
The Perron Frobenius Theorem and 
a Few of Its Many Applications 



Overview 

     The Perron-Frobenius Theorem arose from a 
very theoretical environment over 100 years ago 

in the study of matrices and eigenvalues. 

     In the last few decades, it has been 
rediscovered as a powerful tool in a myriad of 

applications including Biology, Economics, 
Dynamical Systems, and even ranking of football 
teams. We´ll talk about the theorem and few of 

its interesting applications. 



Idea of Theorem  

The PFT is about real square matrices with  

entries ≥ 0. 

 

If all the entries are > 0, ∃! largest real eigenvalue, it 
is positive, and the corresponding eigenvector has 

strictly positive components. 

 

For certain classes of nonnegative matrices, we can 
say the same thing.  



Terminology 

 

A positive matrix 

 has all strictly positive entries (no zeros). 

 

 

A nonnegative matrix  

is one with nonnegative entries. 



Notation 

• Vectors are column vectors unless noted 
otherwise.  e.g., y is a column vector, and yT is 
row vector. 

• When needed for clarification, bold means 
vector.   e.g., 1 is just a number, but 1 is the 

vector   

1
1
⋮
1

      .    



Some Motivation 

• In many applications, knowing the largest, or 
dominant eigenvalue is all that we need to 
know. 

• There´s no reason that for a general matrix, a 
largest eigenvalue exists.  There  may be 
repeated values, or the least negative and 
greatest positive could be = in absolute value.  

• There´s no reason the largest one is positive. 

• PFT says: For certain matrices, ∃! positive one. 



The authors 

The theorem was proved by Oskar Perron 
and Georg Frobenius. 

 

1907-Perron proved it for positive matrices. 

1912-Georg Frobenius extended the proof to 
nonnegative matrices. 

There have been further extensions recently.  



Oskar Perron (1880-1975) 

• Famous for                                                   
contributions 
to PDEs, 
including                                            
the “Perron 
Method” for                                                 
solving the 
Dirichlet                                                        
problem for 
elliptical PDEs. 

 

 

• “Perron´s 
Paradox” 
 

• Thesis at                                                       
Munich was on 
Geometry.  
 

• Retired from 
teaching at 80, 
but published 
18 more papers 
until ´73. Photo courtesy Wikipedia 



Ferdinand Georg Frobenius  
(1849-1917) 

Diffy Qs 
 
Elliptical 
Functions  
 
Group Theory 

Student of 
Weierstrass 
 

Photo courtesy Wikipedia 



Applications 

• Google Page Rank Algorithm 
• Inputs to production processes are ≥ 0 ⇒ 

nonnegative matrices are important in linear 
economics. 

• Biology 
 

Both Perron and Frobenius were very theoretical.  
Especially Frobenius, who considered applications 
something for tech schools.  This is one reason 
applications were mostly overlooked until recently.  



Precise Statement of the Theorem 
If A is a square positive matrix , 
ρ(A) = max { │λ│ ; λ is an eigenvalue of A} , and  
μ(A) = max { │λ│ ; λ is an eigenvalue of A and λ ≠ ρ(A)} then: 

 
 

• ∃ a real eigenvalue r > 0, called the Perron Root, and any other eigenvalue is 
strictly smaller in absolute value.  Thus  r = ρ(A) > 0, ρ(A) is simple and µ(A)  <  ρ(A). 
 

• The corresponding eigenvector is positive.  No eigenvectors except those 
associated to r have only positive parts.  

  

• lim
𝑛→∞

A
ρ(A)

𝑛

= xyT      where Ax= ρ(A)x  for  x > 0,    AT y = ρ(A)y, y > 0, and xTy = 1. 

 
(Note: An entry in x is just a value, whereas each entry of yT is a column.  yT  is a row of columns, i.e. a matrix.) 

     
•  The Perron–Frobenius eigenvalue satisfies the inequalities:     

 

                                              min
𝑖
 a

ij
 𝑗 ≤ r ≤ max

𝑖
 a

ij
 𝑗  . 



Precise Statement of the Theorem 
This is an important consequence of the theorem: 
 
If A is a square positive matrix , 
ρ(A) = max { │λ│ ; λ is an eigenvalue of A} , and  
μ(A) = max { │λ│ ; λ is an eigenvalue of A and λ ≠ ρ(A)} then: 

 
 
• For every q, µ(A) /ρ (A) < q < 1 , there exists a constant K such that 

for every n, 
 

     
A

ρ(A)

𝑛

− xy
T

∞   
≤ K q

m                   
where A

∞ 
=  max

𝑗
 a

ij

𝑛
𝑖=0  

 
The third bullet on the last page said that there is convergence.  
This consequence says more:  The iterates of the matrix converge 
exponentially (in the max abs row sum norm).  



Extensions to Nonnegative Matrices 

 

In 1912, Frobenius extended Perron´s original 
theorem to several types of nonnegative 

matrices. 

 

 

The first extension is that the matrix can have a 
few zeros, as long as it´s primitive. 



What is a Primitive Matrix? 

A nonnegative matrix is primitive if for some natural k, Ak  is positive. 
Examples: 
1) Of course, if it starts out positive ✓ 

 

2)    
0 3 2
0 5 2
3 0 0

  is.   

 

         A2 = 
6 15 6
6 25 10
0 9 6

   ,     A3= 
126 519 222
186 805 346
54 279 126

 

   
 
 
 
 



What´s not a primitive matrix? 

