gaussian (we can look at the characteristic function of the Gaussians)

and its variance will be (see [15])

(5.11) σ2(ZS(G)) = lim
l→∞

q(GS
l − 〈GS

l 〉Q, GS
l − 〈GS

l 〉Q) = q(G− 〈G〉Q, G− 〈G〉Q) .

We already know from (5.7) that {(G, ξN )}N>0 is tight as well. Let Z(G) be a

limit point of {(G, ξN )}N>0. We can restrict ourselves without loss of generality to

subsequences of {l} and {N} such that Z(GS
l ) ⇒ ZS(G) and (G, ξN ) ⇒ Z(G).

For α ∈ R we consider

(5.12) |E[e−iαZS(G)]− E[e−iαZ(G)]| ≤

(5.13)

|E[e−iαZS(G)]− E[e−iαZ(GS
l )]| + |E[e−iαZ(GS

l )]− E[e−iα(GS
l ,ξN )]|

+ |E[e−iα(GS
l ,ξN )]− E[e−iα(G,ξN )]| + |E[e−iα(G,ξN )]− E[e−iαZ(G)]| .

The third term in (5.13) has the upper bounds

|E[e−iα(GS
l ,ξN )]− E[e−iα(G,ξN )]| ≤ E[|e−iα(G−GS

l ,ξN ) − 1|]

≤ 2E[sin
( (G−GS

l , ξN )
2

)
] ≤ E[|(G−GS

l , ξN )|] ≤ E[|(G−GS
l , ξN )|2] 1

2 .
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If we let N →∞ we obtain that (5.12) is less than

|E[e−iαZS(G)]− E[e−iαZ(GS
l )]|+

√
C‖G−GS

l ‖H

where C is the constant in (5.7). We obtain that E[e−iαZS(G)] = E[e−iαZ(G)] after

l →∞. The left hand term is the Fourier transform of a centered Gaussian, which

proves that the right hand side is a centered Gaussian as well for any limit point

of (G, ξN )N>0 and any G ∈ C1
b (Ω). On the other hand, we have shown that Z(G)

has the same distribution as ZS(G), a weak limit of Gaussians Z(GS
l ) as l → ∞,

which implies that the variance of the limit is the limit of the variances (5.11). We

can repeat this reasoning for G = c1G1 + c2G2 with arbitrary constants c1, c2 and

G1, G2 ∈ C1
b (Ω) and conclude the proof by polarization. ¤

Proof of Theorem 3. We only have to apply Proposition 10 to the random fields

{ξN}N>0 from Theorem 2 from Section 4. ¤

6. Appendix

Proof of Theorem 1: In this case simple product functions are sufficient to prove

the theorem. We may choose them in S(Ω) without any loss of generality. We shall

proceed by induction on the number m of time marginals present in G. For m = 1

the martingale part vanishes as N → ∞ in Itô formula. The integrand of the dt

term is uniformly bounded by the supremum norm of ∂2G. The error terms have

bounds of order inferior to N−1, as prescribed by (4.9). This implies the tightness.

Any limit point will be deterministic, since the martingale part vanishes as N →∞
and we can easily check that it must verify the same weak PDE (the heat equation)

as E[G(ω, t)]. The details of the proof of this type of result can be found, for

example, in [11] in Chapter 4, and also in [5]. The same reasoning applies when

we perform the induction step over m, since we are allowed to start over from an

arbitrary initial profile at time t′ = tm−1. We can pass to functions of Cb(Ω) class

due to the fact that

(6.1) lim sup
N→∞

E




∣∣∣∣∣
1
N

N∑

i=1

(G(zN
i (·))− 〈G〉Q)

∣∣∣∣∣

2

 ≤ 2(sup

ω∈Ω
|G(ω)|)2 .

This concludes the proof. ¤
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Lemma 3. For any G ∈ C(Ω) as in (2.4)

(6.2) lim
N→∞

E


 sup

t′≤t≤T

∣∣∣∣∣
1
N

N∑

i=1

(
G(zN

i , t))− 〈G(ω, t)〉Q
)∣∣∣∣∣

2

 = 0 .

Proof of Lemma 3: Because of (6.1), it is sufficient to prove the lemma for cylinder

functions G ∈ Scyl(Ω). We write G(ω(·)) = g(ω(t0), . . . , ω(tm)) with g in the

Schwartz class on Rm+1 and let tm be denoted by t and tm−1 by t′ for simplification.

With the convention of notation from (2.4), we first establish (6.2) for a fixed

time t ∈ [t′, T ]. This is a consequence of the inductive proof from Theorem 1.

