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Abstract. A scaled version of the general AIMD model of transmission control protocol

(TCP) used in internet traffic congestion management leads to a Markov process x(t)

representing the time dependent data flow that moves forward with constant speed on

the positive axis and jumps backwards to γx(t), 0 < γ < 1 according to a Poisson clock

whose rate α(x) depends on the interval swept in between jumps. We give sharp condi-

tions for Harris recurrence and analyze the convergence to equilibrium on multiple scales

(polynomial, fractional exponential, exponential) identifying the critical case xα(x) ∼ β.

Criticality has different behavor according to whether it occurs at the origin or infinity.

In each case we determine the transient (possibly explosive), null- and positive - recurrent

regimes by comparing β to (− ln γ)−1.

1. Introduction

Let (Ω,Σ, P ) be a probability space and {x(t)}t≥0 a stochastic process adapted to the

filtration {Ft}t≥0 on Σ. In the following we study the time-homogeneous one particle

process {x(t)}t≥0 with state space (0,∞) solving the martingale problem with generator

(B,D)

(1.1) Bφ(x) = φ′(x) + α(x)(φ(γx)− φ(x)) , φ ∈ D = C1
b ((0,∞)) ,

where γ ∈ (0, 1), Ckb ((0,∞)) is the space of functions with k continuous derivatives up to

the boundary of (0,∞), and α(x) is a measurable, nonegative function.

This simple dynamics is the scaled version [9, 15, 11, 6] of an additive increase multi-

plicative decrease (AIMD) process modeling the traffic flow in internet congestion control
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[2, 7, 8, 1, 11, 3]. For a recent approach, a primer on the model and biography we men-

tion [3]. Besides its original formulation introduced in [2], the model has applications in

questions of distributed resource allocation [16].

Even though we have been introduced to the subject by [7, 8] our approach lies towards

the pure spectrum of applied mathematics, with emphasis on the critical threshold for

recurrence and the analysis of the speed of convergence to equilibrium in sub-exponential

regimes.

Let τ ′i , i = 0, 1, . . . be a non-decreasing sequence of random times representing the loss

events (when packets of data are lost). Between two consecutive loss events (jumps) τ ′i−1 ≤
t < τ ′i , the transmission rate (also known as congestion window or cwnd) x(t) increases at

constant speed one. Once the volume
∫ t
τ ′i−1

α(x(s))ds reaches a random quantity χi > 0

as t ↑ τ ′i , the rate falls back to γx(τ ′i−). This mechanism leads to the construction of a

Markov process based on a sequence of i.i.d. exponential r.v. χ1, χ2, . . . corresponding to

the inter-arrival times of a Poisson process with intensity one. Starting at x(0) = x > 0,

let w′1, w
′
2, . . . be the actual holding times of the process and τ ′0 = 0, τ ′1, τ

′
2, . . . be the actual

jump times of x(t). More precisely, take w′0 = 0 and for j ≥ 1,

(1.2) τ ′j = inf{t > τ ′j−1 |χj <
∫ t

τ ′j−1

α(x(s))ds} , w′j = τ ′j − τ ′j−1 ,

with the infimum over the empty set equal to +∞. Let’s denote x0 = x and xj = x(τ ′j)

the position of the process right after the j-th jump. In the interval s ∈ [τ ′j−1, τ
′
j), x(s) =

xj−1 + (s− τ ′j−1), which gives, for j ≥ 1,

(1.3) xj = γ(xj−1 + w′j) ,

∫ xj−1+w
′
j

xj−1

α(z) dz = χj

and

(1.4) xj = γjx+

j−1∑
k=0

γk+1w′j−k .

Naturally, in applications, the problem is interesting when α(x) > 0 for sufficiently large

x. On the patches where α(x) vanishes, the particle moves deterministically at rate one,

eventually reaching the support of α(x). Without loss of generality we shall assume that

α(x) does not vanish in a neighborhood of the origin. When α(x) = 1−1[γa,a](x), any state

x < γa is transient. Additionally, if the integral is infinite over over a bounded interval, no

larger values are ever reached.
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To prevent such behavior, the rate function α : (0,∞)→ R will be assumed nonnegative,

locally integrable and bounded away from zero on any compact set. For any 0 < a < b

(1.5) (i) α0([a, b]) := inf
x∈[a,b]

α(x) > 0 , (ii)

∫ b

a
α(x)dx <∞ .

These bounds are essentially irreducibility conditions.

Under (1.5)(ii), we denote A(x) =
∫ x
1 α(z)dz, where the point z = 1 is chosen for

convenience only and we note that A(x) is continuous and increasing.

Integrability is captured by one of the limits

(1.6) (i) lim
x→0+

A(x) > −∞ , (ii) lim
x→∞

A(x) = +∞ .

We shall say that α(x) satisfies the growth condition at zero if if there exists b0 > 0 such

that

(1.7) µ+ = sup
x≤b0
{A(x)−A(γx)} < 1 .

and that α(x) satisfies the growth condition at infinity if there exists a0 > 0 such that

(1.8) µ− = inf
x≥a0
{A(x)−A(γx)} > 1 .

Since the function A(x) is nondecreasing, we have the implications

(1.6) (i) ⇒ (1.7) and (1.8) ⇒ (1.6) (ii) .

Theorem 1 (the most general result) requires the milder conditions (1.7) and (1.6) (ii),

while Theorem 2 (main result) requires the more stringent (1.6) (i) and (1.8).

As expected, the conditions at zero say that the rate α(x) cannot be too large when x

is small, otherwise the process would undergo many jumps backwards in the neighborhood

of zero, and drift to this endpoint, or even have infinitely many jumps in finite time, called

explosion (the transition functions are defective). At +∞, the conditions require that α(x)

be not too small, otherwise allowing the process to wander away to infinity, or have only a

finite number of jumps.

Examples of locally integrable functions satisfying (1.5 (i)) - (1.8) are given by either of

the following:

(i) α(x) nondecreasing, finite and strictly positive on (0,∞);

(ii) α(x) continuous, positive and bounded away from zero at infinity;

(iii) α(x) ∼ xp at both zero and infinity, when p > −1;
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(iv) α(x) integrable at zero and α(x) ∼ βx−1, β > 0 as x → ∞, with β > β∗, where β∗

is a critical value depending on α(x) separating two recurrence regimes within the critical

case with exponent p∗ = −1 (see Theorem 2).

It is to be noted that α(0+) may be infinite (−1 < p < 0), constant (p = 0), and zero

(p > 0).

Explicit calculations for power law function α(x) with p ≥ 0 are done in [1]. Due to

homogeneity, the transformation y(t) = A(x(t)) brings down the invariant measure to the

case α = constant. Even though [3] studies a nonlinear (AINMD) model, in which the

back-off function (giving the multiplicative decrease position after jump) γ(x) 6= γ · x is

non-linear, the present discussion can be largely extrapolated because, in applications, γ(x)

is assumed Lipschitz continuous.