0 3
5 0

 is not, but …we got lucky.  You may have 

to try multiplying infinitely many times to know 
that it´s NOT primitive! 

 

Fortunately, there´s Wielandt´s Theorem: 

     A(n-1)² + 1

 is positive iff 
   A is primitive.

 

 



Another test of Primitivity 

 

A matrix is primitive  

iff that limit 

lim
𝑛→∞

A
ρ(A)

𝑛

 exists.   



 Simple Example 

Let A = 
0 1
1 0

 

ρ(A) = max { │λ│ ; λ is an eigenvalue of A} = 1 

(there´s only one eigenvalue, which we can find) 

lim
𝑛→∞

A
ρ(A)

𝑛

= lim
𝑛→∞

A 𝑛 , which DNE because A𝑛 

alternates between A and ɪ.   

Thus A is not primitive. 



1st Extension 

If the matrix is primitive then… 
 

┌                                          ┐ 

same as above 

└                                          ┘ 

 

 

 

 



What is an Irreducible Matrix? 

Matrix A is reducible if ∃ a permutation matrix P, such 

that P
-1

AP= 
𝐵 𝐷
0 𝐶

 where B and C are square matrices.  

Otherwise, A is irreducible. 

For A ≥ 0, TFAE definitions of irreducible: 

1. The digraph associated to A is strongly connected. 

2. For each i and j, ∃ some k such that
 
(A

k
)ij> 0. 

3. For any partition J⊔K of the index set {1,2,…,n}, 
∃  j∈J and k∈K such that ajk≠0. 

4. A cannot be conjugated into a block upper triangular 
matrix by a permutation matrix P. 

 



Some irreducible matrices 

Notice 2. looks similar to definition of primitive. 
In fact,… 

Primitive ⇒ irreducible. 
 

In particular, a positive matrix is irreducible.  



Once again, an awkard definition… 

Irreducible matrices turn out to be the 
important classification for the PFT.  To say it is 
“NOT REDUCIBLE”, however, may be difficult. 

 



Two more Helpful Theorems 

For a nonnegative matrix A, 

 

1.    A  is irreducible  ⇒ (ɪ+A)n-1 > 0.    

 

 

2.     A is irreducible with at least one non-zero    

        diagonal element ⇒ A is primitive. 

          



Revisiting the “Simple Example” 

Let A = 
0 1
1 0

    

A is nonnegative, and irreducible (it´s digraph is strongly 
connected      0

 
 1  ) 

 
By the PFT we can say ∃ a real eigenvalue r > 0 and    
min
𝑖
 a

ij
 𝑗 ≤ r ≤ max

𝑖
 a

ij
 𝑗 , so it is 1.  We can´t go on to 

claim uniqueness (indeed a quick calculation shows, it´s 
not the strictly largest in abs value.)  
 
Irreducible ⇒ we lose a guarantee of uniqueness, but 
have the other properties of the PFT. 
 
 

 



Markov Chains Example 

A transition matrix of a Markov Chain is an example 
of a nonnegative matrix. 

 

Suppose the transition matrix is such that 

aij = the probability of going from state i to state j 

 

Reducible if the absorbing states are at the bottom 
of the matrix.  Again when can we be sure it is 
irreducible? 



Graphs Example 

If we considered directed graphs then each has 
associated with it a nonnegative matrix with all 
entries 0 or 1 with 

   aij = 1 if there is an arc from vertex i to vertex j. 

 

Irreducible means that you can go from any 
vertex to another (may be several steps) 

This is called a “Strongly Connected” graph. 



Dynamical Systems Example 

In studying population,  we might have  x(k+1) = 
A x(k)    k=0,1,...   where A is reducible.                      
Then with partitioned matrices, we can rewrite this system as 
                             Y(k+1) = A11 Y(k) + A12 Z(k) 
                             Z(k+1) = A22 Z(k) 
where the first r components of X are contained in Y, and the 
last n-r are in Z.  
Now we can solve for Z with no reference to the system 
involving Y, then solve for Y with Z assumed to be known.  We 
"reduced“ the original system to two simpler systems.  
Thus “the matrix A is irreducible” means that “the system 
cannot be reduced”; When studying the behavior of the 
system, we must treat it as a whole—we can´t break it up. 

 



Applications of the PFT 

Nonnegative matrices arise in many fields, e.g., 
   
   • Economics 
   • Population models 
   • Graph theory 
   • Markov chains 
   • Power control in communications 
   • Lyapunov analysis of large scale systems 
   • Ranking systems 
 
    



Applications of the PFT 

The Perron-Frobenius theorem has several uses 
with matrix problems. It helps determine what  

types of vectors are special for many types of 
matrices encountered in the real world, such as 
stochastic matrices. Most often it is used to state 
that there is a solution to a problem where it might 
not be that easy to determine if one exists (such as 
problems that deal with large matrices).  

Here are some detailed examples… 



Graph Theory-Path Count 

Given a digraph of n nodes with adjacency 
matrix A. 

Aij  = 1 when there’s an edge from node i to j, 

         0  otherwise 

 

(Ak)ij  = number of paths from i to j of length k. 

 



Adjacency Matrix 

From Wolfram MathWorld 



Adjacency Matrix 

From Wikipedia 



Graph Theory-Path Count 

 

A graph is said to be strongly connected if every 
vertex is reachable from every other vertex. 

 

The adjacency matrix of a strongly connected 
graph is irreducible. 