Since the test function is uniformly bounded and the quadratic variation of the

martingale part vanishes as N →∞ we can adapt the same argument by squaring

the differences and show (6.2) for every fixed time. In order to prove uniformity,

assume that there is a sequence of times such that the absolute value in (6.2) exceeds

a constant c > 0. Since the interval [0, T ] is compact, there is a subsequence of

times converging to some t′′ ∈ [0, T ]. However, the functionals are continuous in

time at t′′ and G(ω, t) approaches the value at t′′ according to the estimate

lim sup
N→∞

E




∣∣∣∣∣
1
N

N∑

i=1

(
G(zN

i , t))− 〈G(ω, t)〉Q
)− 1

N

N∑

i=1

(
G(zN

i , t′′))− 〈G(ω, t′′)〉Q
)
∣∣∣∣∣

2



≤ 2 lim sup
N→∞

{
sup

x̄
|∂G|2E

[
1
N

N∑

i=1

|zN
i (t)− zN

i (t′′)|2
]

+ 2Tσ2c1(G)|t− t′′|
}

≤ c2(G, T )σ2|t− t′′| .
The error is independent of N and of the order of magnitude of t− t′′ . The error

obtained is arbitrarily small, a contradiction with the fact that the absolute value

in (6.2) exceeds a constant c > 0. This concludes the proof. ¤

Proof of Theorem 5: Let m ∈ Z+. The mapping Tm : Ω −→ Ω is defined

for each ω as the new continuous path obtained by linear interpolation between

the values ω(ti), for all 0 ≤ i ≤ m, at the points ti = iT
m . It follows that Tm is

linear and continuous with ‖Tm‖ ≤ 1 in the supremum norm. Since Tm is linear

and continuous it is differentiable and ∇ηTmω = Tmη. We shall define the finite-

dimensional norm on ω ∈ Ω as

(6.3) ‖ω‖m = max
0≤i≤m

|ω(ti)|

Any compact set in Ω is uniformly bounded and equicontinuous by Arzelà -

Ascoli theorem as in [3]. We can assume that |ω(t)| ≤ M for all t ∈ [0, T ] and all
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ω ∈ K. The fact that G ∈ C1
b (Ω) (Definition 1) and K is a compact in Ω implies

that for any ε > 0 there exists a δ = δ(ε) such that

|G(ω)−G(ω′)|+ ‖∇·G(ω)−∇·G(ω′)‖ < ε

if ω′(·) and ω(·) are in K and sup0≤t≤T |ω(t) − ω′(t)| < 3δ. We are free to choose

δ < min( ε
2 , ε

‖G‖
C1

b

). For any δ > 0 there exists an m ∈ Z+ such that

(6.4) |t− s| < 1
m
⇒ |ω(t)− ω(s)| < δ

uniformly in ω ∈ K.

For ε > 0 we shall choose a covering K ⊆ ∪ω∈KB(ω, δ) of the compact K with

balls of radius δ = δ(ε) in the uniform norm topology of Ω and extract a finite

subcovering with centers at ωj(·), j ∈ Jε, where Jε is a finite set depending only on

K and ε. For every x̄ = (x0, x1, . . . , xm) ∈ Rm+1 we determine the path ωx̄ as the

linear interpolation between the values (for 0 ≤ i ≤ m), that is ωx̄(ti) = xi. Let

Kx
δ,j = {x̄ : ‖ωx̄ − ωj‖m ≤ δ} be the Rm+1 - cube of size 2δ and Kx

δ = ∪j∈JεK
x
δ,j .

We shall construct a function gε(x̄) on Rm+1 by piecing together the following

mappings. For m as in (6.4) and j ∈ Jε, let

(6.5) gm,j(x̄) = G(ωj) +∇Tm(ωx̄−ωj)G(ωj)

on each Rm+1 - cube Kx
δ,j and zero everywhere else. Then, we define

(6.6) gε(x̄) = gm,j(x̄) if ‖ωx̄ − ωj‖m = min
j′∈Jε

‖ωx̄ − ωj′‖m

with the understanding that if a point falls on the hypersurface where two or more

indices achieve the maximum we select the smaller index j′. This fact will not

affect the construction due to the mollification we do next. The function gε(x̄) is

piecewise smooth and uniformly bounded by

|gm,j(x̄)| ≤ sup
ω∈Ω

|G(ω)|+ sup
ω∈Ω

‖∇·G(ω)‖δ ≤ ‖G‖C1
b
.