The growth rate (1.8) appears naturally as a Lyapunov - type condition for recurrence.

It is easy to see that when α(x) is continuous, (1.8) guarantees that A(x(t)), stopped as

soon as it reaches a value below a0, is a super-martingale. The example α(x) = βx−1 as

x → ∞ from Theorem 4 shows that it is also a sharp recurrence condition, in the sense

that for β < (− ln γ)−1 the process is transient.

The divergence/convergence of the integral at infinity also gives a sharp phase transition,

this time for having an infinite/finite number of jumps. As soon as α(x) ∼ xp, p < −1, for

x → ∞, with positive probability, the process will undergo only a finite number of jumps,

and will drift to infinity at speed one after that.

Under stronger conditions like 0 < α0 ≤ α(x) ≤ ||α|| <∞, all main results on exponential

ergodicity, including the existence of a bounded density for the invariant measure, can be

obtained [10] by coupling with a process with constant rate α.

We found useful to provide a brief summary of the local Doeblin theory for continuous

time Markov processes on general state spaces in Section 6, based mainly on [4], [12] and,

to a lesser extent on [5, 13, 14].

We are ready to introduce the main results of the paper. The Lebesgue measure on

(0,∞) is denoted by l(dx) and recurrence means l(dx) - Harris recurrence in the sense of

[14, 12].

Theorem 1. Assume α(x) satisfies (1.5) (ii). With probability one

(i) if α(x) satisfies (1.6) (ii), then there are infinitely many jumps and
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(ii) if, in addition, α(x) satisfies (1.7), then limn→∞ τ
′
n = +∞, i.e. the process is non-

explosive.

Proof. The proof is contained in Subsection 2.1. �

Theorem 2. Assume (1.5), (1.7) and (1.8) are satisfied. Then, the process with generator

(1.1) is l(dx) - Harris recurrent. If we replace (1.7) with the stronger condition (1.6)(i),

then the process satisfies the local Doeblin condition for an attractive small set that may

be chosen equal to a closed interval. In addition, (ii) there exists β∗ > 0 such that if

xα(x) ≥ β∗ for all sufficiently large x, then the process is positive recurrent, and (iii) if

α(x) is bounded away from zero as x→∞, then the process is exponentially ergodic.

Remark. We note that (− ln γ)−1 ≤ β∗ ≤ 2(1− γ)−1, where β∗ is defined in( 5.7).

The next theorem analyzes the case of α(x) on an intermediate scale. We note that the

power law with p ≥ 0 is covered by Theorem 2 (iii).

Theorem 3. Assume (1.5), (1.6)(i) and that there exists β > 0, a1 > 0 and p ∈ (−1, 0)

such that α(x) ≥ βxp for all x ≥ a1. Then, Theorem 2 (i) is satisfied and for sufficiently

large a′, the fractional exponential moments of τ(0,a′] are uniformly bounded, i.e. (5.3) is

true for B(t) = exp(tr), r ∈ [0, 1 + p), and if β is sufficiently large, the moments extend to

the value 1 + p. The power law is sharp in the sense that when α(x) = xp, p ∈ (−1, 0) as

x→∞, τ(0,a′] has no finite exponential moment for any a′ > 0.

Remark. It is immediate that in this case, convergence to the invariant measure is

stronger than polynomial of any order, but not exponential.

Proof. The proof is in Subsection 5.2. �

As suggested by Theorem 2 (ii), the power law with exponent p∗ = −1 is critical. On this

scale, the critical value is not the exponent, but β = (− ln γ)−1, giving rise to two layers

of criticality. Theorem 4 makes this precise: The rate function α(x) = βx−1 generates a

process that can be transient, recurrent or positively recurrent for different ranges of β > 0.

We say that α(x) is critical at infinity (at zero) if there exist β > 0, a1 > 0 such that

α(x) = βx−1 for all x ≥ a1 (x ≤ a1). We notice that condition (1.8) when α(x) is critical at

infinity is equivalent to β > (− ln γ)−1, while (1.7) when α(x) is critical at zero is equivalent

to β < (− ln γ)−1.
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Theorem 4. a) Assume α(x) is critical at infinity and (1.5), (1.6) (i) are satisfied. Then

(i) the process (x(t)) is transient if β < (− ln γ)−1, recurrent if β ≥ (− ln γ)−1, and

x > a′, then

(ii) if β > (1− γ)−1, then Ex[τ(0,a′]] <∞ (positive recurrent).

(iii) if β ≤ (1− γ)−1, then Ex[τ(0,a′]] = +∞.

b) Assume α(x) is critical at zero and the growth condition at infinity (1.8) is satisfied.

Then the process (x(t)) is transient if β > (− ln γ)−1 and recurrent if β ≤ (− ln γ)−1.

Remarks. 1) An exact formula for Ex[τ(0,a′]] is given in (5.12). 2) In case a) it is relevant

that (− ln γ)−1 < (1 − γ)−1. Evidently in case b) (1.6) (i) is not satisfied. This gives a

nontrivial example when α(x) is not integrable at zero yet the process is non-explosive,

which is relevant for Theorem 1 (ii).

The exact critical case at both ends is the only theorem we prove in this section.

Theorem 5. If α(x) = βx−1, β > 0, for all x > 0, then the process is non-explosive

and transient if β < (− ln γ)−1, non-explosive and null recurrent if β = (− ln γ)−1, and

explosive converging in finite time to zero when β > (− ln γ)−1.

Proof. When α(x) = βx−1, the growth constants from (1.8),(1.7 ) are the same, µ− =

−β ln γ = µ+. The positions (xn) right after jump n can be mapped into a random walk

ln(xn), n ≥ 0 on the real line. One can see that from (1.3), ln(γ−1xn) − ln(xn−1) =

β−1χn, where (χn)n≥1 are i.i.d. mean one exponential times. It follows that xn =

x0γ
n exp(β−1

∑n
j=1 χj), the exponential of a random walk with increments β−1χ+ln γ, hav-

ing a drift equal to β−1(1−µ−), with critical value µ−1 = 1, or equivalently, β = (− ln γ)−1.

The actual holding time between jumps w′n = γ−1xn − xn−1 when starting at xn−1, is

equal to xn−1(exp(χn/β)−1). We note that for all β ∈ (0, 1] this time has infinite expected

value.

Even though the random walk always has infinitely many steps (corresponding to jumps),

the process x(t) might be explosive when infinitely many jumps occur in finite time, i.e.

the transition kernel does not integrate to one for all times t > 0. Explosion coincides with

the event that
∑

j≥1w
′
j <∞, which is equivalent to

∑
j≥1 xj <∞.

Using the root test with the formula of xn, via the law of large numbers, we can see

that in the supercritical case β > (− ln γ)−1 the process is explosive (infinitely many jumps
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towards zero in finite time) and in the subcritical case β < (− ln γ)−1 the process is not

explosive but drifts to +∞ almost surely.

