
Java by Dissection
2nd Edition

Ira Pohl

Charlie McDowell

University of California, Santa Cruz

ii

Copyright (c) 2006 by Ira Pohl and Charlie McDowell

ISBN 978-1-4116-5238-5

TABLE OF CONTENTS

Table of Contents . iii

Preface . xi

Acknowledgments. xiv

Chapter 1
Introduction. .1

1.1 Recipes . 1
1.2 Algorithms—Being Precise . 3
1.3 Implementing Our Algorithm in Java 5
1.4 Why Java? . 6
1.5 Network Computing and the Web 7
1.6 Human–Computer Interaction and the GUI 8

Summary. 9
Review Questions . 9
Exercises. 10

Chapter 2
Program Fundamentals . 13

2.1 “Hello, world!” in Java . 13
2.2 Compiling and Running Your Java Program 14
2.3 Lexical Elements . 16

2.3.1 White Space . 16
2.3.2 Comments . 17

iv Table of Contents

2.3.3 Keywords .17
2.3.4 Identifiers .18
2.3.5 Literals .18
2.3.6 Operators and Punctuation19

2.4 Data Types and Variable Declarations 19
2.4.1 Variables .20
2.4.2 Variable Initialization 20

2.5 An Example: String Concatenation21
2.5.1 Strings Versus Identifiers Versus Variables . . .22

2.6 User Input .23
2.7 Calling Predefined Methods .24
2.8 print(), println(), and printf() 25

2.8.1 Formatting output with printf()26
2.9 Number Types .27

2.9.1 The Integer Types .27
2.9.2 The Floating Point Types 28
2.9.3 The char Type .28
2.9.4 Numbers Versus Strings30

2.10 Arithmetic Expressions .30
2.10.1 An Integer Arithmetic Example: Change 31
2.10.2 Type Conversion .32

2.11 Assignment Operators .34
2.12 The Increment and Decrement Operators36
2.13 Precedence and Associativity of Operators37
2.14 Programming Style .38

Summary . 39
Review Questions . 40
Exercises . 41
Applet Exercise. 44

Chapter 3
Statements and Control Flow .47

3.1 Expression, block, and empty Statements 47
3.1.1 Empty Statement .48

3.2 Boolean Expressions .49
3.2.1 Relational and Equality Operators49
3.2.2 Logical operators .49

3.3 The if statement .51
3.3.1 Problem Solving with the if statement52

3.4 The if-else statement .55
3.4.1 Nested if-else Statements57
3.4.2 if-else-if-else-if58
3.4.3 The Dangling else Problem59

3.5 The while statement .60
3.5.1 Problem Solving with Loops 61

3.6 The do Statement .64
3.7 The for statement .65

 Table of Contents v

3.7.1 Local Variables in the for Statement 67
3.8 The break and continue statements 68
3.9 The switch statement .69
3.10 Using the laws of Boolean Algebra71
3.11 Programming Style .72

Summary . 72
Review Questions . 73
Exercises . 76
Applet Exercise. 78

Chapter 4
Methods: Functional Abstraction81

4.1 Method Invocation .82
4.2 Static Method Definitions .83
4.3 The return statement .84
4.4 Scope of Variables .86
4.5 Top-Down Design .88
4.6 Problem Solving: Random Numbers91
4.7 A Simulation: Probability Calculations 93
4.8 Invocation and Call-By-Value .96
4.9 Problem Solving: A Computer Game97

4.9.1 Twenty-One Pickup: Requirements Analysis . .98
4.9.2 Twenty-One Pickup: Design 98
4.9.3 Twenty-one Pickup: Implementation100
4.9.4 Twenty-one Pickup: Testing 105

4.10 Recursion .106
4.11 Problem Solving: Mathematical Functions108
4.12 Method Overloading .109
4.13 Programming Style .111

Summary . 113
Review Questions . 113
Exercises . 115
Applet Exercise. 118

Chapter 5
Arrays And Containers .121

5.1 One-Dimensional Arrays .121
5.1.1 Indexing an Array Element 122
5.1.2 Array Initialization .122
5.1.3 Array Member Length124

5.2 The for Iterator statement .124
5.3 Passing Arrays to Methods .125
5.4 Array Assignment .127
5.5 Finding the Minimum and Maximum of an Array 128
5.6 A Simple Sorting Method .130
5.7 Searching an Ordered Array .132

vi Table of Contents

5.8 Big-Oh: Choosing the Best Algorithm134
5.9 Type and Array .135

5.9.1 Booleans: The Sieve of Eratosthenes135
5.9.2 char: Using a Line Buffer136
5.9.3 double: Accumulate137

5.10 Two-Dimensional Arrays .138
5.10.1 Two-dimensional Initializer Lists139

5.11 An Elementary Simulation: The “Game of Life” 140
5.11.1 The Game of Life: Requirements Analysis . . .141
5.11.2 The Game of Life: Design141
5.11.3 The Game of Life: Implementation 143

5.12 Arrays of Nonprimitive Types149
5.12.1 Arrays of Strings .149

5.13 The container ArrayList<> 150
5.14 Problem Solving: Palindromes 152
5.15 Programming Style .152

5.15.1 Counting from Zero 153
Summary . 153
Review Questions . 154
Exercises . 156

Chapter 6
Objects: Data Abstraction .159

6.1 The enumeration types: .159
6.2 Enum Methods .160
6.3 Instance methods .161
6.4 Enumeration Operations .162
6.5 A SIMPLEST CLASS .163

6.5.1 Member Access Operator 163
6.6 Adding Instance Methods: Class Counter165
6.7 Access public and private: Data Hiding167
6.8 Constructor Methods and Object Creation168
6.9 Static Fields and Methods .169
6.10 Calling Methods—A Recap .171

6.10.1 Calling a Method in the Same Class 171
6.10.2 Calling Instance Methods 172
6.10.3 Calling Class Methods 172

6.11 Problem Solving: Making Change172
6.12 Accessing Another Object’s Private Fields 174
6.13 Passing Objects: Reference Types 175
6.14 Scope .178
6.15 Nested Classes .179
6.16 Keyword final and Class Constants 180
6.17 Arrays of Objects .181
6.18 Object-Oriented Design .184
6.19 Programming Style .187

Summary . 187

 Table of Contents vii

Review Questions . 188
Exercises . 188
Applet Exercise. 191

Chapter 7
Inheritance .193

7.1 A Student “Is a” Person .193
7.2 Overriding Instance Methods197

7.2.1 Calling print() and println() 198
7.3 The Access Modifiers private and public Revisited .199
7.4 Packages .200

7.4.1 Using Packages .201
7.4.2 Creating Packages .201
7.4.3 The Access Modifier Protected 202

7.5 Type Object and Inheritance204
7.6 Abstract Classes .206
7.7 An Example: Predator–Prey Simulation207
7.8 Interfaces .214
7.9 Multiple Inheritance .215
7.10 Inheritance and Design .217
7.11 Type conversions and Polymorphism218

7.11.1 The Operator instanceof 218
7.11.2 Automatic Boxing of Primitives220
7.11.3 Automatic Unboxing of Primitives221

7.12 Programming Style .222
Summary . 222
Review Questions . 223
Exercises . 225

Chapter 8
Graphical User Interfaces: Part I227

8.1 "Hello, world!" Button .228
8.2 Listening to Events .229
8.3 Text and Numerical Input .232
8.4 Using Several Components .234
8.5 Drawing with Swing .237
8.6 The Layout Manager FlowLayout241
8.7 A Simple Drawing Program .243
8.8 Applets .248
8.9 Programming Style .253

Summary . 254
Review Questions . 255
Exercises . 255

viii Table of Contents

Chapter 9
Graphical User Interfaces: Part II 259

9.1 Arranging Components in a GUI259
9.1.1 The Class BorderLayout259
9.1.2 Nesting Containers in Other Containers 260

9.2 Getting a Component to Resize 261
9.3 Problem Solving: Plotting Data263
9.4 The Class Graphics .268
9.5 Changing the Stroke Used in Drawing 272
9.6 Adding Menus to a GUI .275
9.7 Event Listeners and Adapters281

9.7.1 Listener Adapter Classes 286
9.8 Pop-ups and Dialogs .287
9.9 Programming Style .293

Summary . 293
Review Questions . 294
Exercises . 295

Chapter 10
Reading and Writing Files .299

10.1 Types of Files .299
10.2 Writing Text Files .300
10.3 Reading Text Files .301

10.3.1 Parsing Text Streams 303
10.4 Formatting Text Output .304

10.4.1 Conversion characters 305
10.4.2 Width and precision specifications 306
10.4.3 Selecting arguments for conversion 306
10.4.4 Java’s printf() versus C’s307
10.4.5 Var args .307

10.5 Problem Solving: Encrypting Text Files309
10.6 Reading and Writing Binary Files 311
10.7 Detecting the End of an Input Stream313
10.8 Serialization and Writing Objects315
10.9 Programming Style .318

Summary . 318
Review Questions . 319
Exercises . 320

Chapter 11
Coping with Errors .323

11.1 Exceptions .324
11.1.1 Exception Handling with try and catch . . .324
11.1.2 Catching an EOFException328
11.1.3 Abrupt Return from Methods 330

 Table of Contents ix

11.1.4 Catching Several Different Exceptions331
11.1.5 The finally Clause333
11.1.6 Program Correctness: Throwing an Exception 335
11.1.7 RuntimeExceptions and the throws Clause 336

11.2 Testing .337
11.2.1 Testing with Junit .337

11.3 Assertions .342
11.3.1 Adding assert statements to your program . .343
11.3.2 Enabling and Disabling Assertions 344
11.3.3 Preconditions, postconditions, and Invariants 344

11.4 Debugging .344
11.4.1 jdb .345
11.4.2 jdb on programs that read from System.in . .348
11.4.3 Other jdb commands 351
11.4.4 A Debugger with a GUI351
Summary . 353
Review Questions . 353
Exercises . 355

Chapter 12
Dynamic Data Structures .357

12.1 Self-Referential Structures .357
12.2 A Linked List Implementation of a Stack359
12.3 A Singly Linked List .361
12.4 More Operations on Lists .365

12.4.1 toString() for the Class IntList 365
12.4.2 Doubly Linked Lists 366

12.5 A Generic Stack .367
12.6 An Example: Polish Notation and Stack Evaluation . . .370
12.7 Queues .372
12.8 Iterators .373

12.8.1 Using Iterators to Implement append()376
12.8.2 Sorting a Linked List378

12.9 Iterators and the Interface Iterator 379
12.10 Deleting objects .380
12.11 Packages .380

12.11.1 Package Access .381
12.11.2 Using Packages .382
12.11.3 Creating Packages .382

12.12 Programming Style .383
Summary . 383
Review Questions . 384
Exercises . 385

x Table of Contents

Chapter 13
Threads: Concurrent Programming389

13.1 Implicit Threads from AWT .390
13.2 Creating Threads .391

13.2.1 The interface Runnable393
13.3 Communication Between Two Threads393
13.4 Synchronizing Two Threads .395

13.4.1 Mutual Exclusion Using synchronized 395
13.4.2 Signal–Wait Synchronization396
13.4.3 Condition Variables Versus Semaphores399
13.4.4 ArrayBlockingQueue401

13.5 Passing Messages to Another Computer 403
13.6 A MultiThreaded Server .407

13.6.1 Reusing worker threads 408
13.7 Methods sleep(), wait(), and notify() 410

13.7.1 Calling sleep() from Anywhere410
13.7.2 Calling wait() and notify() 410
13.7.3 The Method notifyAll()411

13.8 Futures .414
13.9 Programming Style .419

Summary . 420
Review Questions . 421
Exercises . 422

Appendix
Getting Down to the Bits .425

A.1 Integer Binary Representation 425
A.1.1 Two’s Complement Binary Arithmetic425

A.2 Floating Point Representations426
A.3 Manipulating Bits .428

A.3.1 Bitwise Operators .428
A.3.2 Shift Operators .429

Reference Tables .431
B.1 Operator Precedence Table .431
B.2 The Standard Java Math Functions 432

Summary of Selected Swing Components.435
C.1 The Class JButton .435
C.2 The Class JComboBox .435
C.3 The Class JList .436
C.4 The Class JLabel .437
C.5 The Class JTextField .437
C.6 The Class JTextArea .438
C.7 The Class JPanel .439
C.8 The Class JScrollPane .440

INDEX .443

PREFACE

Java by Dissection:2ed is an introduction to programming in Java that assumes no prior programming experi-
ence. It thoroughly teaches modern programming techniques using Java with generics. It shows how all the
basic data types and control statements are used traditionally. The book then progresses to the object-ori-
ented features of the language and their importance to program design. As such the first half of the book can
be used in a first programming course for college students. By careful choice of exercises and supplemental
material it could be used for a gentle introduction to programming for computer science or engineering
majors also.

The second half of the book explains in detail much that is sophisticated about Java, such as its threading,
exception handling, graphical user interface (GUI), generics, and file manipulation capabilities. As such the
book is suitable as the primary text in an advanced programming course, or as a supplementary text in a
course on data structures, software methodology, comparative languages, or other course in which the
instructor wants Java to be the language of choice.

Java, invented at Sun Microsystems in the mid-1990s, is a powerful modern successor language to C and C++.
Java, like C++, adds to C the object-oriented programming concepts of class, inheritance and run-time type
binding. The class mechanism provides user-defined types also called abstract data types. While sharing
many syntactic features with C and C++, Java adds a number of improvements, including automatic memory
reclamation called garbage collection, bounds checking on arrays, and strong typing. In addition, the stan-
dard Java libraries, called packages in Java, provide platform independent support for distributed program-
ming, multi-threading and graphical user interfaces.

Although Java shares many syntactic similarities to C, unlike C++, Java is not a superset of C. This has
allowed the creators of Java to make a number of syntactic improvements that make Java a much safer pro-
gramming language than C. As a result, Java is much better as a first programming language.

Java by Dissection:2ed begins with a classical programming style starting with programs as a simple
sequence of instructions, then adding in control flow and functional abstraction. After that comes arrays and
data abstraction using classes, which can be covered in either order - arrays first, or data abstraction with
classes first. Then comes the material on inheritance and graphical user interfaces. Again, the chapter on
inheritance can be covered before or after the first chapter on graphical user interfaces. Finally come the
advanced chapters. The following figure illustrates the flexibility in the order in which the material can be
covered.

xii Preface

The book emphasizes working code. One or more programs particularly illustrative of the chapter’s themes
are analyzed by dissection, which is similar to a structured walk-through of the code. Dissection explains to
the reader newly encountered programming elements and idioms.

Because Java includes a relatively easy-to-use, standard package for creating graphical user interfaces, it is
possible to introduce the use of GUIs in a beginning programming book. Creating programs with GUIs is as
fundamental today as being able to create nicely formatted text output. To fully understand the GUI pack-
ages in Java, it is necessary to have some understanding of OOP and inheritance. The main chapters on GUI
building immediately follow the chapters on objects and inheritance. For those students interested in getting
an early exposure to some of the graphical aspects of Java, we have provided a series of extended exercises at
the end of the early chapters, that introduce GUIs and applets. These exercises provide templates for some
simple applets, without providing complete explanations of some of the language features required.

The following summarizes the primary design features that are incorporated into this book.

Dissections. Each chapter has several important example programs. Major elements of these programs are
explained by dissection. This step-by-step discussion of new programming ideas helps the reader encounter-
ing these ideas for the first time to understand them. This methodology has been proven effective in numer-
ous programming books since its first use in A Book on C in 1984.

Teaching by Example. The book is a tutorial that stresses examples of working code. Right from the start the
student is introduced to full working programs. Exercises are integrated with the examples to encourage
experimentation. Excessive detail is avoided in explaining the larger elements of writing working code. Each
chapter has several important example programs. Major elements of these programs are explained by dissec-
tion.

Object-Oriented Programming (OOP). The reader is led gradually to an understanding of the object-oriented
style. Objects as data values are introduced in Chapter 2, Program Fundamentals . This allows an instructor
partial to the objects early approach to emphasize OO from the start. Chapter 6, Objects: Data Abstraction,
shows how the programmer can benefit in important ways from Java and object-oriented programming.
Object-oriented concepts are defined, and the way in which these concepts are supported by Java is intro-
duced. Chapter 7, Inheritance, develops inheritance and dynamic method dispatch, two key elements in the
OOP paradigm.

2: Fundamentals

3: Control Flow

4: Methods

5: Arrays 6: Objects

8: GUIs 7: Inheritance

9: GUIs Part II

10: Files

13: Threads

11: Exceptions

1: Introduction

12: Data Structures

 Preface xiii

Terminal input and output. Java has added a Scanner class that makes terminal input easy. This replaces
our first edition tio package which is no longer needed. Also the addition of printf() for variable argu-
ment fromatted output is discussed.

Container Classes and Generics in Java. The text covers this added feature to Java 5.0. Containers are imple-
mented as generics. Standard containers include Vector, LinkedList, ArrayList and PriorityQueue. These also
allow Iterator access and can be used with the for-iterator statement that hides indexing.

Swing and Graphical User Interfaces. An important part of Java is its support for platform independent cre-
ation of graphical user interfaces and the web based programs called applets. InChapter 8, Graphical User
Interfaces: Part I and Chapter 9, Graphical User Interfaces: Part II, we present a basic introduction to using
the standard Java package Swing, for building GUIs. These chapters provide enough information to create
useful and interesting applets and GUIs. A few additional GUI components are presented briefly in Appendix
C, Summary of Selected Swing Components. For students anxious to begin writing applets, simple applets are
introduced in a series of exercises beginning in Chapter 2, Program Fundamentals. These exercises are com-
pletely optional. The coverage of applets and GUIs in Chapter 8, Graphical User Interfaces: Part I and Chapter
9, Graphical User Interfaces: Part II does not depend upon the student having done or read the earlier applet
exercises.