Graph Theory-Path Count 

Strongly Connected 
Components of a Graph 

From Wikipedia 



Graph Theory-Path Count 

A is primitive ⇒ for large k , Ak   ~  r
k 

xy
T
 =  r

k 
(1

T
y)x(y/1

T
y)

 T 

where x is a right eigenvector, so normalized: 1
T
x =1 

and y is the left e.v., so y
T
x = 1. 

 
The dominant term of r

k 
xy

T
 will be a good estimate for large enough k. 

 
• r is the factor of increase in # of paths when length increases by one  
• xi  = fraction of length k paths that end at i. Measures 

importance/connectedness of node i as a sink. 
• yi /1

T
y  = fraction of length k paths that start at j.  Measures 

importance/connectedness of node j as a source. 
• multiply these to get fraction of length k paths starting at i and 

ending at j.    



Graph Theory 

So much more… just one example: 

A cycle is a path starting and ending at the same 
vertex. 

If the graph associated to M is strongly 
connected and has two cycles of relatively prime 
lengths, then M is primitive. 

This was just to point out that problems may be 
interpreted in the world of graphs or matrices, 
and go back and forth… 

 

 



Markov Chains 

Suppose we have a stochastic process X0, X1, . . . with 
values in {1, . . . , n} and Prob(Xt+1 = i|Xt = j) = Pij. 

P is called the transition matrix.  Note Pij ≥ 0 

Let pt ∈ Rn be the distribution of Xt, i.e., (pt)i = Prob(Xt = i) 

then we have pt+1 = P pt  

P is a (right) stochastic matrix, i.e., P ≥ 0 and the sum of 
the probabilities on any row is 1. 

P is non negative, but may not be irreducible, so we can´t 
apply PFT. 

However,… 

 

 



Markov Chains 

...notice that the column vector with each entry 
1 is an eigenvector corresponding to the 
eigenvalue 1. 

 
 

In fact it is the Perron-Frobenius eigenvalue of P. 

 

 



(Markov Chains) Quick Calculation 

Suppose we have   A = 
.6 .3 .1
.5 .2 .3
0 .5 .5

     and    B = 
.6 .3 .1
.4 .2 .4
0 .5 .5

 

 
1) Then for both matrices, the column vector 1 is a right eigenvector corresponding to eigenvalue 1: 

 

               A 1 = 
.6 .3 .1
.5 .2 .3
0 .5 .5

1
1
1
= 
1
1
1

 = 1 = 1 1           and             B 1 = 
.6 .3 .1
.4 .2 .4
0 .5 .5

1
1
1
= 
1
1
1

 = 1 = 1 1  

  
 

 
2)         For B, the row vector 1T is a left eigenvector corresponding to 1: 

 

               1TB =(1   1   1)
.6 .3 .1
.4 .2 .4
0 .5 .5

 = (1  1   1) = 1T = 1 1T          

 
This second part works because each column of B adds to one, making it a doubly stochastic matrix. 
The second part need not be true for a (right) stochastic matrix in general:  As an example, it is not 
true for matrix A. 
 
 
 



Markov Chains 

 

It might not be the only eigenvalue on the unit 
circle: and the associated eigenspace can be 
multi-dimensional.  

 



Markov Chains 

A stationary probability vector  is defined as a vector that does not change 
under application of the transition matrix; that is, it is a left eigenvector of the 
probability matrix, associated with eigenvalue 1:           𝝅P= 𝝅 
(Recall left e.v. is uA = λu, or ATuT  = λuT) 
 
Every stochastic matrix has such a vector (at least “1/n” vector on the right, 
so some left vector is associated to 1 on the left) called the “invariant 
probability distribution”.   
PFT ensures that the largest absolute value of an eigenvalue is always 1.  
In general, there may be several such vectors. However, for a matrix with 
strictly positive entries, this vector is unique and can be computed using  

lim
𝑛→∞

A
ρ(A)

𝑛

= xyT      where Ax= ρ(A)x  for  x > 0,  AT y = ρ(A)y, y > 0, and xTy =1 

 
where we set A = P, our probability matrix. 



Markov Chains 

ρ(A) = 1, so it simplifies to: 

lim
𝑛→∞

P 𝑛= xyT   where Px=x  for  x>0, PTy = y, y>0, and xTy=1. 

Observing that for any row i, lim
𝑛→∞

P𝑛 ij 
 
=  𝝅j 

(so 𝝅j is the j th element of the row vector 𝝅) 

we come to the conclusion that the long-term 
probability of being in a state j is independent of 
the initial state i.  

  



Markov Chains-Genetics 

Inbreeding  
 

2 homologous chromosomes take on A or a. 
Individual will have AA, Aa=aA, or aa. 
Offspring of two such individuals has AA, Aa, aa with 
probabilities given by the transition matrix: 
 
  

1 0 0
1/4 1/2 1/4
0 0 1

 

 
 

AA           Aa            aa 

AA 
Aa 
aa 



Markov Chains-Genetics 

 

  
1 0 0
1/4 1/2 1/4
0 0 1

 

   

  AA              Aa              aa 

AA 
 

Aa 
 

Aa 
 

A A 

A AA AA 

A AA AA 

A a 

A AA Aa 

a Aa aa 



Markov Chains-Genetics 

Continue inbreeding, and eventually you get a 
pure line AA or aa 

Pn
= 

1      0 0
1

2
−
1

2

n+1
       

1

2

𝑛
       

1

2
−
1

2

n+1

0      0 1

→ 

 

            
1 0 0
1/2 0 1/2
0 0 1

 as n → ∞   



Markov Chains-Genetics 

Other Ways to Breed 

 

• Reject unfavourable genes during the 
breeding process 

• (More aggressive:) Back-cross to encourage 
desirable genes 

• etc. 