In the critical case the process is non-explosive, since the series diverges a.s. (based

on the root test together with the law of the iterated logarithm) and the chain at (xn) is

null-recurrent. The process is also l(dx) - Harris recurrent based on Propositions 1 and

2. �

2. Regularity properties

2.1. Proof of Theorem 1. We shall show that for any n, the probability that there are

exactly n jumps is zero. This is equal to

Px(τ ′n+1 = +∞) = Px(w′n+1 = +∞) =

∫ ∞
0

Px(w′n+1 = +∞|x(τ ′n) = x′)P (x(τ ′n) ∈ dx′)

but the integrand is dominated by Px′(χn+1 = +∞) = 0 since A(+∞) = +∞, for any

possible x′ > 0, which proves (i).

To prove part (ii), we make the observation that x(t) ≤ t + x pathwise. With this in

mind, if there were infinitely many jumps before time T > 0, then we shall show that

limn→∞ xn = 0. Let c > T (1 − γ)−1 be a large but fixed number. We shall show the

statement for a starting point x ≤ c. Since c is arbitrary, this will prove (ii).

Suppose lim supn→∞ xn > 0.

Denote by Bm the event that the sequence xn would have infinitely many points greater

or equal to ε = 1/m, m ≥ 1, intersected with the event that there are infinitely many jumps

before time T . We want to show that Px(Bm) = 0 for all m, which would imply the desired

limit equals zero almost surely. Without loss of generality we may assume x ≥ 1/m for the

starting point x. Since m is fixed in the proof, to simplify notation, let Bm = B. On B, the

process returns to the set [ 1
m ,∞) infinitely many times before T . Let τ+ be the first such

time coming after the first jump τ ′1, i.e. τ+ = inf{t > τ ′1|x(t) ≥ 1
m}. By construction, on

B, τ+ ≤ T . Then B ⊆ θτ+B ∩ {τ+ ≤ T}, where θ is the shift operator on the path space.

By construction, x(τ+) either equals 1/m if x(τ ′1) < 1/m ≤ c or equals x1 = γ(x +

τ ′1) ≤ γ(c + T ) ≤ c if x(τ ′1) ≥ 1/m, where we used that c > T/(1 − γ). In both cases

x(τ+) ∈ [m−1, c].

Applying the strong Markov property we derive the upper bound

Px(B) = Ex[1B] ≤ Ex[Ex[θτ+1B · 1[0,T ](τ
+)|Fτ+ ]]
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≤ Ex[Ex(τ+)[1B]1[0,T ](τ
+)] ≤ sup

x′∈[m−1,c]

Px′(B)Px(τ+ ≤ T ) .

Notice that τ ′1 ≤ τ+, and thus the last factor in the inequality has upper bound Px(τ ′1 ≤ T ).

Since τ ′1 = w′1 and on [0, T ] the process cannot exceed x+ T by construction, we have

Px(τ ′1 ≤ T ) ≤ 1− e−(A(x+T )−A(x)) ≤ 1− e−(A(c+T )−A(
1
m
)) = p′ < 1 .

Taking the supremum on x ∈ [m−1, c] on the left hand side, we obtain supx∈[m−1,c] Px(B) =

0, which concludes the first step of the proof.

It remains to show that the event {limn→∞ xn = 0} has probability zero. We shall prove

the stronger statement that {lim supn→∞ xn ≤ γb0} has probability zero.

On this event, there exists a rank n′ depending on ω such that after τ ′n′ , the process

never exceeds b0, the threshold from (1.7). For n ≥ n′ we have the inequality A(γ−1xn)−
A(xn−1) = A(γ−1xn)−A(xn) +A(xn)−A(xn−1) ≤ µ+ +A(xn)−A(xn−1).

From A(γ−1xn)−A(xn−1) = χn, we see that

n∑
i=n′

χi ≤ nµ+ +A(xn)−A(xn′) ≤ (n− n′)µ+ +A(γb0)−A(xn′) a.s.

for sufficiently large n. It follows that

{lim sup
n→∞

xn ≤ γb0} ⊆ {lim sup
n→∞

∑n
j=1 χj

n
≤ µ+} ,

the last event being negligible by the law of large numbers.

3. Recurrence

The next results regard the recurrence of the process. In our case, Section 6 applies with

S = (0,∞) and φ(dx) the Lebesgue measure l(dx) on (0,∞). In the proof of Theorem 2

(subsection 5.1) we show that l(dx) is the maximal irreducibility measure ψ.

Proposition 1. Assume conditions (1.5) and (1.8). For any c > 0 and any x ∈ (0,∞),

Px(τ(0,c) < ∞) = Px(τ(0,c] < ∞) = 1. If c ≥ γ−1a0, where a0 is defined in (1.8), then

the number of jumps after which the process reaches (0, c) has an exponential moment.

Moreover, for any open set A in (0,∞), we have Px(τA <∞) > 0.

Proof. Step 1. We first prove the proposition for c > γ−1a0. To simplify notation, we put

a′ = γ−1a0 and τ0 = τ(0,a′). Pick an arbitrary ε > 0.
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Relation (1.3) implies

χj = A(γ−1xj)−A(xj−1) ≥ µ− +A(xj)−A(xj−1) .

On the event {τ0 > τ ′n}, the lower bound xj ≥ a0, 1 ≤ j ≤ n holds and thus
∑n

j=1 χj ≥
nµ− + A(γa0) − A(x0). If I(x) = x − 1 − lnx, x > 0, denotes the large deviations rate

function for the i.i.d. exponentials (χj), then

Px(τ0 > τ ′n) ≤ exp{−nI(
µ− + 1

2
)} , n ≥ n(x0) =

A(γa0)−A(x0)

µ− − 1
.

Using the Borel - Cantelli lemma this proves that τ0 is reached within a finite number of

jumps, with probability one. Moreover, the number of jumps necessary to reach a′ has a

finite exponential moment. Since τ ′n < +∞ a.s., we proved that τ0 is finite a.s..

Step 2. Let 0 < c ≤ a′ and c′ > a′ = γ−1a0. We choose a number w > 0 such that

γ(c′ + w) ≤ 1+γ
2 c′. This will ensure that if xn−1 ≤ c′, then xn ≤ 1+γ

2 c′ as soon as w′n ≤ w.

Notice that we need at most a finite number of jumps n′ = n′(c, c′) such that (1+γ2 )n
′
c′ < c.

We want to prove a lower bound of Px(τ(0,c) ≤ τ ′n′), uniform in x ∈ [c, c′]. A lower bound is

given by the probability of the event that all n ≤ n′ jumps before hitting (0, c) are occurring

after at most w waiting time. Due to the choice of w, the process has to stay in [c, c′] in

the meantime. If x ∈ [c, c′] and χ denotes a mean one exponential r.v., each such event has

probability equal to Px(A(x+ w)−A(x) > χ), which is bounded below by the probability

of the sub-event {χ < wα0([c, c
′])}, where α0(D) denotes the infimum of α(z) on the set D.