Threads. Multi-threaded programming is not usually discussed in a beginning text. However, some under-
standing of threads is essential for a true understanding of the workings of event driven GUI based pro-
grams. In addition, the authors feel that thread-based programming will become increasingly important at all
levels of the programming curriculum. Threading is explained in Chapter 13, Threads: Concurrent Program-
ming, and used to introduce the reader to client/server computing. This book gives a treatment suitable to
the beginning programmer that has mastered the topics in the preceding chapters.

Course-Tested. This book is the basis of courses given by the authors, who have used its contents to train stu-
dents in various forums since 1997. The material is course-tested, and reflects the author’s considerable
teaching and consulting experience.

Code examples. All the major pieces of code were tested. A consistent and proper coding style is adopted
from the beginning and is one chosen by professionals in the Java community. The code is available at the
Addison Wesley Longman Web site (www.awl.com).

Common Programming Errors. Many typical programming bugs, along with techniques for avoiding them, are
described. This books explains how common Java errors are made and what must be done to correct them.
The new edition also describes the use of assertions that came in with Java1.4.

Exercises. The exercises test and often advance the student’s knowledge of the language. Many are intended
to be done interactively while reading the text, encouraging self-paced instruction.

Web site. The examples both within the book are intended to exhibit good programming style. All examples
for this book are available on the web at www.soe.ucsc.edu/~pohl/java.

New in the Second Edition. Java 5.0 came out in September of 2004 with important changes over the original
language. These include: container based generics, enum types, assertions, more threading refinements, ter-
minal IO using Scanner, and formatted IO using printf(). We have included all these important topics and
where possible revised the text to take advantage of them.

Course use:

Q First Course in Programming: Java by Dissection is designed to be used as a basic first programming
course - similar in scope to courses that used C, Pascal, or C++. Chapters 1-6 cover such a curriculum.

Q First Course in Programming - Swing emphasis: By using supplementary material at the end of each of
the first chapters the instructor can take a GUI approach as opposed to the traditional terminal I/O
approach.

Q CS1 Course in Programming: By covering material at a more rapid pace for well prepared computer sci-
ence majors the book can function as the primary text in a CS1-2 sequence. The instructor would select
more advanced exercises and cover material through chapter 11.

xiv Preface

Q Second Course in Programming: The book can be used as a second or advanced course covering object-
oriented programming. Chapters 2-5 can be skimmed by anyone already familiar with a procedural pro-
gramming language such as C or Pascal. A programmer already familiar with OOP concepts could also
skim chapters 6 and 7. Chapters 8-13 provide a mix of interesting advanced topics, not generally covered
in a beginning programming course.

ACKNOWLEDGMENTS

Our special thanks go to Debra Dolsberry and Linda Werner for their encouragement and careful reading and
suggestions for improvement. Debra was especially helpful with typesetting issues. Our student Sarah Berner
was an important contributor to the effectiveness of the text in its first edition and especially helpful in con-
verting many examples and exercises over to SWING. Thanks to Uwe F. Mayer for his careful review of the
second edition which caught numerous errors.

Charlie McDowell and Ira Pohl
University of California, Santa Cruz

CHAPTER 1

INTRODUCTION

Java is the first major programming language to be shaped by the World Wide Web (the Web). Java allows you
to do traditional programming. Java also has many special features and libraries that allow you conveniently
to write programs that can use the Web’s resources. These include extensive support for graphical user inter-
faces, the ability to embed a Java program in a Web document, easy communication with other computers
around the world, and the ability to write programs that run in parallel or on several computers at the same
time.

In this chapter we give an overview of how to solve a problem on a computer. In this process, you must first
construct a recipe for solving the problem. Then you must convert the recipe into a detailed set of steps that
the computer can follow. Finally, you must use a programming language, such as Java, to express the steps in
a form “understandable” by the computer. The Java form of the solution is then translated by a program
called a compiler into the low-level operations that the computer hardware can follow directly.

We then discuss why Java is creating such a fuss in the computing world. In general terms, we explain the
importance of computing on the Web and the character of the graphical user interfaces, or GUIs, that are
partly behind the switch to Java.

Throughout this text we feature carefully described examples, many of which are complete programs. We
often dissect them, allowing you to see in detail how each Java programming construct works. Topics intro-
duced in this chapter are presented again in later chapters, with more detailed explanations. The code and
examples are meant to convey the flavor of how to program. You should not be concerned about understand-
ing the details of the examples. They are given in the spirit of providing an overview. If you are already famil-
iar with what a program is and want to start immediately on the nitty-gritty of Java programming, you may
skip or scan this chapter.

1.1 RECIPES

Computer programs are detailed lists of instructions for performing a specific task or for solving a particular
type of problem. Programlike instruction lists, sometimes called algorithms, for problem solving and task
performance are commonly found in everyday situations. Examples include detailed instructions for knitting
a sweater, making a dress, cooking a favorite meal, registering for classes at a university, traveling from one
destination to another, and using a vending machine. Examining one of these examples is instructive.

Consider this recipe for preparing a meat roast:

2 Introduction

The recipe is typically imprecise—what does “sprinkle” mean, where is the thermometer to be inserted, and
what is a “sufficient amount” of pan drippings?

However, the recipe can be formulated more precisely as a list of instructions by taking some liberties and
reading “between the lines.”

COOKING A ROAST

1. Sprinkle roast with 1/8 teaspoon salt and pepper.

2. Turn oven on to 150º C.

3. Insert meat thermometer into center of roast.

4. Wait a few minutes.

5. If oven does not yet register 150º C, go back to step 4.

6. Place roast in oven.

7. Wait a few minutes.

8. Check meat thermometer. If temperature is less than 80º C, go back to step 7.

9. Remove roast from oven.

10. If there is at least 1/2 cup of pan drippings, go to step 12.

11. Prepare gravy from meat stock and go to step 13.

12. Prepare gravy from pan drippings.

13. Serve roast with gravy.

These steps comprise three categories of instructions and activities—those that involve manipulating or
changing the ingredients or equipment, those that just examine or test the “state” of the system, and those
that transfer to the next step. Steps 1 and 6 are examples of the first category; the temperature test in step 8
and the pan dripping test in step 10 are instances of the second category; and the transfers in steps 5 and 8
(“go to step x”) are examples of the last category.

By using suitable graphical symbols for each of these categories, a simple two-dimensional representation of
our cooking algorithm can be obtained, as shown in the following illustration.

Sprinkle the roast with salt and pepper. Insert a meat
thermometer and place in oven preheated to 150 ºC.
Cook until the thermometer registers 80 ºC–85 ºC.
Serve roast with gravy prepared from either meat stock
or from pan drippings if there is a sufficient amount.

1.2 Algorithms—Being Precise 3

Such a figure is called a flowchart. To perform the program (prepare the roast), just follow the arrows and the
instructions in each box. The manipulation activities are contained in rectangles, the tests are shown in dia-
monds, and the transfer or flow of control is determined by the arrows. Because of their visual appeal and
clarity, flowcharts are often used instead of lists of instructions for informally describing programs. Some
cookbook authors even employ flowcharts extensively. In this book we use flowcharts in Chapter 3, State-
ments and Control Flow, when describing the behavior of some Java language constructs.

1.2 ALGORITHMS—BEING PRECISE

Our recipe for preparing a roast can’t be executed by a computer because the individual instructions are too
loosely specified. Let’s consider another example—one that manipulates numbers instead of food. You need
to pay for some purchase with a dollar bill and get change in dimes and pennies. The problem is to determine
the correct change with the fewest pennies. Most people do this simple everyday transaction unthinkingly.
But how do we precisely describe this algorithm?

In solving such a problem, trying a specific case can be useful. Let’s say that you need to pay 77 cents and
need change for a dollar. You can easily see that one dollar minus the 77 cents leaves you with 23 cents in
change. The correct change having the fewest coins in dimes and pennies would be two dimes and three pen-
nies. The number of dimes is the integer result of dividing 23 by 10 and discarding any fraction or remain-
der. The number of pennies is the remainder of dividing the 23 cents by 10. An algorithm for performing this
change for a dollar is given by the following steps.

CHANGE-MAKING ALGORITHM

1. Assume that the price is written in a box labeled price.

2. Subtract the value of price from 100 and place it in a box labeled change.

3. Divide the value in change by 10, discard the remainder, and place the result in a box labeled
dimes.

4. Take the integer remainder of change divided by 10 and place it in a box labeled pennies.

5. Print out the values in the boxes dimes and pennies with appropriate labels.

6. Halt.

Sprinkle roast

Turn oven to 150

Insert

Wait a few

Oven at

Place roast

Wait a few

Roast at 80º

Remove roast

1/2 cup

Prepare gravy
from stock

Prepare gravy
from drippings

Serve roast

thermometer

in oven

drippings

YesNo

Yes

No

Yes

No

 150º

 minutes

 minutes

4 Introduction

This algorithm has four boxes, namely, price, change, dimes, and pennies. Let’s execute this algorithm
with the values given. Suppose that the price is 77 cents. Always start with the first instruction. The contents
of the four boxes at various stages of execution are shown in the following table.
.

To execute step 1, place the first number, 77, in the box price. At the end of instruction 2, the result of sub-
tracting 77 from 100 is 23, which is placed in the box change. Each step of the algorithm performs a small
part of the computation. By step 5, the correct values are all in their respective boxes and are printed out.
Study the example until you’re convinced that this algorithm will work correctly for any price under $1.00. A
good way to do so is to act the part of a computer following the recipe. Following a set of instructions in this
way, formulated as a computer program, is called hand simulation or bench testing. It is a good way to find
errors in an algorithm or program. In computer parlance these errors are called bugs, and finding and remov-
ing them is called debugging.

We executed the change-making algorithm by acting as an agent, mechanically following a list of instructions.
The execution of a set of instructions by an agent is called a computation. Usually the agent is a computer; in
that case, the set of instructions is a computer program. In the remainder of this book, unless explicitly
stated otherwise, we use program to mean computer program.

The algorithm for making change has several important features that are characteristic of all algorithms.

CHARACTERISTICS OF ALGORITHMS

Q The sequence of instructions will terminate.

Q The instructions are precise. Each instruction is unambiguous and subject to only one interpre-
tation.

Q The instructions are simple to perform. Each instruction is within the capabilities of the execut-
ing agent and can be carried out exactly in a finite amount of time; such instructions are called
effective.

Q There are inputs and outputs. An algorithm has one or more outputs (“answers”) that depend on
the particular input data. The input to the change-making algorithm is the price of the item pur-
chased. The output is the number of dimes and pennies.

Our description of the change-making algorithm, although relatively precise, is not written in any formal pro-
gramming language. Such informal notations for algorithms are called pseudocode, whereas real code is
something suitable for a computer. Where appropriate we use pseudocode to describe algorithms. Doing so
allows us to explain an algorithm or computation to you without all the necessary detail needed by a com-
puter.

The term algorithm has a long, involved history, originally stemming from the name of a well-known Arabic
mathematician of the ninth century, Abu Jafar Muhammed Musa Al-Khwarizmi. It later became associated
with arithmetic processes and then, more particularly, with Euclid’s algorithm for computing the greatest
common divisor of two integers. Since the development of computers, the word has taken on a more precise
meaning that defines a real or abstract computer as the ultimate executing agent—any terminating computa-
tion by a computer is an algorithm, and any algorithm can be programmed for a computer.

BOX STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

PRICE 77 77 77 77 77

CHANGE 23 23 23 23

DIMES 2 2 2

PENNIES 3 3

1.3 Implementing Our Algorithm in Java 5

1.3 IMPLEMENTING OUR ALGORITHM IN JAVA

In this section we implement our change-making algorithm in the Java programming language. You need not
worry about following the Java details at this point; we cover all of them fully in the next two chapters. We
specifically revisit this example in Section 2.10.1, An Integer Arithmetic Example: Change, on page 31. For
now, simply note the similarity between the following Java program and the informal algorithm presented
earlier. You not only have to be able to formulate a recipe and make it algorithmic, but you finally have to
express it in a computer language.

// MakeChange.java - change in dimes and pennies
import java.util.*; // use Scanner for input

class MakeChange {
 public static void main (String[] args) {
 int price, change, dimes, pennies;
 Scanner scan = new Scanner(System.in);
 System.out.println("type price (0 to 100):");
 price = scan.nextInt();
 change = 100 - price; //how much change
 dimes = change / 10; //number of dimes
 pennies = change % 10; //number of pennies
 System.out.print("The change is :");
 System.out.print(dimes);
 System.out.print(" dimes ");
 System.out.print(pennies);
 System.out.print(" pennies.\n");
 }
}

Dissection of the MakeChange Program

 Q java.util.*; // use Scanner for input

A package is a library or collection of previously written program parts that you can use. This line tells
the Java compiler that the program MakeChange uses information from the package java.util. It
allows you to use the Scanner class, which we explain shortly.

 Q int price, change, dimes, pennies;

This program declares four integer variables. These hold the values to be manipulated.

 Q Scanner scan = new Scanner(System.in);

This declares a Scanner variable scan that is tied to System.in. This lets scan provide input by typing
to the terminal.

 Q System.out.println("type price(0 to 100):");

This line is used to prompt you to type the price. Whenever a program is expecting a user to do some-
thing, it should print out a prompt telling the user what to do. The part in quotes appears on the user’s
screen when the program is run.

6 Introduction

1.4 WHY JAVA?

A variety of programming languages are available for expressing programs, but the most useful ones are
suitable for both machine and human consumption. In this book we cover programming by using one such
language—the programming language Java.

Java is a relatively new programming language, first introduced in 1995. In this book a language is needed
that allows algorithms to be easily understood, designed, analyzed, and implemented as computer programs.
The following is an excerpt from the original paper introducing Java to the world.

 Q price = scan.nextInt();

The scan.nextInt() is used to obtain the input from the keyboard. The value read is stored in the vari-
able price. The symbol = is called the assignment operator. Read the first line as “price is assigned the
value obtained from the typing an integer on your keyboard. At this point you must type in an integer
price. For example, you would type 77 and then hit Enter.

 Q change = 100 - price; //how much change

This line computes the amount of change.

dimes = change / 10; //number of dimes

 Q pennies = change % 10; //number of pennies

The number of dimes is the integer or whole part of the result of dividing change by 10. The symbol /,
when used with two integers, computes the whole (nonfraction) part of the division. The number of pen-
nies is the integer remainder of change divided by 10. The symbol % is the integer remainder or modulo
operator in Java. So if change is 23, the integer divide of 23 / 10 is 2 and the integer remainder or modulo
of 23 % 10 is 3.

 Q System.out.print("The change is : ");
System.out.print(dimes);
System.out.print(" dimes ");
System.out.print(pennies);
System.out.print(" pennies.\n");

In this example the System.out.print() statements cause the values between the parentheses to be
printed on the computer console. The first one just prints out the characters between the quotation
marks. The second one converts the value in dimes to the sequence of digits and prints those digits. The
other print statements are similar. For an input value of 77, the output would be

The \n in the last print statement indicates that a newline should be sent to the console, ending the line
of output.

The change is : 2 dimes 3 pennies

1.5 Network Computing and the Web 7

Heinlein’s comment could well describe the evolution of many programming languages. Java presents a new
viewpoint in the evolution of programming languages—creation of a small and simple language that’s still
sufficiently comprehensive to address a wide variety of software application development. Although Java is
superficially similar to C and C++, Java gained its simplicity from the systematic removal of features from its
predecessors.

We agree with its creators that Java has, to a large extent, lived up to the promise of a small, simple, yet com-
prehensive programming language. As such, Java is both an excellent programming language for real pro-
gram development and a good first programming language.

Possibly even more important for Java’s initial success are the features that make it appropriate for develop-
ment of programs distributed over the Internet. These programs, called applets, execute inside Internet
browsers such as Firefox, Mozilla, Netscape, and Internet Explorer.

1.5 NETWORK COMPUTING AND THE WEB

Much of modern computing is done in a connected environment. That is, computers are connected to other
computers in a network. This connection allows the computers to exchange information or to “talk to each
other.” Java was developed with network computing as the normal environment. It has many features and
libraries of parts of programs that promote networking. Earlier languages and systems viewed a computer as
a lone instrument doing significant computations, the results of which would largely be output to a screen or
printer. By promoting networking whereby computers are connected and pass results to each other dynami-
cally—and cooperate on large-scale computations—Java became the principal language for computing on
networks.

The largest network is the global network called the Internet. Using the Internet, researchers at the European
Particle Physics Laboratory (CERN) developed a way to share information via a formatting language called
hyper-text markup-language, or HTML. The computers exchanged HTML documents by means of a protocol
called hyper-text transfer protocol, or HTTP. A protocol is like a language that computers use to “talk” to each
other. HTML allows one electronic document to link to another electronic document on a different computer.
The program used to view HTML documents and follow the links is called a browser. With the click of a but-
ton, a user could move from one document on one computer to another, related document, on another com-
puter. Because of these links, the resulting web of documents was dubbed the World Wide Web or simply the
Web. Today, many people equate the Web with the Internet, but the Web is only one application of the tech-
nology known as the Internet.

Java programs, called applets, can be written to automatically load and execute by following a link in the
Web. This ability to embed Java programs in HTML documents was a primary factor in the early success of
Java. With Java applets, Web documents are no longer static text, images, or video segments. Web documents
can provide all the interaction of any program. We discuss graphical user interfaces and applets in Chapter 8,
Graphical User Interfaces: Part I.

If you’re interested in an early exposure to applets, we also provide templates for simple applets in the exer-
cises at the end of Chapters 2 through 6.

In his science-fiction novel The Rolling Stones, Robert A. Heinlein comments:

Every technology goes through three stages: first a crudely simple and quite unsatisfactory
gadget; second, an enormously complicated group of gadgets designed to overcome the short-
comings of the original and achieving thereby somewhat satisfactory performance through
extremely complex compromise; third, a final proper design therefrom.