 



Markov Chains-Filling Gas Stations 

Suppose that you own 5 gas stations and a refueling truck.  Because of availability and cost of hiring a 
driver to get the fuel from the depot and expenses of running the truck, you schedule one trip for the 
truck per day, visiting the station that needs the gas the most (most likely to run out).  If the truck does 
not have enough in it to fill the station, it may have to go to the depot first.  The truck can hold enough 
for a few stops (usually 2 to 4).   
Your five stations are in Miami:  MIA (near the airport), CG1 and CG2 in Coral Gables, OVT (Overtown), 
and NMB (North Miami Beach).   The depot is close to the MIA station 
If the truck starts in MIA, these are the probabilities of where it is left at the end of day:   

.1 MIA, .4 Coral Gables, .3 OVT, .2 NMB,  
 

From OVT: 
 .4 MIA, .4 Coral Gables, .1 OVT, .1 NMB 

 
From Coral Gables: 

.3 MIA, .3 the other CG store, .1 the same CG store, .2 OVT, .1 NMB 
 
From NMB: 

 .3 MIA, .4 Coral Gables, .2 OVT, .1 NMB 
 
                           

 
 

M 

NMB 

DEPOT 

CG1 

OVT 

CG2 

MIA 



Markov Chains-Filling Gas Stations 

Ideally, the truck will  fill up at the depot before or after a stop at  MIA.   
According to the plan, a truck that is heading to MIA without enough 
to fill MIA will go to the depot beforehand, and a truck that starts in 
MIA, after receiving a call to fill some station, will  go to the depot first 
if it doesn´t have enough for that station.  One use of this study is to 
consider if a partially filled truck should stop at the depot when it has 
enough fuel to fill the station that calls, but the truck happens to be 
starting out from MIA. 
 
We would like to know how often the truck is in MIA. 
 
We can calculate specific cases of where the truck will be: 
 
e.g, If a car starts today in OVT, what´s the probability that it´s in MIA 
tomorrow morning? 



Markov Chains-Filling Gas Stations 

We set up a transition matrix: 
 

             P  =     

.1 
.3
.3
.4
.3

    .4
    .3
    .1
    .4
    .4

     0
     .1
     .3
     0
     0

     .3
     .2
     .2
     .1
     .2

    

  .2
  .1
  .1
  .1
  .1

 

 
 
(Note:  Some probablities specific to each store in CG were lacking, but 
that didn´t stop us.  We grouped the stores together; We just need to be 
careful to interpret our results accordingly.) 

MIA 
 

CG1 
 

CG2 
 

OVT 
 

NMB 

MIA      CG1      CG2      OVT      NMB 



Markov Chains-Filling Gas Stations 

Then 

 (0   0   0   1  0) 

.1 
.3
.3
.4
.3

    .4
    .3
    .1
    .4
    .4

     0
     .1
     .3
     0
     0

     .3
     .2
     .2
     .1
     .2

    

  .2
  .1
  .1
  .1
  .1

 = (.4   .4   0  .1  .1)  

 

tells us where the filling truck will end up. 

 

With  .4 probability, it will be in MIA. 

MIA      CG1      CG2      OVT      NMB 



Markov Chains-Filling Gas Stations 

 

(.4   .4   0  .1  .1)

.1 
.3
.3
.4
.3

    .4
    .3
    .1
    .4
    .4

     0
     .1
     .3
     0
     0

     .3
     .2
     .2
     .1
     .2

    

  .2
  .1
  .1
  .1
  .1

= (.23  .36   .04  .23  .14)  

 
 tells us where the truck will end up in two days. 
 
 
With  .23 probability, it will be in MIA. 

MIA      CG1      CG2      OVT      NMB 

MIA      CG1      CG2      OVT      NMB 



Markov Chains-Filling Gas Stations 

To get the probability distribution 𝜋k for where the car is on 
day k we calculate   𝝅k =  xo

T   PK . 
 
Seems simple enough, but… 
An important question in the theory of Markov chains is: 

 
 

(i.e, Does  π = lim
k→∞

𝜋k
𝑛 exist?) 

 
• Can be viewed as the distribution of the time the Markov chain 

spends in every state. 
• Often want to know if π is the same for any intial state xo 

 

Does the limit exist? 

Does the limit depend on xo? 



Markov Chains-Filling Gas Stations 

To get answers to our questions, we look at the transition 
matrix. Three possible cases: 

 

1) Irreducible, primitive   PFT gives us the stationary 
distribution 

 

2) Irreducible, but not primitive  PFT gives us some 
information 

 

3) Reducible  can´t use PFT, but we can approximate 



Markov Chains-FGS Case 1 

P Primitive ⇒ P has a right Perron vector 1/n, where n is # 
of elements.   

𝝅T is a right Perron vector for P T . 

Thus, lim
𝑘→∞

P 𝑘 = lim
𝑘→∞

P
ρ(P)

𝑘

=                 = 1𝝅T
 
 > 0 by PFT.  

 

So lim
𝑘→∞

xo
T

   

P݇   = xo
T1 𝝅T = 𝝅T     ⇒   The Markov Chain  

converges to the Perron vector of P T, regardless of the 
initial state xo. 