This has positive probability 1− exp(−wα0([c, c
′])) > 0, independent of x ∈ [c, c′].

An application of the strong Markov property for each consecutive jump gives the lower

bound

Px(τ(0,c) ≤ τ ′n′) ≥ (1− exp(−wα0([c, c
′])))n

′
= p0 > 0 ,

independent of x. Denote it by p0.

Since Px(τ0 = τ(0,c′) < ∞) = 1 for all x ∈ (0,∞) from Step 1, the strong Markov

property shows that the number of jumps needed to reach (0, c) is stochastically dominated

by a geometric r.v. with probability of success p0. This shows that τ(0,c) occurs after a

finite number of jumps with probability one. Finally, since τ ′n < +∞ a.s., we proved that

Px(τ(0,c) <∞) = 1, for all x ∈ (0,∞).

Step 3.
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Without loss of generality, we assume that A is an open interval (a, b) with 0 < a < b <

∞. If x < a, there is nothing to prove. Otherwise, pick c < min{a, x} = x. We know that

Px(τ(0,c) <∞) = 1.

Let w′ be the first holding time right after τ(0,c). Then

Px(τ(a,b) <∞) ≥ Px(τ(0,c) <∞, w′ > b) ≥ Ex[Px(τ(0,c))(w
′ > b)1τ(0,c)<∞]

≥ Ex[exp(−A(x(τ(0,c)) + b) +A(x(τ(0,c)))] ≥ exp(−A(b+ c) +A(γc)) > 0 .

�

Proposition 2. Assume conditions (1.5), (1.8) and (1.7) are satisfied. Let A be a Borel

set on (0,∞) with l(A) > 0. Then, for any x ∈ (0,∞), Px(
∫∞
0 1A(xt)dt = +∞) = 1.

Proof. In analogue manner to the proof of Proposition 1, when (1.7) is satisfied, the chain

(xn), when starting at x0 < γb0, is bounded below by a random walk that will reach

above γb0 with probability one. This implies that the process (xt) reaches above γb0 with

probability one. By construction, the only way backwards is by performing jumps and the

only way forwards is by continuous path motion. It then follows that the process must

reach, with probability one, any interval in [x0, γb0).

Since l(A) > 0, there exists a compact set K ⊆ A with l(K) > 0 and 0 < a < b < ∞
such that K ⊆ (a, b). Pick c < a such that 2c < min{a, γb0}.

According to Proposition 1, the process reaches (0, c) a.s. and since c < 2c < γb0, the

first paragraph from this proof, together with the strong Markov property applied at the

first hitting time of (0, c), show that from any starting point x, the process will reach the

interval [c, 2c) with probability one.

Step 1.

Starting with τ ′′0 = τ[c,2c), for i = 0, 1, 2, . . . we set

(3.1) σ′′i = inf{t > τ ′′i |x(t) ≥ γb0} , τ ′′i+1 = inf{t > τ ′′i |x(t) ∈ [c, 2c)} ,

with the convention that the infimum over the empty set equals +∞. The sequence (τ ′′i ) is

strictly increasing almost surely. Let τ ′c,i the first jump after τ ′′i . To say that (a, b) is never

reached, we must have that τ ′c,i− τ ′′i = w′c,i ≤ a for all i (any value greater than a− c would

be sufficient). This implies

(3.2) P (inf{t > τ ′′0 |x(t) ∈ (a, b)} = +∞) ≤ E[Π∞i=1Px(τ ′′i )(w
′
c,i ≤ a)] ,
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where we applied the strong Markov property for the right-hand side.

Since x(τ ′′i ) ∈ [c, 2c), we may consider the uniform upper bound

Px′(w
′
c,i ≤ a) = P (A(x′ + a)−A(x′) > χc,i)

(3.3) ≤ sup
x′∈[c,2c)

{1− e−(A(x′+a)−A(x′))} ≤ 1− e−
∫ a+2c
c α(z)dz < 1 ,

where χc,i is an exponential random variable of intensity one.

This proves that we can reach (a, b) from [c, 2c) almost surely.

Step 2.

Again, let τ0 = τ[c,2c). For i = 0, 1, 2, . . . we set

(3.4) σi = inf{t > τi |x(t) ∈ (a, b)} , τi+1 = inf{t > σi |x(t) ∈ [c, 2c)} ,

with the convention that the infimum over the empty set equals +∞. In view of the results

from the first paragraph of this proof, the event that all τi+1−σi <∞, i ≥ 0, has probability

one. We notice that for i ≥ 1, τi+1−τi > a−2c > 0, bounded below uniformly in i, showing

that limn→∞ τi = +∞ with probability one.

In addition, Step 1 of the proof showed that σi − τi < ∞ almost surely (for i = 0 and

any other i).

To finalize the proof, we observe that

{∫ ∞
τ0

1A(x(t))dt = +∞
}
⊇
{ ∞∑
i=0

∫ τi+1

τi

1A(x(t))dt = +∞
}
.(3.5)

The last event includes Ui− i.o., where Ui is the event that the first jump after each τi, with

initial position y = x(τi) ∈ [c, 2c), occurs at τi+w′, where w′ > b−y. Since these inclusions

provide a lower bound for the original event in (3.5), we want to show that Px(Ui−i.o.) = 1.

The complement will have zero probability if

sup
y∈[c,a]

Py(w
′ ≤ b− y) = sup

y∈[c,a]
{1− e−(A(b)−A(y))} ≤ 1− e−

∫ b
c α(z)dz < 1

in similar fashion to (3.3). It is important to notice that integrability at zero is not required.

�
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4. Small sets

Throughout this section, we assume (1.5), (1.8), and (1.6)(i) are satisfied. Due to (1.6)(i)

we shall assume A(0+) = 0 in this section. The next Proposition identifies a class of

attractive small sets (see Section 6).

Proposition 3. Any set F = (0, a′] with a′ > 0 is an attractive small set. More precisely,

Px(τF < ∞) = 1 for all x ∈ (0,∞) and there exists t > 0 and a closed interval I with

I ∩F 6= ∅ such that the probability density component ρ(t, x, y) of Px(x(t) ∈ dy) is bounded

away from zero on I, uniformly in x ∈ F .

Remark. It is immediate that I in the proposition is also a small set.

Proof. We shall use the same notations for the holding times and jump times as in the

proof of Propositions 1, 2 and Theorem 2. In the proof of Proposition 1 we showed that

Px(τ(0,a′) < ∞) = 1 for all x ∈ (0,∞). Having τ(0,a′] ≤ τ(0,a′), condition (i) in Definition 1

in Section 6 is satisfied for any set (0, a′].

Fix t > 0 such that t/a′ ∈ (γn(1− γ)−1, (1− γn)γ−1). The interval is properly defined if

γn < 1− γ, which is true for sufficiently large n. By construction, there exist two numbers

t2 > t1 > 0 such that t1 ≥ γna′ + γt and t2 < t (the second inequality has to be strict)

and I = [t1, t2] ∩ F 6= ∅. A possible choice is t1 = γna′ + γt and t2 = t − ε with small ε.