8 Introduction

From the World Wide Web (www) and HTTP, you can begin to make some sense of the ubiquitous Internet
addresses such as http://www.company.com. This type of address is called a universal resource locator, or
URL. These are addresses embedded in HTML documents, linking one document to another.

Client-server computing is an essential new element in computers that manage communications and compu-
tations. The server, typically a fast computer with a very large amount of hard disk storage, gives out infor-
mation to clients upon request. An example would be a server giving out stock market quotes to clients that
request it. The network support in Java makes implementing client–server programming solutions easy. In
Chapter 9, Graphical User Interfaces: Part II, we show you how to implement a simple Java server program
that can connect and respond to requests from multiple clients on other computers.

1.6 HUMAN–COMPUTER INTERACTION AND THE GUI

In the early days of computing, most interaction between a computer and a human being was in the form of
typed input to the computer and printed output to the person. Most human–computer interaction today is
done with a graphical user interface (GUI—pronounced gooey). The user has a keyboard, usually similar to a
standard typewriter keyboard, a pointing device, usually a mouse, and a display device capable of displaying
both text and graphics.

The user’s display is usually divided into viewing areas called windows. Associated with the windows are
menus of commands relating to manipulation of the data displayed in the window. The display (screen) may
also contain icons, or small graphical images, whose visual appearance is designed to signify their functions.
For example, a picture of a trash can represents deleting a file, and an arrowhead is used to scroll a viewing
screen. The following screen shot of a typical desktop shows several windows, icons, and a row of menus
across the top of each window.

For many years, the task of creating a graphical user interface for a new application was extremely time-con-
suming and difficult. The programming languages and operating systems in use did not make building such
interfaces easy. These interfaces were usually built from libraries of program parts that were suitable only

1.6 Human–Computer Interaction and the GUI 9

for one particular operating system. If a company building a new program wanted to have its program run on
computers with different operating systems, it would have to create multiple versions of the programs.

Java provides a solution. Software companies now sell programs that make building graphical user interfaces
relatively easy. Java includes a library of program parts called Swing for building graphical user interfaces.
The program parts in Swing can be used on any computer that can run Java programs. Thus a programmer
can now write one version of a program and have it run on many different kinds of computers. Although in-
depth coverage of Swing is beyond the scope of this book, Swing is simple enough to use that even beginning
programmers can begin to build programs with graphical user interfaces. We discuss Swing further in Chap-
ter 8, Graphical User Interfaces: Part I and Chapter 9, Graphical User Interfaces: Part II.

By the end of this book, you will be writing your own sophisticated applets and regular Java programs with
GUIs. If you’ve used a Java-enabled browser, such as Netscape or Explorer, you’ve probably unknowingly
made use of an applet. If not, you can try out a simple applet calculator right now by going to
www.soe.ucsc.edu/~charlie/java/jbd/MiniCalcApplet.html. This is the same applet presented in Section 8.8,
Applets, on page 248.

SUMMARY

Q Informally, an algorithm is a list of instructions for performing a specific task or for solving a particular
type of problem. Algorithmlike specifications for problem solving and task performance are commonly
found in everyday situations. A recipe is a kind of algorithm.

Q One graphical representation of an algorithm is a flow chart. To perform the algorithm, the user just fol-
lows the arrows and the instructions in each box. The manipulation activities are contained in rectangles,
the tests are shown in diamonds, and the transfer or flow of control is determined by the arrows.
Because of their visual appeal and clarity, flow charts are often used instead of lists of instructions for
informally describing algorithms.

Q Algorithms that can be executed on computers are called programs. Programs are written in special lan-
guages called programming languages, such as Java, which we use in this book.

Q Modern computing is done in a connected environment. A computer is connected to other computers in
a network. This connection allows the computers to exchange information or to “talk to each other.” Java
was developed with network computing as the normal environment. The largest network is the global
network called the Internet. This network is used to exchange documents throughout the world with a
common format called HTML. This format allows links to be followed across the Internet. Because of
these links, the resulting web of documents was named the World Wide Web or simply the Web.

Q It is possible to write Java programs called applets, that are automatically loaded and executed as the
result of following a link in the Web. This ability to embed Java programs in HTML documents is a pri-
mary factor in the success of Java. With Java applets, Web documents are no longer static text, images, or
video segments. Web documents can provide all the interactions of any program.

REVIEW QUESTIONS

1. What is an algorithm?

2. A graphical description of a computation using boxes and arrows is called a _________________.

3. Informal, but relatively precise descriptions of algorithms are called _________________.

10 Introduction

4. What is bench testing? Why is it important?

5. What did java.util refer to in the MakeChange.java program?

6. What was System.out.print() used for in the Java program?

7. What is HTML? What is HTTP? What is URL?

8. What is a browser? Name a commonly used browser.

9. What are the primary components of a typical human–computer interface today?

10. The information provided by the user to a program when it executes is called the _____________. The
answers provided by the program are called the _____________.

11. What is Swing?

EXERCISES

1. Write a flow chart for the following recipe for cooking baked beans (taken from The Natural Foods Cook-
book, Nitty Gritty Productions, Concord, California, 1972).

2. Let m and n be positive integers. Draw a flowchart for the following algorithm for computing the quo-
tient q and remainder r of dividing m by n.

1. Set q to 0.

2. If m < n, then stop. q is the quotient and m is the remainder.

3. Replace m by m - n.

4. Increment q by 1.

5. Go to step 2.

3. Bench test the algorithm in the previous exercise. Use m = 4 and n = 2 as values.

4. Let a rectangle that is aligned with the coordinate axes be represented by the coordinates of its lower left
and upper right corners, (xmin, ymin) and (xmax, ymax), respectively, as shown in the following illustra-
tion. Given two such rectangles, R1 and R2, devise an algorithm that finds the rectangle, if any, that is
common to both R1 and R2. The input data are the eight real numbers representing the coordinates of
the rectangles’ corners. The illustration shows two rectangles that have a common rectangle, shown in
grey.

Bring apple juice and water to a boil and add beans so slowly that boiling doesn’t stop. Reduce
heat after beans are in water and simmer 2 to 2 and a half hours or until beans are almost ten-
der. Drain beans, reserving liquid, and add other ingredients to beans. Place in oiled baking
dish and bake covered 2 to 3 hours in 2508 oven. Uncover for the last hour of cooking. If beans
become dry, add a little of the reserved bean water. About 15 minutes before removing from
the oven, add the fresh diced tomato.

1.6 Human–Computer Interaction and the GUI 11

5. Suppose that a line segment is represented by its two endpoints, PE = (xe, ye) and PP = (xp, yp). For two
line segments L1 and L2, devise an algorithm that computes the coordinates of their point of intersec-
tion, if any. (Two line segments intersect if they have only one point in common.)

6. Make a list of all the automatic interactions that you have with computers—for example, utility bills,
automatic mailing lists, class scheduling, and so on.

7. Give a detailed step-by-step procedure, also called an algorithm, for

Q traveling from your place of residence to school or work,

Q manually dividing one number by another (long division),

Q taking an unordered set of numbers and putting them in ascending sequence (i.e., “sorting” the
numbers in ascending sequence), or

Q playing, and never losing, the game of Tic-Tac-Toe.

(xmin, ymin)

(xmax, ymax)

Possible R1

Possible R2

x axis
y

a
x
is

12 Introduction

CHAPTER 2

PROGRAM FUNDAMENTALS

In this chapter we introduce programming fundamentals in Java. We write a Java program by using different
elements of the Java language. The most basic elements are the tokens of the language. Tokens are the words
that make up the sentences of the program. Programming is comparable to writing. To write an essay we
write words that make up sentences, sentences that make up paragraphs, and paragraphs that make up
essays. In this chapter we concentrate on how to use the “words” and combine them into the program equiv-
alent of useful sentences and paragraphs.

2.1 “HELLO, WORLD!” IN JAVA

A simple first Java program is the classic “Hello, world!” program, so named because it prints the message
Hello, world! on the computer’s screen.

/* HelloWorld.java
 * Purpose:
 * The classic "Hello, world!" program.
 * It prints a message to the screen.

 * Author: Jane Programmer
 * as derived from Kernighan and Richie
 */

class HelloWorld {
 public static void main (String[] args) {
 System.out.println("Hello, world!");
 }
}

14 Program Fundamentals

2.2 COMPILING AND RUNNING YOUR JAVA PROGRAM

You will be dealing with two different representations of your programs: the part you write and a form more
suitable for the computer to use when it finally runs your program. The text you write to give the computer
instructions is called the source code or simply the source. This source code will be compiled by the Java com-
piler into a form more suitable as instructions to the computer called object code. The source code form of

Dissection of the HelloWorld Program

 Q /* HelloWorld.java
 * Purpose:
 ...
 */

Everything between a /* and a */ is a comment. Comments are ignored by the Java compiler and are
inserted to make the program more understandable to the human reader. Every program should begin
with a comment such as the one in this example. In our examples, the name of the file appears in the
comment. This example indicates that it is from the file HelloWorld.java. Other things to include in pro-
gram comments are the function or purpose of the program, the author of the program, and a revision
history with dates, indicating major modifications to the program.

 Q class HelloWorld {

The word class is a keyword preceding the name of the class. A keyword has a predefined special pur-
pose. A class is a named collection of data and instructions. The name of the class being defined in this
example is HelloWorld. The left brace “{” begins the definition of a class. A matching right brace “}” is
needed to end the class definition. Forgetting to match braces is a common error.

 Q public static void main (String[] args) {

This line declares that the class HelloWorld contains a method with the name main. A method is a
named group of instructions within a class. In this example, only one method, named main, is defined
for the class HelloWorld. In Chapter 4, Methods: Functional Abstraction, we create classes that contain
several methods in a single class. When we use the name of a method, we add parentheses at the end to
remind you that it is a method. This convention comes from actual Java code, wherein the name of a
method is always followed by parentheses. The method defined by this line is thus referred to as
main().

There are two kinds of Java programs: stand-alone applications and applets. The method main()
appears in every stand-alone Java program indicating where program execution will begin. Later we use a
different line that serves a similar purpose for applets. An explanation of the words public, static,
and void in this line is left until later.

 Q {
 System.out.println("Hello, world!");
}

The entire body of the method main(), the real instructions to the computer, appears between the
braces. In this example, just one instruction prints the desired message. You can memorize this instruc-
tion and use it as an incantation to get something printed out on your computer screen. What gets
printed is between the quotation marks.

2.2 Compiling and Running Your Java Program 15

the program is represented in the language Java that you will be learning. Informally, you can think of the
source code as the raw form of the program in contrast to the object code, which is the cooked or compiled
form. In Java, all source code file names have the suffix .java, such as HelloWorld.java. The result of correctly
compiling HelloWorld.java is the object code HelloWorld.class. In some situations, the name of the file with-
out the .java and the name of the class defined in the file must be the same. Although this requirement does
not apply to the programs in the first part of this book, we follow that practice even when it isn’t required
and suggest that you do the same.

There are many names and forms for the machine representation of a program after it has been processed
somewhat by the computer. A common first step in processing source code is to compile it, which means to
translate it into a form more suitable for the computer. For most common programming languages, this com-
piled form is called the machine code, object code, or binary form. When you buy a piece of software you usu-
ally get binaries or an executable image. For Java, this form is a bit different and is called Java Bytecode.
These bytecodes are the same whether you are running on a Macintosh, on an Intel machine with Microsoft
Windows, or on a machine from Sun running Unix. This sameness is an important advantage of Java pro-
grams, as they can be written to be platform independent, which is generally not true for most other pro-
gramming languages, such as C or COBOL.

In Java, all bytecode files must have a name that ends in .class such as HelloWorld.class. The word class is
used because, in Java, programs are broken into chunks called classes, much like a chapter is broken into
sections. The following diagram illustrates the compilation process and the conventions just described.

There are two principal methods for compiling and running Java programs. One method uses an Integrated
Development Environment (IDE), of which there are many for Java. The actual details of compiling for each of
the IDEs vary slightly but the basic steps are the same.

JAVA VIA THE IDE

1. Use the editor that comes with the IDE to create the source file. These editors generally help with
syntax by using special fonts or colors for keywords and helping you match braces, and so on.

2. Create a project and add your source file to the project.

3. Select Run from a menu. The IDE will automatically determine that the source file needs to be
compiled and compile it before trying to run the program.

The other principal method is the command line approach. In it you run the compiler yourself from the com-
mand line of either a Command Prompt in Windows or Unix terminal or shell program. For both Unix and
Windows the steps are the same.

JAVA VIA THE COMMAND LINE

1. Use your favorite text editor to create the source file. Save the source into a file ending with the
extension .java.

2. Compile the program with the command javac followed by the source file name—for example,
javac HelloWorld.java.

3. If the program compiles without errors, run the program with the command java followed by
the name of the class. Do not append .class, as in HelloWorld.class; use only the class name— for
example, java HelloWorld.

The last two steps are shown as follows for the program HelloWorld.

Java Compiler

The Compilation Process

HelloWorld.class
(bytecode)HelloWorld.java

(source)

16 Program Fundamentals

os-prompt>javac HelloWorld.java
os-prompt>java HelloWorld
Hello, world!
os-prompt>

2.3 LEXICAL ELEMENTS

Java has rules about how its language elements can be put together to form a complete program. In this sec-
tion we begin by looking at the various words and symbols, called lexical elements, that are used to construct
Java programs.

The most fundamental element in the structure of a program is a single character that can be displayed on a
computer screen or typed at a computer keyboard. Prior to Java, most programming languages, such as C
and C++, used the ASCII character set. It provides for 127 different characters, which is enough to represent
all the characters on the conventional English language keyboard. This set may seem like a lot, but when you
consider all the human languages in the world and the various symbols they use, it is inadequate. Because
Java was designed to be used throughout the world, not just in English-speaking countries, Java developers
adopted the Unicode character set. It provides for more than 64,000 different characters.

When a Java compiler first begins to analyze a Java program, it groups the individual characters into larger
lexical elements, usually called tokens. Some tokens—such as the plus sign, +, which is the Java symbol used
to add two numbers—are only one character long. Other tokens—such as the keywords class and public—
are many characters long. These basic tokens are then combined into larger language forms, such as expres-
sions. An example of an expression comprising three tokens is x+y.

There are five types of tokens: keywords, identifiers, literals, operators, and punctuation. White space and
comments are two additional lexical elements that are discarded early in the compilation process.

2.3.1 WHITE SPACE

White space in Java refers to the space character, which you get when you strike the space bar on the key-
board; the tab character, which is actually one character, although it may appear as several spaces on your
screen; and the newline character which you get when you hit the Return or Enter key on the keyboard. White
space is used primarily to make the program look nice and also serves to separate adjacent tokens that are
not separated by any other punctuation and would otherwise be considered a single, longer token. For exam-
ple, white space is used to separate the following three tokens:

public static void

in the HelloWorld program. In such situations, where one white space character is required, any number of
white space characters can be used. For example, we could have put each of the words public, static, and
void on separate lines or put lots of spaces between them as in

public static void main(...

Except for string literals, which we discuss shortly, any number of adjacent white space characters—even
mixing tab, space, and newline characters—is the same as just one white space character as far as the struc-
ture and meaning of the program are concerned. Stated another way, if you can legally put in one space, you
can put in as many spaces, tabs, and newlines as you want. You can’t put white space in the middle of a key-
word or identifier, such as a variable or class name. We discuss keywords, identifiers, and variables later in
this chapter.

2.3.2 Comments 17

2.3.2 COMMENTS

Comments are very important in writing good code and are too often neglected. The purpose of a comment is
to provide additional information to the person reading a program. It serves as a concise form of program
documentation. As far as the computer is concerned, the comment does not result in a token; it separates
other tokens or is ignored completely when it isn’t needed to separate tokens. Java has three ways to specify
comments.

A single line comment begins with // and causes the rest of the line—all characters to the next newline—to
be treated as a comment and ignored by the compiler. It is called a single line comment because the comment
can’t be longer than a single line. By definition, the comment ends at the end of the line containing the //.

A multiline comment can extend across several lines in a program. The beginning of the comment is marked
with /* and the end of the comment is marked with */. Everything between the marks and the marks them-
selves is a comment and is ignored. Here is the multiline comment from our first Java program.

/* HelloWorld.java
 * Purpose:
 * This is the classic "Hello, world!" program.
 * It simply prints a message to the screen.
 * Author:
 * Jane Programmer
 * as derived from Kernighan and Richie
 */

The single asterisks on the intermediate lines are not required and are used merely to accent the extent of
the comment. These comments are also called block comments.

The third style of comment is a minor variation on the multiline comment. The beginning marker has an
additional asterisk; that is, the beginning of the comment is marked with /** and the end of the comment is
marked with */. These comments are identical to the multiline comment except that they are recognized by a
special program called javadoc that automatically extracts such comments and produces documentation for
the program organized as an HTML document. See Section 4.13, Programming Style, on page 111, for more
about javadoc.

2.3.3 KEYWORDS

Keywords, also known as reserved words, have a predefined special purpose and can’t be used for any but
that purpose. Each of the 47 keywords in Java has a special meaning to the Java compiler. A keyword must be
separated from other keywords or identifiers by white space, a comment, or some other punctuation symbol.
The following table shows all the Java keywords.

abstract continue for new synchronized

assert default goto package this

boolean do if private throw

break double implements protected throws

byte else import public transient

case enum instanceof return try

catch extends int short void

char final interface static volatile

class finally long super while

const float native switch

18 Program Fundamentals

The keywords const and goto have no meaning in Java. They are keywords in C++, a language that was a
precursor to Java. They are included as keywords to facilitate error reporting when programmers with C++
experience accidentally use them. In addition, the words null, true, and false look like keywords in that
they have a predefined meaning, but they are in fact literals, as discussed later.