The gradient of gε(x̄) can only be one of the linear mappings on Rm+1 from

the finite family of bounded linear operators ∇Tm(ωx̄−ωj)G(ωj). They are natu-

rally bounded in the supremum norm of continuous linear operators on Rm+1 by

supω∈Ω ‖∇·G(ω)‖. One can write that

(6.7) sup
x̄∈Rm+1

(|gε(x̄)|+ ‖∇gε(x̄)‖) ≤ sup
ω∈Ω

|G(ω)|+ 2‖∇·G(ω)‖
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wherever the gradient is defined and note that supp(gε(x̄)) is a compact included

in Kx
δ ⊆ [−M − 1,M + 1]m+1 in Rm+1.

For an arbitrary ρ > 0 we can construct a regularized version of gε(x̄) by convolu-

tion with φm,ρ(x̄) = ρ−m−1φ(ρ−1‖(x̄)‖Rm+1) where φ(x) = k0 exp ( 1
x2−1 ) if |x| < 1

and identically zero outside the unit interval and ‖ · ‖Rm+1 is the Euclidian norm

on Rm+1. The constant k0 normalizes φ(x) so that the integral equals one. Let

(6.8) gS
ε (x̄) = (gε ∗ φm,ρ)(x̄) .

We choose ρ = ρ(ε) < δ
2 to make sure that the function gε(x̄) vanishes outside the

compact Kx
2δ ⊆ Rm+1. We shall use the observation that the convolution with φm,ρ

is a contraction in the following sense. If g(x̄) is a piecewise smooth function on

Rm+1 and gS(x̄) = (g ∗ φm,ρ)(x̄) then, for any pair of points x̄′ and x̄′′ from Rm+1,

(6.9) |gS(x̄′)− gS(x̄′′)| ≤ sup
ȳ′∈B(x̄′,ρ),ȳ′′∈B(x̄′′,ρ)

|g(ȳ′)− g(ȳ′′)|

and

(6.10) ‖∇gS(x̄′)−∇gS(x̄′′)‖ ≤ sup
ȳ′∈B(x̄′,ρ),ȳ′′∈B(x̄′′,ρ)

‖∇g(ȳ′)−∇g(ȳ′′)‖ .

This property equally allows us to estimate both

|gS(x̄)| ≤ sup
ȳ∈B(x̄,ρ)

|g(ȳ)| , ‖∇gS(x̄)‖ ≤ sup
ȳ∈B(x̄,ρ)

‖∇g(ȳ)‖ .

We define

(6.11) G̃S
ε (ω) = gS

ε (ω(t0), . . . , ω(tm)) .

The function gS
ε is of Schwartz class on Rm+1 but not of cylinder type. Any such

function can be approximated uniformly including its derivatives on any compact

by a linear combination of cylinder-type functions of Schwartz class. We shall show

this fact at the end of the proof. The norm ‖ω‖m determines a family of sets

Bm(ωj , δ) = {ω : ‖ω − ωj‖m ≤ δ} (not proper balls in Ω). We have to estimate

the differences

sup
ω∈K

|G̃S
ε (ω)−G(ω)| ≤

≤ max
j∈Jδ

{
sup

ω∈Bm(ωj ,δ)∩K

|G̃S
ε (ω)− G̃S

ε (ωj)|+ |G̃S
ε (ωj)−G(ωj)|+

+ sup
ω∈Bm(ωj ,δ)∩K

|G(ωj)−G(ω)|
}

and

sup
ω∈K

‖∇·G̃S
ε (ω)−∇·G(ω)‖ ≤
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max
j∈Jδ

{
sup

ω∈Bm(ωj ,δ)∩K

‖∇·G̃S
ε (ω)−∇·G(ωj)‖+ ‖∇·G̃S

ε (ωj)−∇·G(ωj)‖+

+ sup
ω∈Bm(ωj ,δ)∩K

‖∇·G(ωj)−∇·G(ω)‖
}

where we always choose to place ω in the ball Bm(ωj , δ) for which the center is

the closest element from ω among the finite collection of points ωj ∈ Jε. The

uniform continuity on K guarantees that the third terms on the right hand side

of both inequalities are of order ε. To estimate the differences |G̃S
ε (ωj) − G(ωj)|

and ‖∇·G̃S
ε (ωj) − ∇·G(ωj)‖ we need to look at the values of gε(x̄) and ∇gε(x̄)

in a neighborhood Kx
δ,j′ , j′ ∈ Jε and compare to the values at ωj . The values

of gS
ε (ωj) are the result of convolution with φm,ρ of values of gε for some x̄ with