Consider q1 < q2 in I.

Pick a point x ∈ F = (0, a′]. We recall that τ ′n =
∑n

j=1w
′
j is the n-th jump time (1.2).

A lower bound of the probability that x(t) falls in the interval (q1, q2] is

(4.1) Px

(
q1 < x(t) ≤ q2

)
≥ Px

(
q1 < x(t) ≤ q2 , τ ′n ≤ t < τ ′n+1

)
by intersection with the event that there were exactly n jumps up to time t. Writing

x(t) = x(τ ′n) + (t− τ ′n), using formula (1.4) which says that x(τ ′n) = γnx+
∑n

j=1 γ
n+1−jw′j ,

the event on the right hand side of (4.1) is the intersection of

(4.2) Gn =
{
q1 < γnx+

n∑
j=1

γn+1−jw′j + (t−
n∑
j=1

w′j) ≤ q2
}

12



and Rn = {
∑n

j=1w
′
j ≤ t <

∑n+1
j=1 w

′
j}. The choice of the interval I makes the inequality∑n

j=1w
′
j ≤ t redundant. To see that, we re-write the left hand side of (4.2)

t >
n∑
j=1

(1− γn+1−j)w′j + q1 − γnx ≥ (1− γ)
n∑
j=1

w′j + (γna′ + γt)− γna′

and simplify. The remaining condition t <
∑n+1

j=1 w
′
j , written as w′n+1 > t −

∑n
j=1w

′
j , is

equivalent to

(4.3) χn+1 > A(x(τ ′n) + t−
n∑
j=1

w′j)−A(x(τ ′n)) .

Denote

(4.4) Yn =

n∑
j=1

(1− γn+1−j)w′j .

We note that the random variables Yj , j = 1, 2, ... also depend on the initial point x.

Inductively, from (4.9), one can see that the vector w′ = (w′1, . . . , w
′
n), and all τ ′i , 1 ≤

i ≤ n are given as deterministic functions of χ = (χ1, . . . , χn). This implies that χn+1 is

independent of w′ = (w′1, . . . , w
′
n).

Let’s denote the density functions of w′ = (w′1, . . . , w
′
n) and Yn by ρn(w′), respectively

gn(yn). The existence of these densities is proven in Propositions 4 and 5.

We recall that Gn = {q1 < t+ γnx− Yn ≤ q2}. On the interval I, the lower bound (4.1)

can be written as

(4.5)

∫
Gn

exp
{
−
(
A(x(τ ′n) + t−

n∑
j=1

w′j)−A(x(τ ′n))
)}
ρn(w′) dw′ .

On the event Gn, x(t) = x(τ ′n) + t−
∑n

j=1w
′
j < q2 ≤ t2. Then the exponential factor is

bounded below by exp(−A(t2)). Then (4.5) has lower bound

(4.6) exp(−A(t2))

∫
Gn

ρn(w′) dw′ = exp(−A(t2))

∫ −q1+γnx+t
−q2+γnx+t

gn(yn) dyn .

Due to the choice of t1 and t2, −q2 + γnx + t > t − t2 > 0 and −q1 + γnx + t ≤ t(1 − γ),

independently of x. Let’s choose b > 0 from Proposition 5 as b = max{a′, t2, t(1 − γ)}.
In that case let dn = infyn∈[t−t2,t(1−γ)] gn(yn), which is necessarily strictly positive from

Proposition 5.

Then

(4.7) Px

(
q1 < x(t) ≤ q2

)
≥ exp(−A(t2))dn(q2 − q1) .

13



Inequality (4.7) implies that the interval I is a small set for the process x(·), by taking the

lower bound probability measure equal to the uniform (normalized Lebesgue) measure on

I.

It remains to prove that gn(yn) exists and that dn > 0 does not depend on x, which is

done in Proposition 5. �

Proposition 4. The probability distribution of x(t) has a singular component before the

first jump and an absolutely continuous component after the first jump. More precisely, if

x ∈ (0,∞)

(4.8) Px(x(t) ∈ dy) = Px(τ ′1 > t)δx+t(dy) + ρ(t, x, y)dy ,

where

ρ(t, x, y) =

∞∑
n=1

ρn(t, x, y) , ρn(t, x, y) =
d

dy
Px(x(t) ∈ dy, τ ′n ≤ t < τ ′n+1) .

Proof. The first term of the formula is due to the uniform deterministic motion at speed

+1 until the first jump. Let A a measurable null set with respect to the Lebesgue measure

l(·). To prove the absolute continuity with respect to the Lebesgue measure of Px(x(t) ∈
dy, τ ′n ≤ t < τ ′n+1), n ≥ 1, in view of (1.4), we have the formula

(4.9) x(t) = x(τ ′n) + t− τ ′n = t+ γnx−
n−1∑
k=0

(1− γk+1)w′n−k .

when there are exactly n jumps before time t > 0 where n = 1, . . ..

Denote w′ = (w′1, . . . , w
′
n) and ` : Rn → Rn the invertible linear map with components

`1(w
′) = −

∑n−1
k=0(1− γk+1)w′n−k, `i(w

′) = w′i, 2 ≤ i ≤ n (if n = 1 only `1 is needed).

Then, if An = A− t− γnx, evidently with l(An) = 0

Px(x(t) ∈ A, τ ′n ≤ t < τ ′n+1) = Px(`1(w
′
1, . . . , w

′
n) ∈ An,

n∑
k=1

w′k ≤ t <
n+1∑
k=1

w′k)

≤ Px(`1(w
′
1, . . . , w

′
n) ∈ An) = Px(`(w′) ∈ An × Rn−1) = 0

as soon as w′ has a density, which is shown in Proposition 5. The summation ρ =
∑∞

n=1 ρn

is an integrable function, and thus a density, an immediate fact from the monotone conver-

gence theorem. �

The proof of Proposition 5 needs the following lemma.
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Lemma 1. Let V be a d - dimensional random variable and W be a one dimensional

nonnegative random variable, with joint density f(v, w) having the property that for any

b > 0, there exists a function k1(w) = kb1(w) such that f(w|V = v) ≥ k1(w) for all v ∈ Rd

and w ∈ (0, b]. Let F (v) be a nonnegative measurable function. Then, for all y ∈ (0, b], the

density function fY of Y = F (V ) +W satisfies

(4.10) fY (y) ≥
∫
F (v)≤y

k1(y − F (v))fV (v)dv .

Proof. First we fix b > 0. Then for any y ∈ (0, b],

fY (y) =

∫
F (v)≤y

f(v, y − F (v))dv =

∫
F (v)≤y

f(y − F (v)|V = v)fV (v)dv ≥
∫
F (v)≤y

k1(y − F (v))fV (v)dv ,

where we used the fact that both F (v) and W are nonnegative implies that y−F (v) belongs

to (0, b]. �

Proposition 5. The random variables w′ = (w′1, . . . , w
′
n) have a strictly positive density

hn(w′) depending on the initial point x and n only. For any b > 0, the random variables

Yn defined in (4.4) have density gn(yn) with the property that for any x ∈ (0, b] and any

yn ∈ (0, b], there exists a bounded function cbn(·) independent of x, bounded away from zero

on compact sets, such that gn(yn) ≥ cbn(yn).