2.3.4 IDENTIFIERS

Identifiers are the names used to specify different elements of a Java program, such as a class, method, or
variable. (We discuss variables in Section 2.4.1, Variables, on page 20.) An identifier in our first program was
HelloWorld, a name we picked for the class. Another identifier was the library method name println, a
name picked by the Java developers. In both cases, the name gives a clue as to the use of that element of the
program. An identifier is any sequence of Java letters and digits, the first of which must be a Java letter, with
two exceptions. A keyword can’t be an identifier, and the special literal terms true, false, and null can’t be
used as identifiers. The Java letters and digits include the letter and digit symbols for many modern written
languages. The Java letters include the English language uppercase and lowercase letters, the $, and the _
(underscore). The last two are included because of Java’s close kinship to the programming language C,
which included these symbols as legal characters in identifiers. The Java digits are 0 through 9. In our exam-
ples, we use only English letters and digits. The following are some examples of legal identifiers along with
comments providing some explanation.

data //variable name conveying its use
HelloWorld //class name
youCanAlmostMakeASentence //unlikely
nextInt //method name from Scanner class
x //simple variable usually double
__123 //obscure name-a poor choice

The following are some illegal identifiers, along with comments indicating what the sequence of symbols
really is.

3 //a digit or integer literal
x+y //an expression where x and y are identifiers
some***name //illegal internal characters
no Space //intended was noSpace
1floor //cannot start with a digit
class //keyword - cannot be used as an identifier

2.3.5 LITERALS

Java has built-in types for numbers, characters, and booleans. Java also has a standard class type for strings.
The type of a data value tells the computer how to interpret the data. These built-in types are called primitive
types in Java. Literals, also called constants, are the literal program representations of values for the primitive
numeric types, the primitive type boolean, the primitive character type char, and the standard class string
type String. Without going into the details of these various types, the following are some examples of literal
values
.

JAVA TYPE EXPLANATION EXAMPLES

int Integers—numbers without fractional parts 123 -999 0

double Double precision numbers with fractional parts 1.23 -0.01

String Arbitrary strings of characters "Oh J" "123"

boolean Logical values true or false true false

char Single characters 'a' '1'

2.3.6 Operators and Punctuation 19

Like keywords, the symbols true and false can’t be used as identifiers. They are reserved to represent the
two possible boolean values. We explain later, in more detail, what constitutes an acceptable literal for each
data type.

2.3.6 OPERATORS AND PUNCTUATION

In addition to keywords, identifiers, and literals, a Java program contains operators and separators or punc-
tuation. The operators are things like “+”, and the separators are things like the “;” that terminates some
statements and the braces “{ }” used to group things. To fully understand operators, you need to understand
type, precedence, and associativity. Type determines the kind of value computed, such as int or double.
Precedence determines among operators, such as + and / used in an expression, which is done first. Associa-
tivity is the order in which operators of the same precedence are evaluated and is usually left-most first—for
example,

int n = 2;
n = n * 3 + 2; //an assignment expression

The variable n is an integer variable initialized to 2. Next n is multiplied by the integer literal 3. This result is
added to 2, and finally this value is assigned to n, replacing the original value of 2 with the new value of 8.
Precedence of the multiplication operator * is higher than +, so the multiplication is done before the addi-
tion. Precedence of the assignment operator = is lowest, so assignment occurs as the last action in this
expression. We discuss precedence and associativity of operators further in Section 2.13, Precedence and
Associativity of Operators, on page 37.

2.4 DATA TYPES AND VARIABLE DECLARATIONS

In order to do something useful, computer programs must store and manipulate data. Many programming
languages, including Java, require that each data item have a declared type. That is, you must specify the
kind of information represented by the data, or the data’s type. The data’s type determines how data is repre-
sented in the computer’s memory and what operations can be performed on the data.

Different programming languages support different data types. A data type can be something as fundamen-
tal as a type for representing integers or as complex as a type for representing a digital movie. Some exam-
ples of data types found in Java are

Q int—for representing integers or whole numbers;

Q double—for representing numbers having a fraction;

Q String—for representing text;

Q Button—for representing a push button in a graphical user interface; and

Q Point—for representing points in a plane.

The types of data that are created, stored, and manipulated by Java programs can be separated into two main
groups: primitive types and class types, or simply classes.

Q There are eight primitive types:

Q the numeric types byte, short, int, long, float, and double for storing numeric values;

Q the character type char for storing a single alphabetic character, digit, or symbol; and

Q the type boolean for storing true or false.

Primitive data values can be created by using literals such as 100, -10.456, 'a', and true. Primitive values
can also be operated on by using built-in operators such as + for addition and - for subtraction of two
numeric values, producing a new primitive value. For example,

2 + 3

20 Program Fundamentals

uses + (addition) to operate on the two numeric literal values, 2 and 3, to produce the new primitive value, 5.

Standard Java has more than 1500 classes. The String, Button, and Point types mentioned previously are
standard Java classes. You will learn in Chapter 6, Objects: Data Abstraction, that you can create your own
classes. Also, in Chapter 5, Arrays And Containers, we discuss arrays, which are a special case of class types.

The data values that are class types are called objects. You can create object data values by using the special
operator new followed by the class name and possibly some additional values needed to create the new
object. For example,

new Button("Quit")

creates a new object describing a button with the label “Quit.”

You can create new objects of type String, as a special case, by using the string literal notation that sur-
rounds the text of the string with double quotation marks. For example, "Hello, world!" creates a new
string object.

In most cases, the operations supported for the particular class are given a name and invoked by placing the
name after the object value, separated by a dot. For example,

"Hello, world!".length()

operates on the literal string "Hello, world!" and evaluates to 13—the number of characters in this string,
including any blanks. Operations such as length() defined for a particular class are called methods. We dis-
cuss methods in great detail in subsequent chapters.

2.4.1 VARIABLES

In all but the most trivial programs, such as HelloWorld, you will declare variables that are identifiers used
to refer to data values that are stored in the computer’s memory. These are called variables because a vari-
able actually refers to a particular place in the computer’s memory, and the value stored in the computer’s
memory can vary as the program runs. A variable declaration always begins with a type and ends with a semi-
colon. The type is used to identify the kind of data that will be stored in the memory location associated with
the variable being declared. Some examples of variable declarations are

int i, j;
String sentence;
boolean hot, cold, lukeWarm;
Button clickToExit;

Note that you can declare several variables of the same type by separating the names with a comma. Good
choice of variable names is important to writing clearly understandable code. Stylistically, choose variable
names that are meaningful. Also, variable names usually start in lowercase, and if they are multiword, the
internal words start with an uppercase character, as in clickToExit.

2.4.2 VARIABLE INITIALIZATION

Variables can be given initial values. The preceding set of declarations given initial values for each variable
becomes

int i = 2, j = 3;
String sentence = "I am a camera.";
boolean hot = true, cold = false, lukeWarm = false;
Button clickToExit = new Button("Exit");

Initializing variables with literals of their respective type is normal. In this example, the int variable i is ini-
tially given the value 2. The boolean variable hot is initially true. The String variable sentence is initial-
ized with a string literal.

2.5 An Example: String Concatenation 21

With the exception of String, Java has no literals for creating object values. You initialize the Button vari-
able by creating a Button object, using new as discussed briefly earlier. We discuss object creation in Chapter
6, Objects: Data Abstraction.

2.5 AN EXAMPLE: STRING CONCATENATION

The following example is a complete program that declares three variables: word1, word2, and sentence.
Values are then assigned to the parts of the computer memory referred to by those variables.

// HelloWorld2.java - simple variable declarations
class HelloWorld2 {
 public static void main (String[] args) {
 String word1; // declare a String variable
 String word2, sentence; // declare two more
 word1 = "Hello, ";
 word2 = "world!";
 sentence = word1.concat(word2);
 System.out.println(sentence);
 }
}

Dissection of the HelloWorld2 program

 Q String word1; // declare a String variable
String word2, sentence; // declare two more

Whenever you introduce a new identifier you must declare it. You declare that an identifier is a variable
by first writing the name of the kind of value the variable refers to, called the type. The type is String in
this example. Insert the name of the new variable after the type. For variables in Java, the computer must
always know the type of value to be stored in the memory location associated with that variable. As
shown in the second line, you can declare more than one variable at a time by giving first the type and
then a comma separated list of new identifiers.

 Q word1 = "Hello, ";
word2 = "world!";

The symbol = is called the assignment operator and is used to store values in variables. Read the first
statement as “word1 gets the value Hello, ” or “word1 is assigned the value Hello, ”. Here it is used
to assign the String literals "Hello, " and "world!" to the newly declared variables word1 and word2,
respectively. The variable name will always be on the left and the new value to be assigned to the vari-
able will always be on the right. Saying “assign the value "Hello, " to the variable word1” really means
to store the String value "Hello, " in the computer memory location associated with the variable
word1.

 Q sentence = word1.concat(word2);

This statement contains an expression used to create a third String value, which is then assigned to the
variable sentence. This expression uses the method concat(), which is defined for values of type
String. Recall that operations on objects are called methods. This particular operation requires a sec-
ond String value placed between the parentheses. The method name concat is short for concatenation.
The concatenation of two strings is a new string that contains the symbols from the first string followed
by the symbols from the second string. Note that the first string, word1, contains a space at the end.
Thus, when we concatenate the two strings, we get the new string "Hello, world!", which is assigned
to the variable sentence.

22 Program Fundamentals

As we showed earlier, when a variable is declared, it can be given an initial value. This approach essentially
combines an assignment with the declaration. Using this notation, you can now write the body of main() in
HelloWorld2 as

String word1 = "Hello, ";
String word2 = "world!";
String sentence = word1.concat(word2);
System.out.println(sentence);

You could even combine two initializations in a single statement,

String word2 = "world!", sentence = word1.concat(word2);

although, as a general rule, multiple complex initializations such as this should be placed on separate lines.

2.5.1 STRINGS VERSUS IDENTIFIERS VERSUS VARIABLES

A string is a particular data value that a program can manipulate. A variable is a place in the computer’s
memory with an associated identifier. The following example uses the identifier hello to refer to a variable
of type String. The identifier stringVary refers to a second variable of type String. We first assign
stringVary the value associated with the String variable hello. Later we reassign it the string value
"hello".

//StringVsId.java - contrast strings and identifiers
class StringVsId {
 public static void main(String[] args) {
 String hello = "Hello, world!";
 String stringVary;
 stringVary = hello;
 System.out.println(stringVary);
 stringVary = "hello";
 System.out.println(stringVary);
 }
}

The output of this program is

The program demonstrates two important points. First it shows the difference between the identifier hello,
which in fact refers to the string "Hello, world!", and the string "hello", which is referred to at one point
by the variable stringVary. This example also shows that a variable can vary. The variable stringVary first
refers to the value "Hello, world!" but later refers to the value "hello".

 Q System.out.println(sentence);

The program then prints out the string in the variable sentence, which now is "Hello, world!".

Hello, world!
hello

2.6 User Input 23

2.6 USER INPUT

In the programs presented so far, we have generated output only by using System.out.println(). Most
programs input some data as well as generate output. There are lots of ways to input data in Java, but the
simplest is to use a class Scanner provided in the package java.util, as shown in the following example.

// Area.java -reading from the keyboard
import java.util.*;

class Area {
 public static void main (String[] args)
 {
 double width, height, area;
 Scanner scan = new Scanner(System.in);
 System.out.println("type two doubles for the width and height of a rectangle");
 width = scan.nextDouble();
 height = scan.nextDouble();
 assert (width > 0 & height > 0);
 area = width * height;
 System.out.print("The area is ");
 System.out.println(area);
 }
}

Here is a table of some of the methods used for getting input from the terminal using a Scanner. As you can
see the basic data types have a corresponding nextType() method for reading and returning an input of that
type. If the input is of the wrong type these methods fail and throw an exception. To avoid this, we can use
methods of the form hasNextType() that return true if the next input can be correctly interpreted. An exam-
ple would be hasNextInt() that checks that the input can be interpreted as an int.
.

Dissection of the Area Program

 Q import java.util.*;

This line tells the Java compiler that the program SimpleInput uses some of the classes defined in the
package java.util. The * indicates that you might use any of the classes in the package. The class used
here is Scanner. This class allows you to do simple terminal input.

 Q Scanner scan = new Scanner(System.in);

This creates the variable scan that is associated with System.in. This makes the variable scan a proxy
for using terminal input.

SCANNER METHOD EXPLANATION EXAMPLES

nextInt() Integers expected 123 -999 0

nextDouble() Doubles expected 1.23 -0.01

next() Arbitrary strings "Java" "123"

nextBoolean() Logical values true false

Scanner() Attaches source of input new Scanner(System.in)

24 Program Fundamentals

2.7 CALLING PREDEFINED METHODS

A method is a group of instructions having a name. In the programs introduced so far, we’ve defined a single
method called main(). In addition, we’ve used some methods from other classes that were standard Java
classes. The methods have names, which makes it possible for you to request the computer to perform the
instructions that comprise the method. That’s what we’re doing by using the expression System.out.
println("Hello, world!"). We’re calling a method with the name println and asking that the instruc-
tions be executed. Just as two people can have the same name, two methods can have the same name. We
must therefore, in general, tell Java where to look for the method. Using System.out tells Java that we’re
interested in the println() method associated with the object identified by System.out. (We must still
postpone a full explanation of the meaning of System.out.) As we have shown, the same method can be
called several times in one program. In SimpleInput, we called the method println() twice.

For many methods, we need to provide some data values in order for the method to perform its job. These
values are provided to the method by placing them between parentheses following the name of the method.
These values are called the parameters of the method, and we say that we are passing the parameters to the
method. The println() method requires one parameter, which is the value to be printed. As we indicated
previously, this parameter can be either a string or a numeric value. In the latter case the numeric value will
be converted by the println() method to a string and then printed. If more than one parameter is required,
we separate the parameter values by commas. For example, the predefined method Math.min() is used to
determine the minimum of two numbers. The following program fragment will print out 3.

int numberOne = 10, numberTwo = 3, smallest;
smallest = Math.min(numberOne, numberTwo);
System.out.println(smallest);

The method min() is contained in the standard Java class Math, which includes other common mathematical
functions, such as Math.sqrt() that is used to find the square root of a number.

Here are some of the predefined methods that we’ve mentioned so far.

System.out.print(x) //print the value of x
System.out.println(x) //print the value of x followed by a newline
scan.nextInt() //get an int from the keyboard
Math.min(x,y) //find the smaller of x and y
Math.sqrt(x) //find the square root of x
w1.concat(w2) //concatenate the strings w1 and w2
word.length() //find the length of the string word

Java includes a rich set of many more predefined methods. They include methods for the most common
mathematical functions (see Appendix B, Reference Tables), for creating graphical user interfaces (see Chap-
ter 8, Graphical User Interfaces: Part I and Chapter 9, Graphical User Interfaces: Part II), for reading and writ-
ing information from and to files (see Chapter 10, Reading and Writing Files), for communicating with
programs on other computers using a network (see Chapter 13, Threads: Concurrent Programming), and
many more. An important aspect of Java is the ability to use parts of programs created by others.

2.8 print(), println(), and printf() 25

2.8 print(), println(), AND printf()

The print() and println() methods can print all the primitive types. The method System.out.println()
is a convenient variant of System.out.print() which appends a newline to the end of the output. You can
always achieve the same effect by adding \n to the end of what is being printed. For example, the following
two lines are equivalent.

System.out.print("Hello, world!\n");
System.out.println("Hello, world!");

Recall, however, that you can’t put a an actual newline in the middle of a string, so the following would not
be legal.

System.out.println("type two integers for
 the width and height of a box");

In the same way that you can combine two strings with the string concatenation operator you can also com-
bine one string and one value of any other type. In this case, the nonstring operand is first converted into a
new string and then the two strings are concatenated. This allows rewriting the printing of the result in Area
from Section 2.6, User Input, on page 23, in the form

System.out.println("The area is " + area);

This version emphasizes that one message will appear on a single line of the output. The double value area
is first converted to a String and then combined with the other string, using string concatenation.

What about the opposite? What if you wanted to have an output message that spanned several output lines
but with a single println()? You can do so by putting the symbols \n in a string literal to represent new-
lines within the string. Such a string will print on more than one output line. Thus for

System.out.println("One\nword\nper\nline.");

The output is

The pair of symbols \n, when used in a string literal, mean to put a newline at this point in the string. This
escape sequence allows you to escape from the normal meaning of the symbols \ and n when used sepa-
rately. You can find out more about escape sequences in Section 2.9.3, The char Type, on page 29.

Care must be taken when you’re using string concatenation to combine several numbers. Sometimes, paren-
theses are necessary to be sure that the + is interpreted as string concatenation, not numeric addition. For

int x = 1, y = 2;
System.out.println("x + y = " + x + y);

the output is x + y = 12 because the string "x + y =" is first concatenated with the string "1", and then
"2" is concatenated onto the end of the string "x + y = 1". To print x + y = 3 you should use parentheses
first to force the addition of x and y as integers and then concatenate the string representation of the result
with the initial string, as in

One
word
per
line.

26 Program Fundamentals

System.out.println("x + y = " + (x + y));

2.8.1 FORMATTING OUTPUT WITH printf()

The method printf() was introduced in Java 5.0. It provides formatted output as is done in C. The
printf() method is passed a list of arguments that can be thought of as

control_string and other_arguments

where control_string is a string and may contain conversion specifications, or formats. A conversion specifi-
cation begins with a % character and ends with a conversion character. For example, in the format %s the let-
ter s is the conversion character.

printf("%s", "abc");

The format %s causes the argument "abc" to be printed in the format of a string. Yet another way to do this
is with the statement

printf("%c%c%c", 'a', 'b', 'c');

Single quotes are used to designate character constants. Thus, 'a' is the character constant corresponding
to the lowercase letter a. The format %c prints the value of an expression as a character. Notice that a con-
stant by itself is considered an expression.