                                     
 
 

(1/n)𝝅T

𝝅T(1/n) 



Markov Chains-FGS Case 1 
So in our example, since the matrix is primitive (irreducible 
because ∃ a path between every state, and at least one 
diagonal element is not zero ⇒ primitive) 
 

             P  =     

.1 
.3
.3
.4
.3

    .4
    .3
    .1
    .4
    .4

     0
     .1
     .3
     0
     0

     .3
     .2
     .2
     .1
     .2

    

  .2
  .1
  .1
  .1
  .1

 

 
 
we know the limit exists and it´s the Perron vector which we 
calculate: 𝝅T ≈  (.2672   .35   .05  .2061  .1267) T . 
This is the stationary distribution of the Markov Chain.  

MIA      CG1      CG2      OVT      NMB 



Markov Chains-FGS Case 2 

Even if the matrix were not primitive, but at least 
irreducible, we can do almost the same thing: 
-- at least two simple eigenvectors on ρ(P) = 1 
-- 1/n is still a right Perron vector for P 

-- lim
𝑘→∞

P 𝑘 doesn´t converge, but the Cesáro sum,  

lim
𝑘→∞

1

𝑘
 P𝑗𝑘
𝑗=0   does, also to 1𝝅T

 
 > 0  ⇒  

lim
𝑘→∞

xo
T 1

𝑘
 P𝑗𝑘
𝑗=0   = xo

T1 𝝅T = 𝝅T     ⇒ the stationary 

distribution π exists independent of the initial state but 
the Markov chain doesn’t converge to it—it oscillates 
around it. 



Markov Chains-FGS Case 3 

So if the stochastic matrix is reducible, we can´t 
invoke PFT, but we can permute a reducible matrix 
into upper triangular form: 

 

PAP T = 
X Y
0 Z

 

 

If X or Z are reducible, we can permute again, …until 
PAP T is upper triangular and each block is either 
irreducible or a single zero.  



Markov Chains-FGS Case 3 

                 …then we put the matrix in canonical 
form by permuting blocks with nonzeros only on 
the diagonal to the bottom 

 
B ⋯ B
⋮ ⋱ ⋮
0 ⋯ B

B ⋯ B
⋮ ⋱ ⋮
B ⋯ B

 

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

B ⋯ 0
⋮ ⋱ ⋮
0 ⋯ B

 

 

 

 

 

Transient States 
(never come back) 

Ergodic/Absorbing States 
(each block is irreducible, stochastic) 



Markov Chains-FGS Case 3 

Now if this is in our matrix is in canonical form, call 
it C then lim

𝑘→∞
C𝑘 can be found if all the blocks of Z  

from  C =  
X Y
0 Z

 are primitive.  If one or more are 

not primitive, we can still find the limit of the 
Cesáro sum. 
 

For the primitive case the limit is (I-X) -1Y lim
𝑘→∞

P 𝑘= 
0 (I−X) −1Y
0 Z

     

 



Markov Chains-FGS Case 3 

lim
𝑘→∞

P 𝑘= 
0 (I−X) −1Y
0 E

   

 

                                         where  E = 
1𝜋j+1

T ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1𝜋k

T

 

 
The elements of (I-X)-1Y are the probabilities that if we start in state p 
we leave the transient states and eventually hit state q in one of the 
absorbing blocks.   “The hitting probability to hit q starting in p”. 
 
(I-X) -11 tells us the average # of steps to leave the transient state.  
“The hitting time for reaching the absorbing states”. 



Markov Chains-FGS Case 3 

We found that with about 27% probability the 
truck from OVT ends in MIA.   

New question:  How long (days) do we have to 
wait for the truck to go to MIA? 

Answer:   If you´re already at MIA that´s “good” 
so make that an absorbing state, which gives us 
a reducible matrix. 



Markov Chains-FGS Case 3 
 

      P    =       

.1 
.3
.3
1
.3

    .4
    .3
    .1
    0
    .4

     0
     .1
     .3
     0
     0

     .3
     .2
     .2
      0
     .2

    

  .2
  .1
  .1
  0
  .1

 

 

Now put this in canonical form and look at 

 (I-X)-1 1 tells us the average # of days to leave the 
transient state.  “The hitting time for reaching the 
absorbing states”.  4 days to get end up in MIA. 

MIA      CG1      CG2      OVT      NMB 

MIA 
 

CG1 
 

CG2 
 

OVT 
 

NMB 



Markov Chains-FGS Case 3 

 

             P   =         

.3 .3
0 1

    
.4 0
0 0

 .2 .2
 .2 .2

    .5 .1
    .1 .5

  

 
 

1 0
0 0

    
0 0
0 1

0 0
0 1

    1 0
    0 0

 

.3 .3
0 1

    
.4 0
0 0

 .2 .2
 .2 .2

    .5 .1
    .1 .5

 

1 0
0 0

    
0 0
0 1

0 0
0 1

    1 0
    0 0

      =  

} 

.3 .3
0 1

    
.4 0
0 0

 .2 .2
 .2 .2

    .5 .1
    .1 .5

  

FLL 
 

WPB 
 

MIA 
 

MCG 
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Markov Chains-FGS Case 3 
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    .5 .1
    .1 .5
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Markov Chains-FGS Case 3 

X = 
.3 0 .4
.2 .5 .1
.2 .1 .5

 

 

(I-X)-1 1 = 
1.82 .23 1.14
.91 2.2 .98
.91 .53 2.65

 
1
1
1
=
4
4.5
4.5

 
WPB 
 

MCG 
 

MIA 



Communications  

             Let say we have n transmitters with powers P1, . . . , Pn > 0, transmitting to n receivers. 
 

e.g., n=5                                                           
 
 

 
 
 
 
 
 
 

 
Note:  Lines do not need to cross for signals from transmitters to interfere with each other.  For 
example, signals from T1 and T4 interfere with each other to some degree, even though T1 has a “clear 
shot” to the receiver.  
Setting the right power for each transmitter i  is not so simple.  Just putting out as much signal as 
possible , besides being costly, can drowned out other signals. 
 