Proof. Step 1. First, we show that w′ = (w′1, . . . , w
′
n) has a density for all n ≥ 1. In general,

for a Borel set G in (0,∞)n and w > 0

(4.11) Px(w′n+1 > w,w′ ∈ G) =

∫
G
Px(w′n+1 > w|w′ = v)Px(w′ ∈ dv)

so it is sufficient to prove that Px(w′n+1 > w|w′ = v) is absolutely continuous with density

ρ(w|v), both for the verification step and the induction step.

From (1.4) we see that w′n+1 depends on the value v of the vector w′ via the number

x(v) = γnx+
∑n

k=0 γ
k+1vn−k. We have the exact formula for the density ρ(w|v)

(4.12)

Px(w′n+1 > w|w′ = v) = Px(v)(A(x(v) + w)−A(x(v)) < χn+1) = e−(A(x(v)+w)−A(x(v)))

(4.13) ρ(w|v) = e−(A(x(v)+w)−A(x(v)))α(x(v) + w) .
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As long as A(+∞) = +∞ this is a proper distribution function. It is always positive

because A is finite and α is bounded away from zero on any compact set.

Step 2. We first show that on the event {0 <
∑n

i=1w
′
i ≤ b(1 − γ)−1}, hn(·) is bounded

below by a product function independent of x.

Since x ≤ b and Yn ≤ b, then

(4.14) x(τ ′k) ≤ γb(1 + (1− γ)−1) = M(b) , 0 ≤ k ≤ n .

In this case, each density (4.13) is bounded below for all w > 0 by

(4.15)

e−(A(x(v)+w)−A(x(v)))α(x(v) + w) ≥ e−A(M(b)+w)α0([w,w +M(b)]) = ρ−(w) > 0 , w > 0 .

The lower bound is bounded away from zero on compact sets; otherwise the continuous

function α(·) would have a zero on a compact set, which is impossible. It is also integrable

on compact sets, being dominated by α(w + b).

We proceed by induction over n. The verification step is given in (4.15). Suppose it is

true for n− 1.

From (4.11) and (4.13), combined with the fact that if
∑n

i=1w
′
i ≤ b(1 − γ)−1 then a

fortiori
∑n−1

i=1 w
′
i ≤ b(1− γ)−1, we obtain that

hn(w′1, . . . , w
′
n−1, w

′
n) = ρ(w′n|w′1, . . . , w′n−1)hn−1(w′1, . . . , w′n−1)

≥ ρ−(w′n)Πn−1
i=1 ρ−(w′i) ,

n∑
i=1

w′i ≤ b(1− γ)−1 .

Step 3. Since (1− γ)
∑n

i=1w
′
i ≤ Yn ≤

∑n
i=1w

′
i, it follows that

{0 < Yn ≤ b} ⊆ {0 <
n∑
i=1

w′i ≤ b(1− γ)−1}

and thus the lower bound will be satisfied when Yn ≤ b.
We prove by induction the lower bound on the density gn(yn) of Yn.

The verification step is immediate since Y1 = (1− γ)w′1. We set

cb1(w) = (1− γ)−1ρ−(w(1− γ)−1) .

Assuming the statement is true for n− 1, we prove it for n. We use Lemma 1 with write

Yn = F (V ) +W with V = w′, F (v) =
∑n−1

j=1 (1− γn+1−j)vj and W = (1− γ)w′n. The pair

(V,W ) satisfies Lemma 1 with Y = Yn.
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Due to (4.14), we can set k1(w) = cb1(w), where k1(w) is as in Lemma 1. By the induction

hypothesis, we obtain

gn(yn) ≥
∫
F (v)≤yn

cb1(yn − F (v))hn−1(v)dv ≥

∫
F (v)≤yn

cb1(yn − F (v))Πn−1
i=1 ρ−(vi)dv = cbn(yn) > 0 yn ∈ (0, b] .

We want to show that gn(yn) is bounded on [ε, b], a compact interval included in (0, b]. A

lower bound can be obtained from the last inequality by integrationg over the set {ε ≤
F (v) ≤ yn}. By construction (4.15), the function cb1(·) is bounded away from zero on

compact sets. Since
∫
ε≤F (v)≤yn Πn−1

i=1 ρ−(vi)dv > 0 (convolution of independent positive

r.v.), we are done. �

Proposition 6. There exists t0 ≥ 0 and F a small set with l(F ) > 0 such that Px(x(t) ∈
F ) > 0 for all t ≥ t0 and all x ∈ F and hence the process x(t) is l - aperiodic.

Proof. Let F = (0, a′] as in Proposition 3. Let t > 0 be arbitrary. We shall construct the

event

(4.16) At = {γ(a′ + w′1) < ca′} ∩
(
∩Ni=2 {ε1 < w′i < ε2}

)
where c is a number in (γ, 1), ε2 = a′(1 − c), ε1 ∈ (0, ε2) and N = [t/ε1] + 2. Set t0 =

(cγ−1 − 1)a′. Under At, the choice of t0 ensures that the first jump occurs before t0 and

brings x(t) below ca′ < a′. The choice of the constant c ensures that both γ(ca′+w′i) < ca′

(the process returns to a point in (0, ca′) after each jump) and ca′ + w′i < a′ (the process

will not exceed a′) for the next N − 1 steps. The lower bound ε1 is arbitrary except that

the corresponding N must be greater or equal to one. By choosing an intersection over the

first N jumps we make sure that when x(t) starts at x(0) = x ≤ a′ there can be at most N

jumps in the time interval [0, t] and thus x(t) stays in (0, a′] on [t0, t], hence x(t) ∈ F .

The event At is can be evaluated as a function of w′ = (w′1, . . . , w
′
N ), more precisely

At = {w′ ∈ (0, t0) × (ε1, ε2)
N−1}, a set in (0,∞)N with positive probability. Since w′

has positive density from Proposition 5 and {x(t) ∈ F} ⊃ At, for any x ∈ F , we have

Px(x(t) ∈ F ) ≥ Px(At) > 0, proving that x(t) is aperiodic. �
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5. Speed of convergence to equilibrium

In the preceding sections we proved that any F = (0, a′], a′ > 0 is an attractive small

set.

For δ > 0, let τF (δ) = inf{t ≥ δ |x(t) ∈ F} be the first time of return to the set F (see

also Section 6). Consider a nondecreasing function B(t), t ≥ 0, B(t) ≥ 0. We are interested

in showing that there exists δ > 0 such that the B-moment of τF (δ) is uniformly bounded

over any starting point in F , i.e.

(5.1) sup
x∈F

Ex[B(τF (δ))] <∞ .