When an argument is printed, the place where it is printed is called its field and the number of char-
acters in its field is called its field width. The field width and a precision specifier can be specified in a
format as two integers separated by a dot occurring between the % and the conversion character. Thus,
the statement

printf("Airfare is $%6.2f.\nParking is $%6.2f.\n", 300.50, 16.50);

specifies that the two numbers should be printed in a field of 6 characters with two digits (the precision) to
the right of the decimal point. It will print

We will explain the various detailed conventions for using formats in Chapter 10, on page 304

.

printf() conversion characters

Conversion
character How the corresponding argument is printed

c as a character

d as a decimal integer

e as a floating-point number in scientific nota-
tion

f as a floating-point number

g in the e-format or f-format, whichever is
shorter

s as a string

Airfare is $300.50.
Parking is $ 16.50.

2.9 Number Types 27

2.9 NUMBER TYPES

There are two basic representations for numbers in most modern programming languages: integer represen-
tations and floating point representations. The integer types are used to represent integers or whole num-
bers. The floating point types are used to represent numbers that contain fractional parts or for numbers
whose magnitude exceeds the capacity of the integer types.

2.9.1 THE INTEGER TYPES

A bit is the smallest unit of information that can be stored in a computer. It can represent only two values,
such as 1/0 or on/off or true/false. A sequence of bits can be used to represent a larger range of values. For
the integer types, the bits are interpreted with the binary number system. The binary number system has
only two digits: 0 and 1. These two digits can be combined to represent any number in the same way that the
10 digits of the normal, decimal number system can be combined to form any number. (See Appendix A, Get-
ting Down to the Bits).

Some mechanism is needed to represent positive and negative numbers. One simple solution would be to set
aside one bit to represent the sign of the number. However, this results in two different representations of
zero, +0, and –0, which causes problems for computer arithmetic. Therefore an alternative system called
two’s complement is used.

An 8-bit value called a byte can represent 256 different values. Java supports five integral numeric types. The
type char, although normally used to represent symbolic characters in a 16-bit format called Unicode, can be
interpreted as an integer. As discussed shortly, the result of combining a char value with another numeric
value will never be of type char. The char value is first converted to one of the other numeric types. These
types are summarized in the following table.

The asymmetry in the most negative value and the most positive value of the integer types results from the
two’s complement system used in Java to represent negative values.

Literal integer values are represented by a sequence of digits, possibly preceded by a minus sign. An integer
literal is either an int or long. An explicit conversion, called a cast, of an int literal must be used to assign
them to the smaller integer types short and byte (see Section 2.10.2, Type Conversion, on page 32). Integer
literals can be expressed in base 10 (decimal), base 8 (octal), and base 16 (hexadecimal) number systems.
Decimal literals begin with a digit 1-9, octal literals begin with the digit 0, and hexadecimal literals begin
with the two-character sequence 0x. To specify a long literal instead of an int literal, append the letter el,
uppercase or lowercase, to the sequence of digits.

Here are some examples:

Q 217—the decimal value two hundred seventeen

TYPE NUMBER OF BITS RANGE OF VALUES

byte 8 –128 to 127

short 16 –32768 to 32767

char 16 0 to 65536

int 32 –2147483648 to
2147483647

long 64 –9223372036854775808 to
9223372036854775807

28 Program Fundamentals

Q 0217—an octal number equivalent to 143 in the decimal system

Q 0195 would be illegal because 9 is not a valid octal digit (only 0–7 are octal digits)

Q 0x217—a hexadecimal number equivalent to 535 in the decimal system

();

the hexadecimal digits include 0–9 plus a = 10, b = 11, c = 12, d = 13, e = 14, and f = 15.

Q 14084591234L—a long decimal literal; without the L this would be an error because 14084591234 is too
large to store in the 32 bits of an int type integer.

2.9.2 THE FLOATING POINT TYPES

Java supports two floating point numeric types. A floating point number consists of three parts: a sign, a
magnitude, and an exponent. These two types are summarized in the following table.
.

To represent floating point literals, you can simply insert a decimal point into a sequence of digits, as in
3.14159. If the magnitude of the number is too large or too small to represent in this fashion, then a nota-
tion analogous to scientific notation is used. The letter e from exponent is used to indicate the exponent of
10 as shown in the following examples.

Unless specified otherwise, a floating point literal is of type double. To specify a floating point literal of type
float, append either f or F to the literal—for example, 2.17e-27f.

2.9.3 THE char TYPE

Java provides char variables to represent and manipulate characters. This type is an integer type and can be
mixed with the other integer types. Each char is stored in memory in 2 bytes. This size is large enough to
store the integer values 0 through 65535 as distinct character codes or nonnegative integers, and these codes
are called Unicode. Unicode uses more storage per character than previous common character encodings
because it was designed to represent all the world’s alphabets, not just one particular alphabet.

For English, a subset of these values represents actual printing characters. These include the lowercase and
uppercase letters, digits, punctuation, and special characters such as % and +. The character set also includes
the white space characters blank, tab, and newline. This important subset is represented by the first 128
codes, which are also known as the ASCII codes. Earlier languages, such as C and C++, worked only with this
more limited set of codes and stored them in 1 byte.

The following table illustrates the correspondence between some character literals and integer values. Char-
acter literals are written by placing a single character between single quotes, as in 'a'.

2 82× 1 81× 7+ +()

2 162 1× 1 161
× 7+

TYPE
NUMBER
OF BITS

APPROXIMATE RANGE
OF VALUES

APPROXIMATE
PRECISION

float 32 +/–10–45 to +/–10+38 7 decimal digits

double 64 +/–10–324 to +/–10+308 15 decimal digits

JAVA REPRESENTATION VALUE

2.17e-27 2.17 x 10–27

2.17e99 2.17 x 1099

2.9.3 The char Type 29

There is no particular relationship between the value of the character constant representing a digit and the
digit’s intrinsic integer value. That is, the value of '2' is not 2. The property that the values for 'a', 'b', 'c',
and so on occur in order is important. It makes the sorting of characters, words, and lines into lexicographi-
cal order convenient.

Note that character literals are different from string literals, which use double quotes, as in "Hello". String
literals can be only one character long, but they are still String values, not char values. For example, "a" is
a string literal.

Some nonprinting and hard-to-print characters require an escape sequence. The horizontal tab character, for
example, is written as \t in character constants and in strings. Even though it is being described by the two
characters \ and t, it represents a single character. The backslash character \ is called the escape character
and is used to escape the usual meaning of the character that follows it. Another way to write a character
constant is by means of a hexadecimal-digit escape sequence, as in '\u0007'. This is the alert character, or
the audible bell. These 4 hexadecimal digits are prefixed by the letter u to indicate their use as a Unicode lit-
eral. The 65,536 Unicode characters can be written in hexadecimal form from '\u0000' to '\uFFFF'.

The following table contains some nonprinting and hard-to-print characters.

The alert character is special; it causes the bell to ring. To hear the bell, try executing a program that contains
the line

System.out.print('\u0007');

Character values are small integers, and, conversely, small integer values can be characters. Consider the dec-
laration

SOME CHARACTER CONSTANTS AND THEIR CORRESPONDING INTEGER VALUES

Character constants 'a' 'b' 'c' ... 'z'

Corresponding values 97 98 99 ... 122

Character constants 'A' 'B' 'C' ... 'Z'

Corresponding values 65 66 67 ... 90

Character constants '0' '1' '2' ... '9'

Corresponding values 48 49 50 ... 57

Character constants '&' '*' '+'

Corresponding values 38 42 43

NAME OF CHARACTER ESCAPE INT HEX

Backslash \\ 92 \u005C

Backspace \b 8 \u0008

Carriage return \r 13 \u000D

Double quote \" 34 \u0022

Formfeed \f 12 \u000C

Horizontal tab \t 9 \u0009

Newline \n 10 \u000A

Single quote \' 39 \u0027

Null character 0 \u0000

Alert 7 \u0007

30 Program Fundamentals

char c = 'a';

The variable c can be printed either as a character or as an integer:

System.out.printf(“%c”,c); // a is printed
System.out.printf(“%d”,c); // 97 is printed

2.9.4 NUMBERS VERSUS STRINGS

The sequence of 0s and 1s inside a computer used to store the String value "1234" is different from the
sequence of 0s and 1s used to store the int value 1234, which is different from the sequence of 0s and 1s
used to store the double value 1234.0. The string form is more convenient for certain types of manipula-
tion, such as printing on the screen or for combining with other strings. The int form is better for some
numeric calculations, and the double form is better for others. So how does the computer know how to inter-
pret a particular sequence of 0s and 1s? The answer is: Look at the type of the variable used to store the
value. This answer is precisely why you must specify a type for each variable. Without the type information
the sequence of 0s and 1s could be misinterpreted.

We do something similar with words all the time. Just as computers interpret sequences of 0s and 1s, human
beings interpret sequences of alphabetic symbols. How people interpret those symbols depends on the con-
text in which the symbols appear. For example, at times the same word can be a noun, and at other times it
can be a verb. Also, certain sequences of letters mean different things in different languages. Take the word
pie for example. What does it mean? If it is English, it is something good to eat. If it is Spanish, it means foot.

From the context of the surrounding words we can usually figure out what the type of the word is: verb or
noun, English or Spanish. Some programming languages do something similar and “figure out” the type of a
variable. These programming languages are generally considered to be more error prone than languages such
as Java, which require the programmer to specify the type of each variable. Languages such as Java are called
strongly typed languages.

2.10 ARITHMETIC EXPRESSIONS

The basic arithmetic operators in Java are addition +, subtraction -, multiplication *, division /, and
modulus %. You can use all arithmetic operators with all primitive numeric types: char, byte, short, int,
long, float, and double. In addition, you can combine any two numeric types by using these operators in
what is known as mixed mode arithmetic. Although you can use the operators with any numeric type, Java
actually does arithmetic only with the types int, long, float, and double. Therefore the following rules are
used first to convert both operands into one of four types.

1. If either operand is a double, then the other is converted to double.

2. Otherwise, if either operand is a float, then the other is converted to float.

3. Otherwise, if either operand is a long, then the other is converted to a long.

4. Otherwise, both are converted to int.

This conversion is called binary numeric promotion and is also used with the binary relational operators dis-
cussed in Section 3.2.1, Relational and Equality Operators, on page 49.

When both operands are integer types, the operations of addition, subtraction, and multiplication are self-
evident except when the result is too large to be represented by the type of the operands.

Integer values can’t represent fractions. In Java, integer division truncates toward 0. For example, 6 / 4 is 1
and 6 / (-4) is -1. A common mistake is to forget that integer division of nonzero values can result in 0. To
obtain fractional results you must force one of the operands to be a floating point type. In expressions
involving literals you can do so by adding a decimal point, as in 6.0 / 4, which results in the floating point
value 1.5. In addition, integer division by zero will result in an error called an ArithmeticException. An
exception, as the name implies, is something unexpected. Java provides a way for you to tell the computer

2.10.1 An Integer Arithmetic Example: Change 31

what to do when exceptions occur. If you don’t do anything and such an error occurs, the program will print
an appropriate error message and terminate. We discuss exceptions in Chapter 11, Coping with Errors.

Unlike some programming languages, Java doesn’t generate an exception when integer arithmetic results in a
value that is too large. Instead, the extra bits of the true result are lost, and in some cases pollute the bit used
for the sign. For example, adding two very large positive numbers could generate a negative result. Likewise,
subtracting a very large positive number from a negative number could generate a positive result. If values
are expected to be near the limit for a particular type, you should either use a larger type or check the result
to determine whether such an overflow has occurred.

When one of the operands is a floating point type, but both operands are not of the same type, one of them is
converted to the other as described earlier. Unlike some programming languages, floating point arithmetic
operations in Java will never generate an exception. Instead three special values can result: positive infinity,
negative infinity, and “Not a Number.” See Appendix A, Getting Down to the Bits for more details.

The modulus operator % returns the remainder from integer division. For example, 16 % 3 is 1, because 16
divided by 3 is 5 with a remainder of 1. The modulus operator is mostly used with integer operands; how-
ever, in Java it can be used with floating point operands. For floating point values x % y is n, where n is the
largest integer such that |y| * n is less than or equal to |x|.

2.10.1 AN INTEGER ARITHMETIC EXAMPLE: CHANGE

The computation in Section 1.3, Implementing Our Algorithm in Java, on page 5, whereby we made change
for a dollar, is a perfect illustration of the use of the two integer division operators, / and %.

// MakeChange.java - change in dimes and pennies
import java.util.*;

class MakeChange {
 public static void main (String[] args) {
 int price, change, dimes, pennies;
 Scanner scan = new Scanner(System.in);
 System.out.println("type price (0 to 100):");
 price = scan.nextInt();
 change = 100 - price; //how much change
 dimes = change / 10; //number of dimes
 pennies = change % 10; //number of pennies
 System.out.print("The change is : ");
 System.out.println(dimes + " dimes " + pennies + " pennies");
 }
}

Dissection of the MakeChange Program

 Q int price, change, dimes, pennies;

This program declares four integer variables. These types determine the range of values that can be used
with these variables. They also dictate that this program use integer arithmetic operations, not floating
point operations.

 Q price = scan.nextInt();

The scan.nextInt() is used to obtain the input from the keyboard. The nextInt() method is a mem-
ber of the class Scanner. At this point we must type in an integer price. For example, we would type 77
and hit Enter.

32 Program Fundamentals

2.10.2 TYPE CONVERSION

You may want or need to convert from one primitive numeric type to another. As mentioned in the preceding
section, Java will sometimes automatically convert the operands of a numeric operator. These automatic con-
versions are also called widening primitive conversions. These conversions always convert to a type that
requires at least as many bits as the type being converted, hence the term widening. In most but not all cases,
a widening primitive conversion doesn’t result in any loss of information. An example of a widening primi-
tive conversion that can lose some precision is the conversion of the int value 123456789 to a float value,
which results in 123456792. To understand this loss of information, see Appendix A, Getting Down to the
Bits. The following are the possible widening primitive conversions:.

In addition to performing widening conversions automatically as part of mixed mode arithmetic, widening
primitive conversions are also used to convert automatically the right-hand side of an assignment operator
to the type of the variable on the left. For example, the following assignment will automatically convert the
integer result to a floating point value.

int x = 1, y = 2;
float z;
z = x + y; // automatic widening from int to float

A narrowing primitive conversion is a conversion between primitive numeric types that may result in signifi-
cant information loss. The following are narrowing primitive conversions.

 Q change = 100 - price; //how much change

This line computes the amount of change. This is the integer subtraction operator.

 Q dimes = change / 10; //number of dimes
pennies = change % 10; //number of pennies

To compute the number of dimes, we compute the integer result of dividing change by 10 and throw
away any remainder. So if change is 23, then the integer result of 23 / 10 is 2. The remainder 3 is dis-
carded. The number of pennies is the integer remainder of change divided by 10. The % operator is the
integer remainder or modulo operator in Java. So if change is 23, then 23 % 10 is 3. In Exercise 17 on
page 43, we ask you to use double for the variables and to report on your results.

FROM TO

byte short, int, long, float, or double

short int, long, float, or double

char int, long, float, or double

int long, float, or double

long float or double

float double

2.10.2 Type Conversion 33

Narrowing primitive conversions generally result only from an explicit type conversion called a cast. A cast is
written as (type)expression, where the expression to be converted is preceded by the new type in parenthe-
ses. A cast is an operator and, as the table in Section 2.13, Precedence and Associativity of Operators, on page
38, indicates, has higher precedence than the five basic arithmetic operators. For example, if you are inter-
ested only in the integer portion of the floating point variable someFloat, then you can store it in some-
Integer, as in

int someInteger;
float someFloat = 3.14159;
someInteger = (int)someFloat;
System.out.println(someInteger);

The output is

If the cast is between two integral types, the most significant bits are simply discarded in order to fit the
resulting format. This discarding can cause the result to have a different sign from the original value. The fol-
lowing example shows how a narrowing conversion can cause a change of sign.

int i = 127, j = 128;
byte iAsByte = (byte)i, jAsByte = (byte)j;
System.out.println(iAsByte);
System.out.println(jAsByte);

The output is

The largest positive value that can be stored in a byte is 127. Attempting to force a narrowing conversion on
a value greater than 127 will result in the loss of significant information. In this case the sign is reversed. To
understand exactly what happens in this example, see Appendix A.

FROM TO

byte char

short byte or char

char byte or short

int byte, short, or char

long byte, short, char, or int

float byte, short, char, int, or long

double byte, short, char, int, long, or float

3

127
-128

34 Program Fundamentals

2.11 ASSIGNMENT OPERATORS

To change the value of a variable, we have already made use of assignment statements such as

a = b + c;

Assignment is an operator, and its precedence is lower than all the operators we’ve discussed so far. The
associativity for the assignment operator is right to left. In this section we explain in detail its significance.

To understand = as an operator, let’s first consider + for the sake of comparison. The binary operator + takes
two operands, as in the expression a + b. The value of the expression is the sum of the values of a and b. By
comparison, a simple assignment expression is of the form

variable = rightHandSide

where rightHandSide is itself an expression. A semicolon placed at the end would make this an assignment
statement. The assignment operator = has the two operands variable and rightHandSide. The value of right-
HandSide is assigned to variable, and that value becomes the value of the assignment expression as a whole.
To illustrate, let’s consider the statements

b = 2;
c = 3;
a = b + c;

where the variables are all of type int. By making use of assignment expressions, we can condense these
statements to

a = (b = 2) + (c = 3);

The assignment expression b = 2 assigns the value 2 to the variable b, and the assignment expression itself
takes on this value. Similarly, the assignment expression c = 3 assigns the value 3 to the variable c, and the
assignment expression itself takes on this value. Finally, the values of the two assignment expressions are
added, and the resulting value is assigned to a.