‖ωx̄ − ωj‖m < ρ. The worst case scenario is that the value of gε at x̄ is a value of

gm,j′ on an adjacent ball Kx
δ,j′ to Kx

δ,j (this fact grants that ‖ωj−ωj′‖m < 2δ < 3δ)

and then |G̃S
ε (ωj)−G(ωj)| ≤ |gm,j′(x̄)−G(ωj′)|+ |G(ωj′)−G(ωj)| which is of order

ε by construction. The same is valid for ‖∇·G̃S
ε (ωj)−∇·G(ωj)‖, bounded above by

sup
x̄∈Kx

δ,j′
‖∇·gm,j′(x̄)−∇·G(ωj′)‖+ ‖∇·G(ωj′)−∇·G(ωj)‖ ,

of order ε as well.

We need to estimate the first terms on the right hand side of the inequalities.

|G̃S
ε (ω)−G̃S

ε (ωj)| and ‖∇·G̃S
ε (ω)−∇·G̃S

ε (ωj)‖ are bounded above by the supremum

value of the differences |gε(x̄′) − gε(x̄′′)| and ‖∇·gε(x̄′) − ∇·gε(x̄′′)‖, respectively,

where ‖ωx̄′ − ω‖m ≤ ρ and ‖ωx̄′′ − ωj‖m ≤ ρ. Assume the value at x̄′ is given by

gm,j′ on a ball Kx
δ,j′ and the value at x̄′′ is given by gm,j′′ on a ball Kx

δ,j′′ . At this

point we intercalate the values of the functions at ωj′ , ωj and ωj′′ . The differences

between values in the same domain Kx
δ,l, for any l ∈ Jε are of order ε. We only

have to compare the values at ωj′ and ωj′′ with ωj . The distance between ωj′′ and

ωj is less than δ + ρ. First,

‖ωj′′ − ωj‖m ≤ sup
x̄∈Kx

δ,j′′
‖ωj′′ − ωx̄′′‖m + ‖ωx̄′′ − ωj‖m ≤ δ + ρ < 3δ

which implies that the error is of order ε. We know that ωj is the closest of all

ωl, with l ∈ Jε from ω. Hence ‖ω − ωj‖m ≤ ‖ω − ωj′‖m. In the same time

‖ω−ωx̄′‖m ≤ ρ and ‖ωx̄′ −ωj′‖m ≤ δ. We conclude that ‖ω−ωj′‖m ≤ δ +ρ which

implies that ‖ωj′−ωj‖m ≤ 2δ+2ρ < 3δ. The difference will be of order ε once again.

We obtained a function GS
ε (ω) = gS

ε (ω(t0), . . . , ω(tm)) where gS
ε (x̄) ∈ C∞0 (Rm+1)

within distance Cε from G inside the compact K in the uniform norm, where C is
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independent from G and K, and bounded by 2‖G‖C1
b
. The number m depends on

ε and the compact K.

We still have to prove that we can approximate G̃S
ε with a function G ∈ S(Ω). For

a given ε and a compact K, the function gS
ε (x̄) and m are fixed. The function gS

ε

has support included in the compact [−M−1,M +1]m+1 ⊆ (−M−3,M +3)m+1 ⊆
Rm+1. Let K ′ = [−M − 2,M +2]m+1. It is known (for example from [10]) that for

any r ∈ Z+, a function f ∈ Cr(Rm+1) and all its derivatives can be approximated

uniformly on any compact with polynomials in Rm+1. The class of polynomials is of

cylinder type, in the sense that it is the linear span of products of functions (in this

case, polynomials of one variable) of the variables x0, x1, . . . , xm. The problem is

that these functions are not of Schwartz class. The indicator function of the compact

K ′ is the product of the indicator functions of the interval [−M − 2,M + 2], hence

of cylinder type. The product of the indicator functions with each polynomial will

be of cylinder type. We can consider the convolution with φm,ρ(x̄), with ρ < 1
2 .

Let ε′ be the accuracy of the approximation in the supremum norm. The function

φm,ρ(x̄) is of cylinder type as well. A consequence of this will be that the result

of the convolution will be of class C∞0 (Rm+1), will be of cylinder type (as the

convolution of two cylinder type functions, that is for which the variables decouple

in the convolution integral), and will stay within distance ε′ uniformly together

with all the derivatives.