Due to the form of F = (0, a′] and the pathwise bound

(5.2) x(t) ≤ x+ t , x(0) = x ,

it is sufficient to allow x ∈ (0, a′ + δ] and simply prove the bound

(5.3) sup
x∈(0,b]

Ex[B(τ(0,a′])] <∞ , ∀ b > a′ .

Lemma 2. Let f(t, x) continuously differentiable in t ≥ 0, x > 0, nondecreasing in both t

and x such that there exists t0 ≥ 0 satisfying

(5.4)
∂

∂t
f(t, x(t)) +

∂

∂x
f(t, x(t)) + α(x(t))(f(t, γx(t))− f(t, x(t))) ≤ 0

for any t ≥ t0, then

(5.5) Ex[f(τ(0,a′], γa
′)1{τ(0,a′]≥t0}] ≤ f(t0, x+ t0) .

In particluar, if f(t, x) = B(t)R(x), then (5.3) is satisfied.

Proof. We first verify that Ex[f(t, x(t))] ≤ f(t, x + t) < ∞. Writing Ito’s formula for

f(t, x(t)), t ≥ t0 we obtain from (5.4) that f(t, x(t)), t ≥ t0 is a supermartingale. After

stopping at τ(0,a′] ∨ t0 - recall that τ(0,a′] <∞ a.s. - we have the inequality

Ex[f(τ(0,a′] ∨ t0, x(τ(0,a′] ∨ t0))] ≤ Ex[f(t0, x(t0))] ≤ f(t0, x+ t0) .

At τ(0,a′], the process has just re-entered (0, a′], meaning that it jumped from γ−1x(τ(0,a′]) =

x(τ(0,a′]−) > a′ and thus x(τ(0,a′]) ≥ γa′. To make sure τ(0,a′] is achieved, we insert the

indicator function 1{τ(0,a′]≥t0}, which bounds below the left-hand side

Ex[f(τ(0,a′], γa
′)1{τ(0,a′]≥t0}] ≤ Ex[f(τ(0,a′] ∨ t0, x(τ(0,a′] ∨ t0))] ,
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which proves (5.5). When f(t, x) = B(t)R(x), inequality (5.5) proves that the B-moment

of τ(0,a′] is finite, and the right-hand side is uniformly bounded over x ∈ (0, b]. �

Recalling the definition (1.2) of the j-th holding time w′j = τ ′j − τ ′j−1, j ≥ 1, we calculate

(5.6) Px(w′1 > w) = Px(A(x+ w)−A(x) < χ1) = e−(A(x+w)−A(x)) .

Proposition 7. Assume there exists β > 0, a1 > 0 such that xα(x) ≥ β for any x ≥ a1.

If β is sufficiently large, the first moment of τ(0,a′] is uniformly bounded, i.e. (5.3) is true

for B(t) = t.

Proof. Inequality (5.4) applied to f(t, x) = txm, m > 0 can be re-written as

tx(t)m−1[
x(t)

t
+m− β(1− γm)] ≤ tx(t)m−1[

b+ t

t
+m− β(1− γm)] ≤ 0

as soon as t ≥ t0 = b(β(1− γm)− (1 +m))−1. It follows that for any β > β∗,

(5.7) β∗ = inf
m>0

(1 +m)(1− γm)−1

the first moment of the time of return is finite. �

Proposition 8. Assume there exists β > 0, a1 > 0 such that α(x) ≥ β for any x ≥ a1.

Then τ(0,a′] has uniformly bounded exponential moments, i.e. (5.3) is true for B(t) =

exp(−θt), with some θ < 0. Moreover, for sufficiently large a′, the number θ can be taken

arbitrarily close to −β.

Proof. Inequality (5.4) applied to f(t, x) = exp(−θt)xm, m > 0 can be re-written as

exp(−θt)x(t)m[−θ +
m

x
− β(1− γm)]

≤ exp(−θt)x(t)m[−θ +
m

a′
− β(1− γm)] .

For any fixed β, m we shall have θ < 0 satisfying the inequality. In order to optimize

the range of θ, pick m arbitarily close to zero and a′ sufficiently large, showing that for

θ ∈ (−β,∞) the inequality is satisfied. �
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5.1. Proof of Theorem 2.

Proof. (i) We first show that the Lebesgue measure l(dx) is maximal (see Definition 2

and the discussion thereafter). Given that the process is l(dx) - Harris recurrent from

Proposition 2, l(dx) is an irreducibility measure. It is sufficient to show that Px(x(t) ∈ dy)

has a density. This is proven in Proposition 4. In that case, if l(A) = 0 implies that

Px(x(t) ∈ A) = 0 and so G(x,A) = 0. If ν is another irreducibility measure and ν(A) > 0,

we should have G(x,A) > 0, a contradiction; thus ν << l.

The process is non-explosive as shown in Theorem 1. Proposition 2 proves l(dx) - Harris

recurrence. Proposition 3 identifies all intervals (0, a′] to be Doeblin attractive sets, under

(1.6)(i) - integrability at zero. Proposition 6 proves that x(t) is aperiodic. Proposition 7

shows that the process is positive recurrent, proving (ii). Finally Proposition 8 shows that

the conditions of Theorem 6 are satisfied for any F = (0, a′] with some δ > 0 and η > 0,

proving (iii). Because the reference measure ν0 in Doeblin’s theorem is continuous with

density bounded away from zero on a compact interval, the assertion that the Doebin set

may be taken compact is verified. �

5.2. Proof of Theorem 3.

Proof. Inequality (5.4) applied to f(t, x) = exp(t1+q)xm, m > 0 can be re-written as

exp(t1+q)x(t)m+p[(1 + q)tqx(t)−p +mx−p−1 − β(1− γm)]

≤ exp(t1+q)x(t)m+p[(1 + q)tq(b+ t)−p +mx−p−1 − β(1− γm)] .

As soon as a′ and t ≥ t0 are fixed but sufficiently large, the expression on the right hand

side is non-positive. Here we used that x(t) ≥ b + t and q ≤ p < 0. When q = p it is

sufficient to have β large enough and the inequality is satisfied.

For the last statement of the proposition, in the special case α(x) = xp, p ∈ (−1, 0)

as x → ∞, we see that τ(0,a′] has no finite exponential moment simply by calculating

Ex[w′1] = +∞ as in the proof of Theorem 4 (iii). �

5.3. Proof of Theorem 4.

Proof. Part a)
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(i) Based on (1.3) and the particular form of A(x) = β lnx when x ≥ a1,

(5.8) xj = xγn exp
(
β−1

j∑
i=1

χi
)

such that lnxj , j ≥ 0 is a simple random walk with i.i.d. increments with expectation

β−1 + ln γ stopped upon hitting (−∞, ln a1]. It follows that limj→∞ xj = +∞ with positive

probability if β < (− ln γ)−1 and limj→∞ xj ≤ ln a1 with probability one if β ≥ (− ln γ)−1.

The third assertion in (i) is immediate from Proposition 7.