Although this example is artificial, in many situations assignment occurs naturally as part of an expression.
A frequently occurring situation is multiple assignment. Consider the statement

COMMON PROGRAMMING ERROR

Remember that integer division truncates toward zero. For example, the value of the expression 3/4 is 0.
Both the numerator and the denominator are integer literals, so this is an integer division. If what you
want is the rounded result, you must first force this to be a floating point division and then use the rou-
tine Math.round() to round the floating point result to an integer. To force a floating point division you
can either make one of the literals a floating point literal or use a cast. In the following example first
recall that floating point literals of type float are specified by appending the letter f. Then for

int x = Math.round(3.0f/4);

the variable x will get the value 1. Forcing the division to be a floating point divide is not enough. In the
following example, z will be 0.

int z = (int)(3.0f/4);

The conversion of 0.75 to an int truncates any fractional part.

2.11 Assignment Operators 35

a = b = c = 0;

Because the operator = associates from right to left, an equivalent statement is

a = (b = (c = 0));

First, c is assigned the value 0, and the expression c = 0 has value 0. Then b is assigned the value 0, and the
expression b = (c = 0) has value 0 . Finally, a is assigned the value 0 , and the expression
a = (b = (c = 0)) has value 0.

In addition to =, there are other assignment operators, such as += and -=. An expression such as

k = k + 2

will add 2 to the old value of k and assign the result to k, and the expression as a whole will have that value.
The expression

k += 2

accomplishes the same task. The following list contains all the assignment operators

All these operators have the same precedence, and all have right-to-left associativity. The meaning is speci-
fied by

variable op= expression

which is equivalent to

variable = variable op (expression)

with the exception that if variable is itself an expression, it is evaluated only once. Note carefully that an
assignment expression such as

j *= k + 3 is equivalent to j = j * (k + 3)

rather than

j = j * k + 3

The following table illustrates how assignment expressions are evaluated.

.ASSIGNMENT OPERATORS

= += -= *= /
= %= >>= <<= &= ^= |=

DECLARATIONS AND INITIALIZATIONS

int i = 1, j = 2, k = 3, m = 4;

EXPRESSION EQUIVALENT EXPRESSION EQUIVALENT EXPRESSION VALUE

i += j + k i += (j + k) i = (i + (j + k)) 6

j *= k = m + 5 j *= (k = (m + 5)) j = (j * (k = (m + 5))) 18

36 Program Fundamentals

2.12 THE INCREMENT AND DECREMENT OPERATORS

Computers are very good at counting. As a result, many programs involve having an integer variable that
takes on the values 0, 1, 2, . . . One way to add 1 to a variable is

i = i + 1;

which changes the value stored in the variable i to be 1 more than it was before this statement was executed.
This procedure is called incrementing a variable. Because it is so common, Java, like its predecessor C,
includes a shorthand notation for incrementing a variable. The following statement gives the identical result.

i++;

The operator ++ is known as the increment operator. Similarly, there is a decrement operator, --, so that the
following two statements are equivalent:

i = i - 1;
i--;

Here is a simple program that demonstrates the increment operator.

//Increment.java - demonstrate incrementing
class Increment {
 public static void main(String[] args) {
 int i = 0;
 System.out.println("i = " + i);
 i = i + 1;
 System.out.println("i = " + i);
 i++;
 System.out.println("i = " + i);
 i++;
 System.out.println("i = " + i);
 }
}

The output of this program is

Note that both increment and decrement operators are placed after the variable to be incremented. When
placed after its argument they are called the postfix increment and postfix decrement operators. These opera-
tors also can be used before the variable. They are then called the prefix increment and prefix decrement
operators. Each of the expressions ++i(prefix) and i++(postfix) has a value; moreover, each causes the stored
value of i in memory to be incremented by 1. The expression ++i causes the stored value of i to be incre-
mented first, with the expression then taking as its value the new stored value of i. In contrast, the expres-
sion i++ has as its value the current value of i; then the expression causes the stored value of i to be
incremented. The following code illustrates the situation.

i = 0
i = 1
i = 2
i = 3

2.13 Precedence and Associativity of Operators 37

int a, b, c = 0;
a = ++c;
b = c++;
System.out.println("a = " + a); //a = 1 is printed
System.out.println("b = " + b); //b = 1 is printed
System.out.println("c = " + ++c); //c = 3 is printed

Similarly, --i causes the stored value of i in memory to be decremented by 1 first, with the expression then
taking this new stored value as its value. With i-- the value of the expression is the current value of i; then
the expression causes the stored value of i in memory to be decremented by 1. Note that ++ and -- cause the
value of a variable in memory to be changed. Other operators do not do so. For example, an expression such
as a + b leaves the values of the variables a and b unchanged. These ideas are expressed by saying that the
operators ++ and -- have a side effect; not only do these operators yield a value, but they also change the
stored value of a variable in memory. Of course this is also true of the assignment operator.

In some cases we can use ++ in either prefix or postfix position, with both uses producing equivalent results.
For example, each of the two statements

++i; and i++;

is equivalent to

i = i + 1;

In simple situations you can consider ++ and -- as operators that provide concise notation for the incre-
menting and decrementing of a variable. In other situations, you must pay careful attention as to whether
prefix or postfix position is used.

2.13 PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

When evaluating expressions with several operators, you need to understand the order of evaluation of each
operator and its arguments. Operator precedence gives a hierarchy that helps determine the order in which
operations are evaluated. For example, precedence determines which arithmetic operations are evaluated
first in

x = (-b + Math.sqrt(b * b - 4 * a * c))/(2 * a)

which you may recognize as the expression to compute one of the roots of a quadratic equation, written like
this in your mathematics class:

To take a simpler example, what is the value of integer variable x after the assignment x = 7 + 5 * 3? The
answer is 22, not which is 36. The reason is that multiplication has higher precedence than addi-
tion; therefore 5 * 3 is evaluated before 7 is added to the result.

In addition to some operators having higher precedence than others, Java specifies the associativity or the
order in which operators of equal precedence are to be evaluated. For example, the value of 100 / 5 * 2 is
40, not 10. This is because / and * have equal precedence and arithmetic operators of equal precedence are
evaluated from left to right. If you wanted to do the multiplication before the division, you would write the
expression as 100 / (5 * 2). Parentheses can be used to override the normal operator precedence rules.

This left to right ordering is important in some cases that might not appear obvious. Consider the expression
x + y + z. From simple algebra, the associativity of addition tells us that (x + y) + z is the same as
x + (y + z). Unfortunately, this is true only when you have numbers with infinite precision. Suppose that y
is the largest positive integer that Java can represent, x is -100, and z is 50. Evaluating (y + z) first will

x b– b2 4ac–+
2a

--=

7 5+() 3×

38 Program Fundamentals

result in integer overflow, which in Java will be equivalent to some very large negative number, clearly not
the expected result. If instead, (x + y) is evaluated first, then adding z will result in an integer that is still in
range and the result will be the correct value.

The precedence and associativity of all Java operators is given in Appendix Appendix B, Reference Tables.
The following table gives the rules of precedence and associativity for the operators of Java that we have
used so far.

All the operators on the same line, such as *, /, and %, have equal precedence with respect to each other but
have higher precedence than all the operators that occur on the lines below them. The associativity rule for
all the operators on each line appears in the right-hand column.

In addition to the binary +, which represents addition, there is a unary +, and both operators are represented
by a plus sign. The minus sign also has binary and unary meanings. The following table gives some additional
examples of precedence and associativity of operators.

2.14 PROGRAMMING STYLE

A clear, consistent style is important to writing good code. We use a style that is largely adapted from the
Java professional programming community. Having a style that is readily understandable by the rest of the
programming community is important.

We’ve already mentioned the importance of comments for documenting a program. Anything that aids in
explaining what is otherwise not clear in the program should be placed in a comment. Comments help the
programmer keep track of decisions made while writing the code. Without good documentation, you may
return to some code you have written, only to discover that you have forgotten why you did some particular
thing. The documentation should enable someone other than the original programmer to pick up, use, and
modify the code. All but the most trivial methods should have comments at the beginning, clearly stating the
purpose of the method. Also, complicated blocks of statements should be preceded by comments summariz-

OPERATOR PRECEDENCE AND ASSOCIATIVITY

OPERATOR ASSOCIATIVITY

() ++ (postfix) -- (postfix) Left to right

+ (unary) - (unary) ++ (prefix) -- (prefix) Right to left

new (type)expr Right to left

* / % Left to right

+ - Left to right

= += -= *= /= etc. Right to left

DECLARATIONS AND INITIALIZATIONS

int a = 1, b = 2, c = 3, d = 4;

EXPRESSION EQUIVALENT EXPRESSION VALUE

a * b / c (a * b) / c 0

a * b % c + 1 ((a * b) % c) + 1 3

++a * b - c-- ((++a) * b) - (c --) 1

7 - - b * ++d 7 - ((- b) * (++d)) 17

2.14 Programming Style 39

ing the function of the block. Comments should add to the clarity of the code, not simply restate the pro-
gram, statement by statement. Here is an example of a useless comment.

area = width * height; // compute the area

Good documentation includes proper choice of identifiers. Identifiers should have meaningful names. Cer-
tain simple one-character names are used to indicate auxiliary variables, such as i, j, or k, as integer vari-
ables.

The code should be easy to read. Visibility is enhanced by the use of white space. In general, we present only
one statement to a line and in all expressions separate operators from arguments by a space. As we progress
to more complex programs, we shall present, by example or explicit mention, accepted layout rules for pro-
gram elements.

SOME NAMING CONVENTIONS USED BY MANY JAVA PROGRAMMERS

Q Class names start with uppercase and embedded words, as in HelloWorld, are capitalized.

Q Methods and variables start with lowercase and embedded words, as in readInt, data,
toString, and loopIndex, are capitalized.

Q Although legal, the dollar sign, $, should not be used except in machine-generated Java pro-
grams.

SUMMARY

Q To create a Java program first define a class. Give the class a method called main(). Put whatever
instructions you want the computer to execute inside the body of the method main().

Q A program stores data in variables. Each variable is given a type, such as int for storing integers or
String for storing strings.

Q You can use literals to embed constant values of various types in a program, such as in the constant
string "Hello, world!" or the integer constant 3.

Q You can combine literals and variables in expressions by using operators such as + for addition or string
concatenation and * for numeric multiplication.

Q You can store the result of evaluating an expression in a variable by using the assignment operator =.
The variable is always on the left, and the expression being assigned to the variable is always on the
right.

Q You can call a method from another class by writing the name of the class followed by a dot and the
name of the method—for example, Math.sqrt().

Q The lexical elements of a Java program are keywords, identifiers, literals, operator symbols, punctuation,
comments, and white space.

Q You can print strings and numbers to the screen by using the method System.out.print() or Sys-
tem.out.println(). The latter appends a newline to whatever is printed. These methods are part of the
standard Java classes. Java 5.0 introduced printf() which allows formatted printing as derived from
the C language.

Q You can input from the keyboard by using the methods of class Scanner. These include next() for
strings, nextInt() for integers and nextDouble() for doubles.

Q Java supports the primitive integer types char, byte, short, int, and long. It also supports two floating
point types, float and double.

40 Program Fundamentals

Q Integer division truncates toward zero—it doesn’t round to the nearest whole number. You can use
Math.round() if rounding is what you want.

REVIEW QUESTIONS

1. What line appears in every complete Java program indicating where to begin executing the program?

2. What one-line instruction would you use to have a Java program print Goodbye?

3. What affect do strings such as /* what is this */ have on the execution of a Java program?

4. What is a variable?

5. What is a method?

6. Complete the following table.

7. What does the symbol = do in Java?

8. Programmers say ___________ a method when they mean go and execute the instructions for the method.

9. True or false? A multiline comment can be placed anywhere white space could be placed.

10. True or false? Keywords can also be used as variables, but then the special meaning of the keyword is
overridden.

11. What convention for identifiers given in this chapter is used in whatAmI, howAboutThis, someName?

12. What primitive types are used to store whole numbers?

13. What is the difference between x = 'a' and x = a?

14. What is the difference between s = "hello" and s = hello?

15. Which version of the Java program HelloWorld is the one you can view and edit with a text editor, Hel-
loWorld.java or HelloWorld.class? What does the other one contain? What program created the one you do
not edit?

16. What is Unicode?

17. List the primitive types in Java.

18. Before it can be used, every variable must be declared and given a ___________.

TEXT LEGAL ID WHY OR WHY NOT

3xyz No Digit is first character.

xy3z

a = b

main

Count

class

2.14 Programming Style 41

19. What is the value of the Java expression "10"+"20"? Don’t ignore the quotation marks; they are crucial.

20. Write a Java statement that could be used to read an integer value from the keyboard and store it in the
variable someNumber.

21. What is wrong with the following Java statement?

System.out.println("This statement is supposed
 to print a message. What is wrong?");

22. Every group of input statements should be preceded by what?

23. How do you write x times y in Java?

24. What is the difference between System.out.print("message") and System.out.println("mes-
sage")?

25. Write a single Java statement that will produce the following output.

26. Approximately, what is the largest value that can be stored in the primitive type int? One thousand? One
million? One billion? One trillion? Even larger?

27. What primitive Java type can store the largest numbers?

28. What is the value of the following Java expressions?

20 / 40
6 / 4
6.4 / 2

EXERCISES

1. Write a Java program that prints “Hello your name.” You can do this by a simple modification to the Hel-
loWorld program. Compile and run this program on your computer.

2. Write a Java program that prints a favorite poem of at least eight lines. Be sure to print it out neatly
aligned. At the end of the poem, print two blank lines and then the author’s name.

3. Design your own signature logo, such as a sailboat icon if you like sailing, and print it followed by “yours
truly—your name.” A sailboat signature logo might look like

 /\
 / \
 / \
 / \
 |
==================
\ Yours truly /
 Bruce McPohl

X
XX
XXX

42 Program Fundamentals

4. Write a Java program to read in two numbers and print the sum. Be sure to include a message to prompt
the user for input and a message identifying the output. See what happens if you type in something that
is not a number when the program is run. See how large a number you can type in and still have the pro-
gram work correctly.

5. The following code contains three syntax errors and produces two syntax error messages from javac. Fix
the problems.

// Ch2e1.java - fixing syntax errors
Class Ch2e1 {
 public static void main(String[] args) {
 System.out.println(hello, world);
 }

The javac compiler’s message reads:

6. The following code produces one syntax error message from javac. Fix the problem.

// Ch2e2.java - more syntax errors
class Ch2e2 {
 public static void main(String[] args) {
 int count = 1, i = 3,
 System.out.println("count + i = ", count + i);
 }
}

The javac compiler’s message reads

Here, unlike the previous exercise, the compiler doesn’t as clearly point to the errors. Frequently, errors
in punctuation lead to syntax error messages that are hard to decipher. After you fix the first syntax
error in the code, a second error will be identified.

7. Continue with the code class Ch2e2. If you fixed just the syntax errors, you may get a running program
that still has a run-time bug. Namely, the output may not be the sum of count + i. Fixing run-time or
semantic bugs is harder than fixing syntax bugs because something is wrong with your understanding of
how to program the solution. Without introducing any other variables fix the run-time bug.

8. Write a program that draws a box like the one shown, using a single println() statement.

Ch2e1.java:2: Class or interface declaration
expected.
 Class ch2e1 {
 ^
Ch2e1.java:7: Unbalanced parentheses.
^
2 errors

Ch2e2.java:6: Invalid declaration.
System.out.println("count + i = ", count + i);

 ^
1 error

2.14 Programming Style 43

* *
* *

9. Use scan.nextDouble() to read in one double precision floating point number and then print the
results of calling Math.sin(), Math.cos(), Math.asin(), Math.exp(), Math.log(), Math.floor(),
and Math.round() with the input value as a parameter. Be sure to prompt the user for input and label
the output.

10. Write a program to read two double precision floating point numbers, using nextDouble(). Print the
sum, difference, product, and quotient of the two numbers. Try two very small numbers, two very large
numbers, and one very small number with one very large number. You can use the same notation used
for literals to enter the numbers. For example, 0.123e-310 is a very small number.

11. Write a program to compute the area of a circle given its radius. Let radius be a variable of type double
and use nextDouble() to read in its value. Be sure that the output is understandable. The Java class
Math contains definitions for the constants E and PI, so you can use Math.PI in your program.

12. Extend the previous program to write out the circumference of a circle and the volume of a sphere given
the radius as input. Recall that the volume of a sphere is

13. Write a program that asks for a double and then prints it out. Then ask for a second double, this time
printing out the sum and average of the two doubles. Then ask for a third double and again print out the
accumulated sum and the average of the three doubles. Use variables data1, data2, data3, and sum.
Later, when we discuss loops, you will see how this is easily done for an arbitrary number of input val-
ues.

14. Write a program that reads in an integer and prints it as a character. Remember that character codes can
be nonprinting. ‘

15. Write a program that asks for the number of quarters, dimes, nickels, and pennies you have. Then com-
pute the total value of your change and print the number of dollars and the remaining cents.

16. Write a program capable of converting one currency to another. For example, given U.S. dollars it should
print out the equivalent number of Euros. Look up the exchange rate and use it as input.

17. Change the MakeChange program to use variables that are doubles. Run the program and see what goes
wrong.

class MakeChange {
 public static void main (String[] args) {
 double price, change, dimes, pennies;
 ...

18. The following is a C program for printing “Hello, world!”.

/* Hello World In C
 * Purpose:
 * The classic "Hello, world!" program.
 * It simply prints a message to the screen.
 * Author:
 * Jane Programmer
 * as derived from Kernighan and Richie
 */

V 4 πr3×
3

------------------=

44 Program Fundamentals

#include <stdio.h> /* needed for IO */
int main(void) {
 printf("Hello, world!\n");
 return 0; /* unneeded in Java */
}

Note how similar this program is to the Java version. A key difference is the lack of class encapsulation
of main(). As in Java, main() starts the program’s execution. In C, methods are known as functions. The
printf() function is found in the standard input–output library imported by the C compiler for use in
this program. The return 0 ends program execution and is not used in Java. Convert the following C
program to Java.