We choose ε′ = ε
m+1 and let hε′(x̄) be the sum of cylinder functions with compact

support approximating gS
ε (x̄). The function GS

ε (ω) = hε′(ω(t0), . . . , ω(tm)) is in

S(Ω) and |GS
ε (ω)− G̃S

ε (ω)| ≤ ε′ < ε. We conclude the proof by noticing that

‖∇·GS
ε (ω)−∇·G̃S

ε (ω)‖ ≤
∑

0≤i≤m

sup
x̄∈Rm+1

‖∂xihε′(x̄)−∇xig
S
ε (x̄)‖ ≤ (m+1)ε′ = ε . ¤

Proof of Lemma 1: We can re-write the matrix V N = (V N
ij ) as

(6.12) V N
ii = σ2 +

cN
i (σ)√

N
with max

1≤i≤N
|cN

i (σ)| ≤ cN (σ)

and

(6.13) V N
ij =

γσ2

N
+

cN
ij (γ)
N

with max
1≤i,j≤N

|cN
ij (γ)| ≤ cN (γ)

where limN→∞(cN (σ) + cN (γ)) = 0.
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We first prove the positive definiteness. Let x̄ = (x1, x2, . . . , xN ) be an arbitrary

N dimensional vector. If S =
∑

1≤i≤N xi

(x̄, V N x̄) =
∑

1≤i,j≤N

V N
ij xixj =

∑

1≤i≤N

(
Viixi +

∑

j 6=i

Vijxj

)
xi

=
∑

1≤i≤N

(
σ2 +

cN
i (σ)√

N

)
x2

i +
∑

1≤i,j≤N,j 6=i

(γσ2

N
+

cN
ij (γ)
N

)
xjxi =

(6.14) σ2
( ∑

1≤i≤N

x2
i +

γ

N
(S − xi)xi

)
+

(6.15)
∑

1≤i≤N

cN
i (σ)√

N
x2

i +
∑

1≤i,j≤N,i 6=j

cN
ij (γ)
N

xjxi .

We can bound (6.15) in absolute norm by

‖x̄‖2
[(cN (σ)√

N
+

cN (γ)
N

)
+ cN (γ)

( (
∑

1≤i≤N |xi|)2
N‖x̄‖2

)]

while this can be bounded above by Schwarz’s inequality

(6.16) ‖x̄‖2
[cN (σ)√

N
+ cN (γ)(1 +

1
N

)
]
∼ o(1) .

The main term (6.14) is zero if ‖x‖ = 0, but otherwise it is equal to

σ2
(
1− γ

N

)
‖x̄‖2 +

γσ2

N
S2 = σ2‖x̄‖2

(
(1− γ

N
) + γ

S2

N‖x̄‖2
)

.

If γ ≥ 0 a lower bound is σ2‖x̄‖2
(
1 − γ

N

)
of order O(1) and if γ < 0 we can

use Schwarz’s inequality again and obtain the lower bound σ2‖x̄‖2
(
1 + γ − γ

N

)
.

This proves that (x̄, V N x̄) ≥ σ2‖x̄‖2C ′ with C ′ > 0 independent of N . The only

condition needed to ensure a lower bound uniformly in N is γ > −1.

We proceed to the proof of the existence of {wN
i }1≤i≤N . We first write {vN

i }1≤i≤N

in an orthonormal basis {ei}1≤i≤N with the matrix R = (rkl) such that vi =
∑

1≤k≤N rikek. With this notation V = RR∗ and since RR∗ = (
√

V )2 and we have

already shown that V is positive definite, there exists a unitary matrix U = (ukl)

defined directly by U =
√

V
−1

R. We write R =
√

V U . Let

(6.17) wi = σ
∑

1≤k≤N

uikek .
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We have to show that the elements of the diagonal of (R − σU)(R − σU)∗ are

uniformly bounded by a constant of order O(N−1). Since (R−σU) can be written

as σ(σ−1
√

V − I)U we have

|((σ−1
√

V − I)UU∗(σ−1
√

V − I)ei, ei)| = ‖(σ−1
√

V − I)ei‖2 ≤ ‖(σ−2V − I)ei‖2

by contraction. To see this, we denote yi = (σ−1
√

V − I)ei for all 1 ≤ i ≤ N and

A = σ−1
√

V + I. The positive definiteness of V implies that A−1 is a contraction.

If (δij) denotes the unit matrix, the bound for the diagonal term of R− σU is

‖(V − σ2I)ei‖2 =
∑

1≤k≤N

(Vik − σ2δik)2 .

We recall that the diagonal term is of order O(N−1/2) and all the non-diagonal

terms are of order O(N−1), uniformly over the set of indices 1 ≤ i, j ≤ N . This

concludes the proof. ¤
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