T3 T1 

T4 
T2 

T2 

T5 

R1 R5 
R4 

R3 
R2 



Signal to Interference Ratio (SIR) 



Power Control Problem 

Path gain from transmitter j to receiver i is Gij > 0  
(“% sound that arrives to j from i”) 
Signal power at receiver i is Si = GiiPi  
Interference power at receiver i is Ii =  GikPk𝑘≠𝑖  
 
The Signal to Interference Ratio (SIR) is 

 
Si / Ii  = GiiPi /  GikPk𝑘≠𝑖  

 
 
 
This is the question: How do we set transmitter powers to maximize 
the minimum SIR? 

 



Power Control Problem 

The same problem is to  minimize the maximum interference to signal 
ratio, i.e., solve the problem :    

Minimize    max
𝑖
(AP) 𝑖    under the constraint P > 0 , where  

 
 A ij  =  Gij / Gii  for i ≠ 𝑗  and  0 for 𝑖 = 𝑗 
(So A is the matrix of ratios of interference to signal path gains) 
 
A is positive except zeros on the diagonal ⇒ A2 > 0 ⇒ A is primitive ⇒ 
the solution is given by the PF eigenvector of A  
The PF eigenvalue λ of A is the optimal interference to signal ratio 
i.e., the maximum possible minimum SIR is 1/λ . 
 
With optimal power allocation, all SIRs are equal. 



Economic Applications 

Two (of many) applications are: 

1. The filling gas stations example, which more 
generally appears as an optimization 
problem: Trying to allocate business 
resources appropriately.  

2. An input-output model that is very important 
in both theory and practice called the Leontif 
Model. 

We looked at 1., now let´s consider 2.   



Leontief Input-Output Model 

Professor Leontief originally created a system of 500 equations with 
500 unknowns; however, at that time, such analysis was much too 
large for any computer to solve. As a result, he had to narrow it down 
to a 42 by 42 system. By creating this 42X42 matrix model,  
Leontief attempted to answer the following question: What quantity 
should each sector in an economy produce so that it will be just 
adequate to meet the total demand for that product? 
The main objective of the Leontief Input-Output Model is to equalize 
the total amount of goods produced and the total demand for that 
production; in other words, economists try to find X satisfying the 
following equation: 
Production level= intermediate demand + final demand 
                          x = i + d 



Econ App: Leontief I/O Model 

In the Leontief Input-Output model, the  

economic system is assumed to have n 
industries with two types of demands on each  

industry: final demand (the customer is the final 
place for the product, also called external 
demand being a demand from outside the 
system) and intermediate demand (or internal 
demand – a demand placed on one industry by 
another within the system).   



Economic App: Input-Output Model 

So n = number of sectors of the economy 
   x = production vector = output of each sector 
   d = external demand = value of goods demanded       
                                             from outside the system 
    i = internal demand = inputs required for production   
                       
For each sector, there is a unit consumption vector c that lists 
the inputs needed per unit of output.  These make up a matrix 
C, and we define 
                                            i  = Cx    . 
In the consumption matrix C, entry cij is the amount of input of 
a certain good i needed to produce one unit output of good j. 



Economic App: Input-Output Model 

                  

 

 

 

 

    .46 is the number of units of steel that the 
automobile industry needs to produce one car. 

 

 

.15 .25 .22

.20 .14 .11

.46 .18 .25
  

Automobile 
 
Construction 
 
Steel 

 

     Auto        Construction        Steel 



Econ App: Leontief I/O Model 

Now we solve  x = Cx + d  : 

 

                        x = (I – C)-1d 

 

Even though C is nonnegative, x could have some 
negative values.   That makes no sense in this 
model, or similar models where x is a supply 
vector—how much a factory/company/industry 
should make to meet outside demand.  

 



Econ App: Leontief I/O Model 

If we can assume  that  ρ(C) < 1, then  Ci ∞
𝑖=0  

converges in operator norm.  

(Gelfand's formula shows that if ρ(A)<1, then for 
some n, ∥An∥<1.   One can then rewrite the 
series as (1+A+⋯+An−1) Ani ∞

𝑖=0 , which 
converges in norm.) 

 



Econ App: Leontief I/O Model 

The series  Ci ∞
𝑖=0  would be a Neumann series 

converging to (I – C)-1  .  Since C is nonnegative 
and d is nonnegative, x would be nonnegative. 

To assume ρ(C) < 1, we need to make some mild 
assumptions, and then use the PFT. 

 



Econ App: Leontief I/O Model 

Assumptions we make about the Matrix  
   

1. Any column or row does not add up to more than one.  
That makes sense, because a sector should require less 
than one unit’s worth of input to produce one unit of 
output.    
 