#include <stdio.h>
int main(void) {
 printf("Hello, world!\n");
 printf("My name is George.\n");
 printf("Yada Yada Yada ...\n");
 return 0;
}

APPLET EXERCISE

The following program is an example of a Java applet. This program uses several features of Java that we
explain later. Note that there is no method main(); instead there is the method paint(). For now just con-
centrate on the body of the method paint(), treating the surrounding code as a template to be copied verba-
tim. By invoking the appropriate drawing operations on the Graphics object g, you can draw on the applet.

/* To place this applet in a web page, add the
 following two lines to the html document for the
 page.
 <applet code="FirstApplet.class"
 width=500 height=200></applet>
*/

// AWT and Swing together comprise the collection of
// classes used for building graphical Java programs
import java.awt.*; //required for programs that draw
import javax.swing.*; //required for Swing applets
public class FirstApplet extends JApplet {
 public void paint(Graphics g) {
 // draw a line from the upper left corner to
 // 100 pixels below the top center of the Applet
 g.drawLine(0,0,250,100);
 // draw a line from the end of the previous line
 // up to the top center of the Applet
 g.drawLine(250,100,250,0);
 // draw an oval inscribed in an invisible
 // rectangle with its upper left corner at the
 // intersection of the two lines drawn above
 g.drawOval(250,100,200,100);
 }
}

The class Graphics is used for simple drawing, and many drawing operations are defined for it. In this exam-
ple we use the method drawLine() to draw a line. The first two numbers in parentheses for the drawline()

2.14 Programming Style 45

operation are the xy coordinates of one end of the line, and the last two numbers are the xy coordinates of
the other end. As you can see from the output of the program, the location (0, 0) is in the upper left corner,
with increasing x moving to the right and increasing y moving down. To draw an oval, give the coordinates of
the upper left corner and the width and height on an invisible rectangle. The oval will be inscribed inside the
rectangle.

To execute an applet, first compile it like you do other Java programs. Then you can either run the program
appletviewer or use a web browser to view the applet. To view the applet FirstApplet using the applet-
viewer on Unix and Windows machines, type the following at a command line prompt.

appletviewer FirstApplet.java

Notice that we are passing FirstApplet.java—not FirstApplet or FirstApplet.class—to the applet-
viewer. This procedure is different from running regular Java programs. In fact appletviewer just looks in
the text file passed to it for an applet element. An applet element begins with <applet> and ends with </
applet>. Any text file containing the applet element shown in the opening comment for FirstApplet.java
would work just as well.

To view the applet in a Web browser, create a file—for example, FirstApplet.html. Put the applet tag in
the html file. Put the html file in the same directory as your applet and then open the html file with a Web
browser.

The applet looks like the following when run with an appletviewer.

Modify this applet to draw a simple picture. Look up the documentation for Graphics on the Web at

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Graphics.html

and use at least one method/operation of Graphics not used in FirstApplet.

46 Program Fundamentals

CHAPTER 3

STATEMENTS AND
CONTROL FLOW

The program examples presented until now have executed from top to bottom without making any decisions.
In this chapter, we have programs select among two or more alternatives. We also demonstrate how to write
programs that repeatedly execute the same sequence of instructions. Both instructions to computers and
instructions in everyday life are filled with conditional and iterative statements. A conditional instruction for
your microwave oven might say “If you wish to defrost press the defrost button; otherwise, press the full
power button.” An iterative instruction for baking a loaf of bread might say “Let the dough rise in a warm
place until it has doubled in size.” Conditional and iterative statements are controlled by boolean expres-
sions. A boolean expression is either true or false. “If it is raining, wear your raincoat” is an instruction given
by many parents and is followed if it is true that it is raining. In Java, expressions that evaluate as true or
false are of type boolean. To direct the flow of control properly you need to learn how to write boolean
expressions.

3.1 EXPRESSION, BLOCK, AND EMPTY STATEMENTS

Java has many kinds of statements. Most of the statements that we have shown have specified the evaluation
of an expression. We’ll soon look at statements that select between two alternatives and statements that
repeat many times. Before doing that, we need to look more closely at the statements that we have been
using. The normal flow of instructions in Java is to execute the statements of the program in sequential order
from top to bottom.

All the statements used so far have been either variable declaration statements or expression statements.
Variable declaration statements begin with a type, such as int or String, and end with a semicolon, as in

int width, height, area;
String hello = "Hello, world!";
double size = 1.5, x;

The first declares three variables of type int. The second declares one variable of type String and initializes
it. The third declares and initializes the variable size, but not the variable x. Declaration statements start
with a type and are followed by one or more variables, separated by commas. The variables may be initialized
by using the equals sign followed typically by a literal. In Java all variables need to be declared.

Expression statements are formed by adding a semicolon to the end of an expression. Expressions are basic
to performing computations. Not all expressions are valid in expression statements. The two types of expres-
sions used so far that are valid in expression statements are assignment expressions and method call expres-

48 Statements and Control Flow

sions. An assignment expression is any expression involving the assignment operator. A method call
expression does not involve an assignment operator. The following are examples of expression statements.

area = width * height; //simple assignment statement
System.out.println(...); //method call expression

A statement used for grouping a number of statements is a block. A block is a sequence of one or more state-
ments enclosed by braces. A block is itself a statement. A simple example is

{
 x = 1;
 y = 2 * x + 1;
 System.out.println(y);
 System.out.println(x);
}

Statements inside a block can also be blocks. The inside block is called an inner block, which is nested in the
outer block. An example is

{ //outer block
 x = 1;
 { //inner block
 y = 2;
 System.out.println(y);
 } //end of inner block
 System.out.println(x);
}

This example merely demonstrates the syntax of a block; we wouldn’t normally put a block inside another
block for no reason. Most nested blocks involve declaration statements that create local variables. A simple
example of a block with declarations is

{
 int i = 5 + j;
 //i is created in this block, j is from elsewhere
 ...
} //end of block i disappears

In this example the int variable i is created when this block is executed. When this block is started, i is
placed in memory with its initial value calculated as 5 plus the value of j. When the block is exited, the vari-
able disappears.

Blocks are not terminated by semicolons. Rather they are terminated by a closing brace, also called the right
brace. Recall that the semicolon, when used, is part of the statement, not something added to the statement.
For example, the semicolon turns an expression into a statement. Understanding this will make it much eas-
ier for you to create syntactically correct programs with the new statement types that we introduce in this
chapter.

3.1.1 EMPTY STATEMENT

The simplest statement is the empty statement, or null statement. It is just a semicolon all by itself and
results in no action. A semicolon placed after a block is an empty statement and is irrelevant to the pro-
gram’s actions. The following code fragment produces exactly the same result as the nested block example in
the preceding section. The string of semicolons simply create seven empty statements following the inner
block.

3.2 Boolean Expressions 49

{
 x = 1;
 {
 y = 2;
 System.out.println(y);
 };;;;;;;
 System.out.println(x);
}

3.2 BOOLEAN EXPRESSIONS

A boolean expression is any expression that evaluates to either true or false. Java includes a primitive type
boolean. The two simplest boolean expressions are the boolean literals true and false. In addition to these
two literals, boolean values result from expressions involving either relational operators for comparing num-
bers or logical operators that act on boolean values.

3.2.1 RELATIONAL AND EQUALITY OPERATORS

All conditional statements require some boolean expression to decide which execution path to follow. Java
uses four relational operators: less than, < ; greater than, > ; less than or equal, <= ; and greater than or
equal, >= . Java also contains two equality operators: equal, == ; and not equal, != . They can be used between
any two numeric values. The equality operators may also be used when comparing nonnumeric types. They
are listed in the following table.

The relational operators can be used in assignment to boolean variables, as in

int i = 3, j = 4;
boolean flag;
flag = 5 < 6; //flag is now true
flag = (i == j); //flag is now false
flag = (j + 2) <= 6; //flag is now true

3.2.2 LOGICAL OPERATORS

Once you have a boolean value, either stored in a variable representing a primitive boolean value (for exam-
ple, boolean done = false;) or as the result of an expression involving a relational operator (for example,
(x < y)), you can combine these boolean values by using the logical operators. Java provides three logical
operators, “and,” “or,” and “not.” The meaning of these operators is given in the following table.

OPERATOR NAME EXAMPLE

< Less than 10 < 20 is true.

> Greater than 10 > 20 is false.

== Equal 10 == 20 is false.

<= Less than or equal 10 <= 10 is true.

>= Greater than or equal 11 >= 10 is true.

!= Not equal 10 != 20 is true.

50 Statements and Control Flow

For example, if you wanted to determine whether a person in a database was an adult but not a senior citi-
zen, you could check if their age was greater than or equal to 18 and their age was less than 65. The follow-
ing Java code fragment will print out “full fare adult is true” if this condition is met; otherwise, it prints “full
fare adult is false”.

boolean b = (ageOfPerson >= 18 && ageOfPerson < 65);
System.out.println("full fare adult is " + b);

For an example of the use of “or,” consider the opposite situation as above where you wanted to find out if a
reduced fair was appropriate. You might write

b = (ageOfPerson < 18 || ageOfPerson >= 65);
System.out.println("reduced fare is " + b);

The logical operators && and || use short-circuit evaluation. In the preceding example of a logical “and”
expression, if the ageOfPerson were 10, then the test for ageOfPerson < 65 would be omitted. Used partly
for efficiency reasons, this approach is helpful when the second part of such an expression could lead to an
undesirable result, such as program termination.

As with other operators, the relational, equality, and logical operators have rules of precedence and associa-
tivity that determine precisely how expressions involving these operators are evaluated, as shown in the fol-
lowing table.
t

Note that with the exception of the boolean unary operator negation, the relational, boolean, and equality
operators have lower precedence than the arithmetic operators. Only the assignment operators have lower
precedence.

OPERATOR NAME DESCRIPTION EXAMPLE—ASSUME x IS 10 AND y IS 20

&& and The expression x && y is
true if both x AND y are true
and false otherwise.

(x < 20) && (y < 30) is true.

|| or The expression x || y is
true if either x OR y (or both)
is true and false otherwise.

(x < 20) || (y > 30) is true.

! not The expression !x is true if x
is false and false otherwise.

!(x < 20) is false.

OPERATOR PRECEDENCE AND ASSOCIATIVITY

OPERATORS ASSOCIATIVITY

() ++ (postfix) -- (postfix) Left to right

+ (unary) - (unary) ++ (prefix) -- (prefix) ! Right to left

* / % Left to right

+ - Left to right

< <= > >= Left to right

== != Left to right

&& Left to right

|| Left to right

= += -= *= /= etc. Right to left

3.3 The if statement 51

3.3 THE if STATEMENT

Computers make decisions by evaluating expressions and executing different statements based on the value
of the expression. The simplest type of decision is one that can have only two possible outcomes, such as go
left versus go right or continue versus stop. In Java, we use boolean expressions to control decisions that have
two possible outcomes.

The if statement is a conditional statement. An if statement has the general form

if (BooleanExpr)
 Statement

If the expression BooleanExpr is true, then the statement, Statement, is executed; otherwise, Statement is
skipped. Statement is called the then statement. In some programming languages, but not Java, then is used
to signal the then statement. After the if statement has been executed, control passes to the next statement.
The flow of execution can skip around Statement as shown in the following diagram.

Note the absence of semicolons in the general form of the if statement. Recall that the semicolon, when
required, is part of the Statement and is not used to separate statements, as in

if (temperature < 32)
 System.out.println("Warning: Below freezing!");
System.out.println("It’s " + temperature + " degrees");

The message Warning: Below freezing! is printed only when the temperature is less than 32. The sec-
ond print statement is always executed. This example has a semicolon at the end of the if statement because
the statement inside the if statement is an expression statement that ends with a semicolon.

When the Statement inside an if statement is a block, you get if statements that look like

if (temperature < 32)
{
 System.out.println("Warning Warning Warning!");
 System.out.println("Warning: Below freezing!");
 System.out.println("Warning Warning Warning!");
}

Here you can see the importance of the block as a means of grouping statements. In this example, what oth-
erwise would be three separate statements are grouped, and all are executed when the boolean expression is
true. The formatting shown of the if statement with a block as the Statement aligns vertically with the

BooleanExpr

Statement

Continue with rest of program

Execution Enters if Statement

True

False

52 Statements and Control Flow

braces of the block statement. An alternative formatting—and the one that we use—places the opening brace
on the same line as the keyword if and then aligns the closing brace with the keyword as shown here.

if (temperature < 32) {
 System.out.println("Warning Warning Warning!");
 System.out.println("Warning: Below freezing!");
 System.out.println("Warning Warning Warning!");
}

At the end of this chapter, we discuss further which style to choose.

3.3.1 PROBLEM SOLVING WITH THE if STATEMENT

A different number is initially placed in each of three boxes, labeled a, b, and c, respectively. The problem is
to rearrange or sort the numbers so that the final number in box a is less than that in box b and that the
number in box b is less than that in box c. Initial and final states for a particular set of numbers are as fol-
lows.

Pseudocode for performing this sorting task involves the following steps.

PSEUDOCODE FOR THREE-NUMBER SORT

1. Place the first number in box a.

2. Place the second number in box b.

3. Place the third number in box c.

4. If the number in a is not larger than the number in b, go to step 6.

5. Interchange the number in a with that in b.

6. If the number in b is larger than the number in c, then go to step 7;
otherwise, halt.

7. Interchange the numbers in b and c.

8. If the number in a is larger than that in b, then go to step 9; otherwise,
halt.

9. Interchange the numbers in a and b.

10. Halt.

Let’s execute this pseudocode with the three specific numbers previously given: 17, 6, and 11, in that order.
We always start with the first instruction. The contents of the three boxes at various stages of execution are
shown in the following table.

BOX STEP 1 STEP 2 STEP 3 STEP 5 STEP 7

a 17 17 17 6 6

b 6 6 17 11

c 11 11 17

a

b

c

 6

11

17

a

b

c

17

6

11

Before After

3.3.1 Problem Solving with the if statement 53

To execute step 1, we place the first number, 17, in box a; similarly, at the end of instruction 3, the 6 has
been inserted into box b, and box c contains the 11. As 17 is larger than 6, the condition tested in step 4 is
false, and we proceed to instruction 5; this step switches the values into boxes a and b so that box a now con-
tains the 6 and box b has the 17. Step 6 has now been reached, and we compare the number in box b (17) to
that in box c (11); 17 is greater than 11, so a transfer is made to step 7. The numbers in boxes b and c are
then interchanged so that box b has the 11 and box c has the 17. The test in step 8 fails (6 is not larger than
11) and the computation then halts. The three numbers have been sorted in ascending sequence (i.e., 6 < 11 <
17). You should convince yourself by bench testing this algorithm with other values of a, b, and c that the
computation described by the pseudocode will work correctly for any three numbers. A flowchart of the sort-
ing algorithm is shown in the following diagram.

Note that we decomposed the operation of interchanging two numbers into three more primitive instruc-
tions. Box t is used as temporary storage to hold intermediate results. In order to interchange or switch the
two numbers a and b, we first temporarily store one of the numbers, say, a, in t (t a); next the other num-
ber is stored in a (a b), and, last, the first number is placed in b (b t). Note that the instruction sequence
“a b; b a” will not interchange a and b because the first instruction effectively destroys the old value in
a. In computer terms, the labeled boxes are analogous to memory or storage areas that can contain values.

Next we code in Java the pseudocode version of our sorting program.

// SortInput.java - sort three numbers
import java.util.*;

class SortInput {
 public static void main (String[] args) {
 int a, b, c, t;
 Scanner scan = new Scanner(System.in);
 System.out.println("type three integers:");
 a = scan.nextInt();
 b = scan.nextInt();
 c = scan.nextInt();

a first

b second

c third

a > b

Yes

No

b > c

a > b

Halt

t a
a b
b t

t b
b c
c t

t a
a b
b t

54 Statements and Control Flow

 if (a > b) {
 t = a;
 a = b;
 b = t;
 }
 if (b > c) {
 t = b;
 b = c;
 c = t;
 }
 if (a > b) {
 t = a;
 a = b;
 b = t;
 }
 System.out.print("The sorted order is : ");
 System.out.println(a + ", " + b + ", " + c);
 }
}

Dissection of the SortInput Program

 Q int a, b, c, t;

This program declares four integer variables. The variables a, b, and c are inputs to be sorted, and t is to
be used for temporary purposes, as described in the pseudocode.

 Q System.out.println("type three integers:");

This line is used to prompt the user to type the three numbers to be sorted. Whenever a program is
expecting the user to do something, it should print out a prompt telling the user what to do.

 Q a = scan.nextInt();
b = scan.nextInt();
c = scan.nextInt();

The method call expression scan.nextInt() is used to obtain the input from the keyboard. Three sepa-
rate integers need to be typed. The values read will be stored in the three variables.

 Q if (a > b) {
 t = a;
 a = b;
 b = t;
}
if (b > c) {
 t = b;
 b = c;
 c = t;
}
if (a > b) {
 t = a;
 a = b;
 b = t;
}

The if statements and resulting assignments are Java notation for the same actions described in the
sort flow chart. To comprehend these actions you need to understand why the interchange or swapping
of values between two variables, such as a and b, requires the use of the temporary t. Also note how the
three assignments are grouped as a block, allowing each if expression to control a group of actions.

3.4 The if-else statement 55

3.4 THE if-else STATEMENT

Closely related to the if statement is the if-else statement. An if-else statement has the following gen-
eral form:

if (BooleanExpr) Statement1 else Statement2

If the expression BooleanExpr is true, then Statement1 is executed and Statement2 is skipped; if BooleanExpr
is false, then Statement1 is skipped and Statement2 is executed. Statement2 is called the else statement.
After the if-else statement has been executed, control passes to the next statement. The flow of execution
branches and then rejoins, as shown in the following diagram.