(ii) Let a′ >> a1. Using (1.3) and (1.4) we can write

(5.9) τ(0,a′] =

N∑
i=1

w′i = γ−1(HN − x0)−HN−1 , ∀n ≥ 1 Hn =

n∑
j=0

xj

where N is the hitting time of the set (0, a′] by the disctrete time process (xn), x0 := x of

positions right after each jump. From the tail distribution formula (5.6)

(5.10) Exi−1 [w′i] =

∫ ∞
0

(
xi−1

xi−1 + w
)βdw = (β − 1)−1xi−1 , i ≥ 1

and Ex[τ(0,a′]] ≤ (β − 1)−1
∑∞

i=1Ex[xi−1] < +∞ as the sum of a geometric series with rate

βγ(β−1)−1 < 1. In this case it is easy to verify that u(x) = Ex[τ(0,a′]] satisfies the equation

Bu(x) = −1, u(x) = 0 if x ≤ a1. The soultion will have two regimes: when x ≤ a′γ−1 and

x > a′γ−1. On the first interval the equation −1 = Bu(x) = u′(x) + α(x)(−u(x)) since the

position after the first jump gives u(γx) = 0. It is immediate that u(x) will be a linear

combination of xq, q = 0, 1, β.

Moreover, for x ≥ a1/γ the linear function

(5.11) u(x) = k1x+ k2 ,
1

k1
= β(1− γ)− 1

satisfies the equation. The polynomial bound shows that solutions are unique. From the

lines above we see that u(x) has a linear bound in x, implying uniqueness.

We proceed to give an exact formula. Let y = x + w′ be the position right before the

first jump. We can see that

u(x) =

∫ ∞
x

(y − x)α(y)e−A(y)+A(x)dy +

∫ ∞
x∨a′γ−1

u(γy)α(y)e−A(y)+A(x)dy

which proves continuity in x on [a′γ−1,∞) and the presence of a jump at a′γ−1. In the

present case the first integral is equal to x/(β − 1).
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After some calculations,

(5.12) u(x) =


x

β−1 + Cβγβxβ , if x ≤ a′γ−1

x
β(1−γ)−1 +D , if x > a′γ−1

where C and D can be determined from each other by continuity and C =
∫∞
a′ u(z)z−β−1dz.

This formula allows us to obtain C after splitting the integral in two parts, corresponding

to the two regimes. Solving the resulting equation,

C =
β(1− γ) + γβ

(a′)β(β − 1)2(β(1− γ)− 1)(1 + βγβ ln γ − γβ)
.

(iii) Revisiting (5.9) we see that the expected valuee of τ(0,a′] is finite if and only if

Ex[HN ] <∞.

Let β′′ > β′ > (1 − γ)−1 and write Nβ′ , Nβ′′ , as well as xβ
′
n , xβ

′′
n for the corresponding

chains. The underlying holding times (χn) being the same, we have a robust coupling that

allows us to see that xβ
′

j > xβ
′′

j and Nβ′ > Nβ′′ . Then
∑Nβ′

j=1 x
β′

j ≥
∑Nβ′′

j=1 x
β′

j ≥
∑Nβ′′

j=1 x
β′′

j

which proves monotonicity of the expected value (non-increasing) in the parameter β >

(1− γ)−1. Using the explicit formula (5.12) we see that limβ↓(1−γ)−1 Ex[τ(0,a′]] = +∞.

Part b)

The proof is essentially the same as in Part a) (i) by evaluating the random walk ln(xj),

j ≥ 1 the number of jumps and its drift. �

6. Appendix

6.1. Local Doeblin theory for continuous time processes. We start with the intro-

duction of the basic concepts relevant to the theory of continuous time Markov processes

on general state spaces.

Let {x(t)}t≥0 be a continuous time non - explosive Markov process on the state space S
with Borel sets B(S). For a Borel set A, τA = inf {t ≥ 0 |x(t) ∈ A} is the first hitting time

of A and if x ∈ S

(6.1) G(x,A) = Ex

[ ∫ ∞
0

1A(x(t))dt
]

denotes the Green function associated to the process.

Definition 1. (Local Doeblin condition and small sets) A Borel subset F in the state space

S of the Markov process will be said
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(i) attractive, if Px(τF <∞) = 1, for any x ∈ S, and

(ii) small, if there exists a time t > 0, a probability measure ν0(dx) concentrated on F ,

and a constant c ∈ (0, 1) such that, for all x ∈ F and all Borel sets B of S, we have

Px(x(t) ∈ B) ≥ c ν0(B).

A set F satisfying (i)-(ii) is also called an attractive Doeblin set.

Definition 2. Given φ a measure on (S,B(S)), a process is said φ - irreducible if for any

Borel set B of S with φ(B) > 0, then G(x,B) > 0 for any x ∈ S. We also say that φ is

an irreducibility measure. The process is said aperiodic if there exists a small set F with

φ(F ) > 0 and a time t0 ≥ 0 such that Px(x(t) ∈ F ) > 0 for all t ≥ t0 and x ∈ F .

We note that whenever there exists φ as above, there exists a maximal irreducibility

measure ψ such that ν << ψ for any irreducibility measure ν. Hence aperiodicity can be

defined directly in terms of ψ; at the same time, if we find a small set F with φ(F ) > 0

then automatically ψ(F ) > 0.

Theorem 6 summarizes results from [4, 5, 13, 14]. Only [4] deals directly with the

continuous time case.

For δ > 0, define τF (δ) = inf{t ≥ δ |x(t) ∈ F}. In the continuous time case, τF (δ)

replaces the first time of return to the set F from the discrete time setting.

Theorem 6. Assume a Markov process is non-explosive, ψ - irreducible and aperiodic with

an attractive Doeblin set F . If there exists δ > 0, η > 0 such that V (x) = Ex[exp(ητF (δ))] is

finite for all x ∈ S and V (x) is uniformly bounded on F , then there exist a unique invariant

probability measure µ(dx), constants D > 0 and ρ ∈ (0, 1) such that for all t ≥ 0 and x ∈ S

(6.2) ||Px(x(t) ∈ ·)− µ(·)|| ≤ DV (x)ρt ,

where || · || denotes the total variation norm of a measure.

Remark. The existence of an attractive Doeblin set F implies that F is a petite set for

the resolvent chain with transition probabilities Uλ(x, dy) =
∫∞
0 λe−λtPx(x(t) ∈ dy), λ > 0.

Then Uλ is Harris recurrent, implying that there exists an invariant measure µ(dx), not

necessarily finite, for both the recurrent chain and {x(t)}t≥0. Positive recurrence, defined

as Ex[τ(δ)] <∞ for all x ∈ S is necessary and sufficient to show that µ(dx) is a probability

measure. The condition V (x) <∞ is much stronger, and implies exponential ergodicity.
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Proof. The theorem is an immediate consequence of Theorems 6.2, 5.2 and 5.3 in [4] for

the special function f(x) ≡ 1. �
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