2. The matrix is irreducible. Assuming C to be irreducible is 
the same as saying that every industry directly or 
indirectly uses something produced by all other 
industries, which is reasonable between large (broad) 
industries. 

  



Econ App: Leontief I/O Model 

 

 

Now we have a nonnegative, irreducible matrix, 
with no row or column adding up to more than 
1, so by the PFT, ρ(C) < 1, so  Ci ∞

𝑖=0  converges, 
and we can use the model to solve for minimal 
supply needed to meet demand. 

 



Econ App: Leontief I/O Model 

Comment 

There are different versions of this model for 
different scales and purposes.   The model can 
also be used in reverse in this sense: 

Given a consumption matrix, if the columns (or 
rows) are less than 1, then that is a sufficient 
(not necessary--it can still be productive if we 
are able to find a vector x such that x > C x) 
condition for the matrix to be “productive”. 



Ranking 

When all competitors don´t play each other, how 
to rank them? 

 

College Football rankings and other sports in this 
situation use the PFT. 

 

Let´s look at a soccer match and then at Google´s web 
page ranking as an example using the PFT to rank. 



Ranking – World Cup 

6 teams.   1 pt for win, ½ pt for tie, 0 for loss. 

 

 

Brazil Canada Colombia Denmark Ecuador France Total 

Brazil 
 

1/2 
 

0 
 

 
0 

 

 
1 

 

 
1 

 

 
0 

 

 
2.5 

 

 
Canada 
 

 
1 

 

 
1/2 

 
0 

 

 
1 

 

 
1 

 

 
1 

 

 
4.5 

 

 
Colombia 
 

 
1 

 

 
1 

 

 
1/2 

 

 
0 

 

 
1 

 

 
1 

 

 
4.5 

 

 
Denmark 
 

 
0 

 

 
0 

 

 
1 

 

 
1/2 

 

 
0 

 

 
0 

 

 
1.5 

 

 
Ecuador 
 

 
0 

 

 
0 

 

 
0 

 

 
1 

 

 
1/2 

 

 
1 

 

 
2.5 

 

 
France 

 
1 

 

 
0 

 

 
0 

 

 
1 

 

 
0 

 

 
1/2 

 

 
2.5 

 



Ranking – World Cup 

2 strange things:   

 

1. Colombia and Canada are tied, even though 
Colombia won in a head to head contest. 

 

2. Denmark beat #1 Colombia, but no extra 
credit for this. 

 



Ranking – World Cup 

 

.5
1
1
0
0
1

  0
  .5
  1
  0
  0
  0

  

 0
 0
.5
 1
 0
 0

  1
  1
  0
  .5
  1
  1

  1
  1
  1
  0
  .5
  0

  0
  1
  1
  0
  1
  .5

 

 

The first ranking obtained by comparing the row 
sums of the matrix.  The .5 for playing oneself 
doesn´t affect anything yet.    

            COL=CAN > BRA=ECU=FRA > DEN 

Brazil 
 

Canada 
 

Colombia 
 

Denmark 
 

Ecuador 
 

France 



Ranking – World Cup 

The first ranking is R1 (i) =  Aj ij    

 

 COL=CAN > BRA=ECU=FRA > DEN 

 

The second ranking is R2 (i) =  Aj ij   R1 (j) 

which equals  (Aj ij   Ak jk )  
(This is just multiplication of two matrices.) 

 

… Rn (i) =  Aj ij
n 

         or           A
n  

1 = Rn 

 

 (sum of the j columns of row i) 



Ranking – World Cup 
Results: 

R1 

       4.5                     2.5                1.5 

COL=CAN > BRA=ECU=FRA > DEN 

 

R2  

   14.25   11.25                5.25                 g 

COL > CAN > BRA=ECU=FRA=DEN 

 

R3 

  34       27       17              13        v 

COL > CAN > DEN>BRA=ECU=FRA 

 

R4 

824       696       426           366          v 

COL > CAN > DEN>BRA=ECU=FRA   

 

Will the rankings keep changing, or eventually stabilize? 



Ranking – World Cup 

 

.5
1
1
0
0
1

 0
 .5
 1
 0
 0
 0

 

0
0
.5
1
0
0

 1
 1
 0
 .5
 1
 1

 1
 1
 1
 0
 .5
 0

 0
 1
 1
 0
 1
 .5

 

 

The matrix is nonnegative, with at least one 
nonnegative on the diagonal.   By its digraph we 
see it´s irreducible, thus it is primitive.  

Brazil 
 

Canada 
 

Colombia 
 

Denmark 
 

Ecuador 
 

France 



Ranking – World Cup 

By the PFT,  

 

lim
𝑛→∞

A

ρ(A)
 
n

= xyT
 

i.e., The final ranking is determined by the eigenvector associated to 
the largest eigenvalue.   

In our example, this turns out to be 

   

.27  

.53

.64

.32

.27

.27

 

   so the ranking  

 
converges to  COL > CAN > DEN > BRA=ECU=FRA. 
 

 



Ranking – World Cup 

There is a glitch if one team is undefeated or never victorious.  
Then the digraph is not strongly connected.  e.g., if Denmark had 
not upset number 1 Colombia.   

 

There´s also still this annoying fact…Denmark did win against 
Colombia.  It violates the ranking.  This is a “pairwise violation”.  
There are many complicated methods to ranking and often a 
goal is to minimize the pairwise violations.  Finding the ranking 
that minimize the p.w. violations is NP-hard (= very hard). 
 

 



Ranking – (American) Football  

This gets more complicated because every team does not play 
every other team.  If we can get an irreducible matrix, we can get 
primitivity as in the previous example by putting .5 on the 
diagonal, and then apply the PFT. 

 

Getting to that point requires creating links where they are 
missing. One example of a way to make links is the sharing of the 
victory point (based on score).  All-or-nothing is unidirectional, 
but sharing the points makes the graph more connected.   

  

A weighted graph is more likely to be strongly connected. 

 



Ranking – Google 

Reference: Google’s PageRank and Beyond: The 
Science of Search Engine Rankings by Amy N. 

Langville and Carl D. Meyer.  

 

This is based on their discussion in Chapters 3  
and 4.  

 



Ranking – WWW 

Think of the internet as a directed graph. 

 

 

 



Ranking – WWW 

Webpages are nodes 

Links between pages are directed edges 

# of links from a node = “out-degree” of that node 

Here´s a part we´ll look at: 

 

 

 

 
5 4 

3 2 

1 



Ranking – WWW 

We construct matrix H representing the digraph. 
 

5 rows, 5 columns, each value is 1/(outdegree) 
 
 

H=  
 0
0
0
1/2
1/2

       

 0
 0
 1
 0
 0

           

1/3
0
0
1/2
0

        

1/3
0
0
0
1/2

      

1/3
0
0
0
0

 

 



Ranking – Google 

Define the rank of a webpage as  

r(P)=   
r(Q)

deg (Q)
 
Q∊BP

 

 

deg(Q) is the outdegree out Q 

BP = the set of pages pointing to P 

The rank of any website is proportional to the 
importance of the sites that link to it. 



Ranking – Google 

But the definition is recursive, so let´s define  

rk+1(P)=   
rk(Q)

deg (Q)
 
Q∊BP

 

 

We need a start point for the iteration, so take 
the uniform distribution  ro(P) = 1/n.   We´ll show 

that it doesn´t matter what the start point is.  



Ranking – Google 

Define a rank vector z. 

Then, e.g., z0 = (r0(P1), r0(P2),…r0(Pn))  

 

We can write zk+1 = zk H for k = 0, 1, 2,… 

(Note the nonzero elements on the ith row of H are just  1

deg (Pi)
  .) 

 

 

So zk = z0 H
k  for k = 1,2,3,… 

lim
k→∞

(z0 H
k ) = 𝝅 exists  if H is primitive. 

 



Ranking – Google 

So that´s what Google does: 

 

1. Make H a stochastic matrix, so that surfing the 
web becomes a Markov process. 

 

2. Make some adjustments, if necessary so H>0 

 

3. Apply the PFT. 

 

 
 



Ranking – Google 

Webpages that don´t link to others are called dangling nodes. 
This puts a row of zeroes in the matrix, making it unstochastic. 
We can just put the uniform distribution in place of the zeros. 
This is artificially creating links from that page to every page on 
the WWW.   
 
Is this o.k.?  
 
Yes.  We have a Markov Process. ⟹  
We don´t remember past states (surfing with no back button). 
The next site you visit will be any site with equal probability. 



Ranking – WWW 

H becomes Stochastic 

 

                              1/5      1/5             1/5          1/5       1/5 

S H =  
 0
0
0
1/2
1/2

       

 0
 0
 1
 0
 0

           

1/3
0
0
1/2
0

        

1/3
0
0
0
1/2

      

1/3
0
0
0
0

 

 



Ranking – Google 

 

Note: 

There are better ways to replace the zeros. That´s 
one of many things that makes one search 
algorithm better than another. 



Ranking – Google 

In this example S is already primitive (strongly 
connected ⟹ irreducible, and with a non zero 
diagonal element), but that´s not always the 
case. 

We add the personalization matrix (all 1/n 
entries), call it E. 

E is stochastic, but the sum of E + S need not be. 

To preserve the stochastic nature we add a linear 
combination 𝛼 S + (1 - 𝛼) E = The Google Matrix G 



Ranking – Google 

Ways to tweak the ranking:    
1. Different 𝛼 
2. Different E 
E must be stochastic (rows add to 1), but not 
necessarily uniform. Relative website popularity is a 
possible choice. 
Low 𝛼 means the hyperlink structure is important, 
high 𝛼 means you are more likely to go anywhere 
randomly. (Google has used 𝛼 = .15) 
The linear combination reflects how people surf. 



Ranking – Google 

G is stochastic and positive ⟹ the largest 
eigenvalue is 1, is simple, and no other 
eigenvalue lies on the spectral circle. 

⟹ there ∃ a stationary distribution, 

lim
k→∞

(z0 G
k ) = 𝝅 

 

 



Ranking – Google 

 

In our example, with uniform personalization 
matrix and 𝛼 = .15 , 

𝝅 = (.210    .25   .213    .189     .133), 

which gives us the ranking 

P2  > P3 > P1 > P4 > P5   

 



References 

Google’s PageRank and Beyond: The Science of Search Engine 
Rankings by Amy N. Langville and Carl D. Meyer.  
 
Non-negative Matrices and Markov Chains by E. Seneta. 
Springer Statistical Series. 
 
The Perron-Frobenius Theorem and the Ranking of Football 
Teams by James P. Keener SIAM Review March 1993. 
 
and, of course, Wikipedia:  
Perron Frobenius Theorem, Stochastic Matrices, Directed 
Graphs, Markov Chains, etc. 