Consider the following code:

if (x < y)
 min = x;
else
 min = y;
System.out.println("min = " + min);

If x < y is true, then min will be assigned the value of x; if it is false, then min will be assigned the value of y.
After the if-else statement is executed, min is printed.

 Q System.out.print("The sorted order is : ");
 System.out.println(a + ", " + b + ", " + c);
}

If the input values were 10, 5, and 15, the output would be

The sorted order is : 5, 10, 15

BooleanExpr

Statement2

Continue with rest of program

Execution enters if-else statement

Statement1

True False

56 Statements and Control Flow

As with the if statement, either branch of an if-else statement can contain a block, as shown in the follow-
ing example.

if (temperature < 32) {
 System.out.println("Warning Warning Warning!");
 System.out.println(32 - temperature + " degrees below freezing!");
 System.out.println("Warning Warning Warning!");
}
else {
 System.out.println("It’s " + temperature + "degrees fahrenheit.");
}
}

COMMON PROGRAMMING ERROR

A semicolon is used to change an expression to an expression statement. All statements do not end in
semicolons, and extraneous semicolons can cause subtle errors. Look carefully at the following code
fragment. What is printed when it executes if x is 3 and y is 4?

if (x < y);
 System.out.println("The smaller is " + x);
if (y < x);
 System.out.println("The smaller is " + y);

The answer is

The smaller is 3
The smaller is 4

Note the extra semicolon after the close parenthesis in each if statement. The indentation is misleading:
All four lines should be indented the same to reflect what is actually going to happen. The true branch of
each if statement is the empty statement “;”. The example code is syntactically correct but semantically
incorrect.

COMON PROGRAMMING ERROR

Another common error is to be misled by indentation and to try to include two statements in one branch
without using a block. Consider this example.

if (temperature < 32)
 System.out.print("It is now");
 System.out.print(32 - temperature);
 System.out.println(" below freezing.");
System.out.println("It's " + temperature + "degrees");

A user might mistakenly think that, if temperature is 32 or above, the code will execute only the last
print statement displaying temperature. That is almost certainly what was intended. Unfortunately, if
temperature is 32 or above, only the first print() would be skipped.

If temperature is 45 the following confusing message would be printed:

-13 below freezing.
It's 45 degrees

3.4.1 Nested if-else Statements 57

3.4.1 NESTED if-else STATEMENTS

The if statement is a full-fledged statement and can be used anywhere a statement is expected,
so you could put another if statement in either branch of an if statement. For example, you
could rewrite the earlier air fare checking statement as

if (ageOfPerson >= 18)
 if (ageOfPerson < 65)
 System.out.println("full fare adult");

If the expression (ageOfPerson >= 18) is true, then the statement

 if (ageOfPerson < 65)
 System.out.println("full fare adult");

is evaluated. The true branch for the ageOfPerson >= 18 if statement is itself an if statement. In general,
if the true branch of an if statement contains only another if statement, writing it as a single if statement
is more efficient, combining the expressions with the operator &&, as we did in Section 3.2.2, Logical opera-
tors, on page 49. Using && in most cases is also clearer.

These nested if statements can’t always be collapsed. Consider the following variation on our earlier exam-
ple involving temperature.

if (temperature < 32) {
 System.out.println("Warning Warning Warning!");
 if (temperature < 0)
 System.out.println((-temperature) + " degrees below Zero!"
 else
 System.out.println(32 - temperature + "(F) below Freezing!");
 System.out.println("Warning Warning Warning!");
}
else {
 System.out.println("It is " + temperature + " degrees fahrenheit.");
}

The then statement for the outer if-else statement is a block containing another if-else statement.

To get the behavior suggested by the indentation shown, a block must be used, as in

if (temperature < 32) {
 System.out.print("It is now");
 System.out.print(32 - temperature);
 System.out.println(" below freezing.");
}
System.out.println("It's " + temperature + "degrees");

58 Statements and Control Flow

3.4.2 if-else-if-else-if . . .

In the preceding example, the nesting was all done in the then statement part of the if-else statement.
Now we nest in the else statement part of the if-else statement:

if (ageOfPerson < 18)
 System.out.println("child fare");
else {
 if (ageOfPerson < 65)
 System.out.println("adult fare");
 else
 System.out.println("senior fare");
}

The braces are not needed; we added them only for clarity. This form is so common that experienced pro-
grammers usually drop the braces. In addition, the else and the following if are usually placed on the same
line, as in

if (ageOfPerson < 18)
 System.out.println("child fare");
else if (ageOfPerson < 65)
 System.out.println("adult fare");
else
 System.out.println("senior fare");

Note that the second if statement is a single statement that constitutes the else branch of the first state-
ment. The two forms presented are equivalent. You should be sure that you understand why they are. If you
need to, look back at the general form of the if statement and recall that an entire if-else statement is a
statement itself. This fact is illustrated in the following figure, wherein each statement is surrounded by a
box. As you can see, there are five different statements.

COMMON PROGRAMMING ERROR

In algebra class you came across expressions such as 18 ≤ age < 65. This expression tempts many new
programmers to write

if (18 <= age < 65) ...

In evaluating the expression, Java first evaluates (18 ¸<= age)—let’s call it part1—which is either true
or false. It then tries to evaluate (part1 < 65), which is an error because relational operators are used
to compare two numbers, not a boolean and a number. The only good thing about this type of mistake is
that the compiler will catch it. Our example earlier for printing full fare adult showed the proper
way to handle this situation.

if (ageOfPerson < 18)

System.out.println("child fare");

else if (ageOfPerson < 65)

System.out.println("adult fare");

else

System.out.println("senior fare");

3.4.3 The Dangling else Problem 59

Sometimes this chain of if-else-if-else-if-else... can get rather long, tedious, and inefficient. For this
reason, a special construct can be used to deal with this situation when the condition being tested is of the
right form. If you want to do different things based on distinct values of a single integer expression, then you
can use the switch statement, which we discuss in Section 3.9, The switch statement, on page 69.

3.4.3 THE DANGLING else PROBLEM

When you use sequences of nested if-else statements, a potential problem can arise as to what if an else
goes with, as for example in

if (Expression1)
 if (Expression2)
 Statement1
else
 Statement2

The indenting suggests that Statement2 is executed whenever Expression1 is false; however, that isn’t the
case. Rather, Statement2 is executed only when Expression1 is true and Expression2 is false. The proper
indenting is

if (Expression1)
 if (Expression2)
 Statement1
 else
 Statement2

The rule used in Java is that an else is always matched with the nearest preceding if that doesn’t have an
else. To cause Statement2 to be executed whenever Expression1 is false, as suggested by the first indenting
example, you can use braces to group the statements as shown.

if (Expression1) {
 if (Expression2)
 Statement1
}
else
 Statement2

The braces are like parentheses in arithmetic expressions that are used to override the normal precedence
rules. The nested, or inner, if statement is now inside a block that prevents it from being matched with the
else.

60 Statements and Control Flow

3.5 THE while STATEMENT

We have added the ability to choose among alternatives, but our programs still execute each instruction at
most once and progress from the top to the bottom. The while statement allows us to write programs that
run repeatedly.

The general form of a while statement in Java is

while (BooleanExpr)
 Statement

Statement is executed repeatedly as long as the expression BooleanExpr is true, as shown in the following
flowchart.

This flowchart is the same as the one for the if statement, with the addition of an arrow returning to the test
box.

Note that Statement may not be executed. That will occur when BooleanExpr evaluates to false the first time.
Note also, that like the description of the if-else statement, there are no semicolons in the general form of
the while statement. The semicolon, if any, would be part of the statement that follows the parenthesized
boolean expression.

A simple example for use on Valentine’s Day is

// Valentine.java - a simple while loop
class Valentine {
 public static void main(String[] args) {
 int howMuch = 0;
 while (howMuch++ < 5)
 System.out.println("I love you.");
 }
}

The output is

BooleanExpr

Statement

Continue with rest of program

Execution enters while statement

True

False

3.5.1 Problem Solving with Loops 61

When the body of the loop is a block you get

while (BooleanExpr) {
 Statement1
 Statement2
 ...
}

Modifying our earlier example gives

int howMuch = 0;
while (howMuch++ < 5) {
 System.out.print("I love you.");
 System.out.println {" @----->- my rose.");
}

which results in the output

Most while statements are preceded by some initialization statements. Our example initialized the loop
counting variable howMuch.

3.5.1 PROBLEM SOLVING WITH LOOPS

Suppose that you wanted to have a program that could read in an arbitrary number of nonzero values and
compute the average. If you were to use pseudocode, the program might look like the following.

PSEUDOCODE FOR AVERAGE, USING goto

1. Get a number.

2. If the number is 0 go to step 6.

3. Add the number to the running total.

4. Increment the count of numbers read in.

5. Go back to step 1.

6. Divide the running total by the count of numbers in order to get the average.

7. Print the average.

In this pseudocode, step 5 goes back to the beginning of the instruction sequence, forming a loop. In the
1950s and 1960s many programming languages used a goto statement to implement step 5 for coding such a
loop. These goto statements resulted in programs that were hard to follow because they could jump all over

I love you.
I love you.
I love you.
I love you.
I love you.

I love you. @----->- my rose.
I love you. @----->- my rose.
I love you. @----->- my rose.
I love you. @----->- my rose.
I love you. @----->- my rose.

62 Statements and Control Flow

the place. Their use was sometimes called spaghetti code. In Java there is no goto statement. Java includes
goto as a keyword that has no use so that the compiler can issue an error message if it is used inadvertently
by a programmer familiar with C or C++. Today structured control constructs can do all the good things but
none of the bad things that you could do with goto statements.

A loop is a sequence of statements that are to be repeated, possibly many times. The preceding pseudocode
has a loop that begins at step 1 and ends at step 5. Modern programs require that you use a construct to indi-
cate explicitly the beginning and the end of the loop. The structured equivalent, still in pseudocode, might
look like the following.

PSEUDOCODE WITH LOOP

Pseudocode for average, without using goto

get a number

while the number is not 0 do the following:

 add the number to the running total

 increment the count of numbers read in

 get a number

(when the loop exits)

divide the running total by the count of numbers to get the average

print the average

The loop initialization in this case is reading in the first number. Somewhere within a loop, typically at the
end, is something that prepares the next iteration of the loop—getting a new number in our example. So,
although not part of the required syntax, while statements generally look like the following

Statementinit // initialization for the loop
while (BooleanExpr) {
 Statement1
 Statement2
 ...
 Statementnext // prepare for next iteration
}

The while statement is most often used when the number of iterations isn’t known in advance. This situa-
tion might occur if the program was supposed to read in values, processing them in some way until a special
value called a sentinel was read in. Such is the case for our “compute the average” program: It reads in num-
bers until the sentinel value 0 is read in.

We can now directly translate into Java the pseudocode for computing an average.

// Average.java - compute average of input values
import java.util.*;
public class Average {
 public static void main(String[] args) {
 double number;
 int count = 0;
 double runningTotal = 0;
 Scanner scan = new Scanner(System.in);
 // initialization before first loop iteration
 System.out.println("Type some numbers, the last one being 0");
 number = scan.nextDouble();
 while (number != 0) {
 runningTotal = runningTotal + number;
 count = count + 1;
 // prepare for next iteration
 number = scan.nextDouble();
 }

3.5.1 Problem Solving with Loops 63

 System.out.print("The average of the ");
 System.out.print(count);
 System.out.print(" numbers is ");
 System.out.println(runningTotal / count);
 }
}

Dissection of the Average Program

 Q double number;
int count = 0;
double runningTotal = 0;

The variable number is used to hold the floating point value typed in by the user. No initial value is given
in the declaration because it gets its initial value from user input. The variable count is used to count
the number of nonzero values read in. Counting is done efficiently and accurately with whole numbers,
so the variable count is an int initialized to zero. The variable runningTotal is used to accumulate the
sum of the numbers read in so far and is initialized to zero. Similar to assignment statements, these are
declaration statements with initial values. Later we show when declaration statements can be used but
assignment statements can’t.

 Q System.out.println("Type some numbers, the last one being 0");
number = scan.nextDouble();

A message should always be printed to prompt the user when the user is expected to enter data. We
could have initialized number when it was declared, but it is central to the loop so we initialized it just
before entering the loop. These two statements correspond to the first line of our pseudocode. All the
preceding code is supporting syntax required by Java.

 Q while (number != 0) {

The loop will continue while the value stored in the variable number is not 0. The value 0 is used to
detect the end of the loop. It acts as a sentinel to keep the loop from running forever. A sentinel is an
important technique for terminating loops correctly.

 Q runningTotal = runningTotal + number;
 count = count + 1;
 number = scan.nextDouble();
}

The first statement in the loop body would look strange in a mathematics class unless number was 0.
Recall that the symbol = is not an equals sign; it is the assignment operator. It means: Evaluate the
expression on the right and then assign that value to the variable on the left. The result in this case is to
add the value of number to the value of runningTotal and store the result in runningTotal. This type
of expression is common in computer programs: It computes a new value for a variable, using an expres-
sion that includes the old value of the variable. Similarly, we increment the value of count. The last
statement in the body of the loop gets ready for the next iteration by reading in a new value from the
user and storing it in number. This action overwrites the old value, which is no longer needed. At this
point the computer will go back and evaluate the boolean expression to determine whether the loop
should execute again (i.e., number isn’t 0) or continue with the rest of the program.

 Q System.out.println(runningTotal / count);

When the user finally types a 0, the program prints the answer and exits. We have already used the
print() and println() methods with a string and with a number. Here we show that the number can
be an expression. Recall that the symbol / is the symbol for division. If the first number typed is 0, this
program will terminate by printing

64 Statements and Control Flow

3.6 THE DO STATEMENT

A variant of the while statement is the do statement. The general form of a do statement in Java is

do
 Statement
while (BooleanExpr)

Here the test for exiting is syntactically and semantically made at the end of executing each iteration of State-
ment. This means that Statement is executed at least once. Execution stops when the expression BooleanExpr
is false,

 Q The average of the 0 numbers is NaN

The symbol NaN stands for not a number and results from dividing zero by zero. A better solution might
be to test, using an if-else statement, for this special case and print a more appropriate message. We
leave that for you to do as an exercise.

COMMON PROGRAMMING ERROR

Every programmer has probably forgotten the “prepare for next iteration” line at least once, causing a
program to loop forever. When coding a while statement, be careful to verify that some variable changes
each time around the loop. Also check to be sure that the loop condition will eventually be reached. How
many times will the following loop execute?

int count = 13;
System.out.println("The multiples of 13 between 1 and 100 are:");
while (count != 100){
 System.out.println(count);
 count = count + 13;
}

The loop will run forever because count will never equal 100. The problem is obvious in this small exam-
ple, and such problems do occur—although they’re not always so apparent. A test for less than or
greater than is always preferable to a test of strict equality or inequality.

3.7 The for statement 65

An example using this construct is a loop for computing the greatest common divisor for two integers using
Euclid’s algorithm.

import java.util.*;

class GreatestCommonDivisor{
 public static void main(String[] args)
 {
 Scanner scan = new Scanner(System.in);
 System.out.println("Enter 2 integers.");
 int num1 = scan.nextInt();
 int num2 = scan.nextInt();
 int m = num1, n = num2, remainder;
 do {
 remainder = m % n;
 m = n;
 n = remainder;
 } while(n != 0);
 System.out.println("GCD (" + num1 + ", " + num2 +
 ") = " + m);
 }
}

You should carry out this computation by hand to make sure you understand the do-statement and its use in
this oldest of algorithms.

3.7 THE FOR STATEMENT

You can use the while construct to create any loop you will ever need. However, Java, like most modern pro-
gramming languages, provides two alternative ways to write loops that are sometimes more convenient. The
do statement discussed in the previous section is one alternative. The other alternative is the for statement.
The for statement is a looping statement that captures the initialization, termination test, and iteration prep-
aration all in one place at the top of the loop. The general form of the for statement is

for (ForInit; BooleanExpr ; UpdateExpr)
 Statement

As part of the syntax of the for statement, the semicolons are used to separate the three expressions. Note
the absence of a semicolon between UpdateExpr and the closing parenthesis.

The following steps occur in the execution of a for statement.

1. ForInit is evaluated once—before the body of the loop.

2. BooleanExpr is tested before each iteration and, if true, the loop continues (as in the while state-
ment).

3. The loop body Statement is executed.

4. UpdateExpr is evaluated at the end of each iteration.

5. Go to step 2.

The following diagram also shows the flow of execution.

66 Statements and Control Flow

Compare this general form and the flow with that of the while statement. In the for statement, the initial-
ization expression represented by ForInit and the iteration expression represented by UpdateExpr frequently
involve the use of an assignment operator, but one is not required.

The for statement applies most naturally to situations involving going around a loop a specific number of
times. For example, if you wanted to print out the square roots of the numbers 1 through 10 you could do so
as follows.

// SquareRoots.java - print square roots of 1 - 10
import static java.lang.Math.*;
public class SquareRoots {
 public static void main(String[] args) {
 int i;
 double squareRoot;
 for (i = 1; i <= 10; i++) {
 squareRoot = sqrt(i);
 System.out.println("the square root of " + i + " is " + squareRoot);
 }
 System.out.println("That's All!");
 }
}

Dissection of the SquareRoots Program

 Q import static java.lang.Math.*;

A import static can be used to import the static fields and methods from a class for use without qual-
ification in the local context. Here it is used to allow us to call java.lang.Math.sqrt() by simply writ-
ing sqrt().

 Q for (i = 1; i <= 10; i++) {

The expression i = 1 is evaluated only once—before the loop body is entered. The expression i <= 10
is evaluated before each execution of the loop body. The expression i++ is evaluated at the end of each
loop body evaluation. Recall that i++ is shorthand for i = i + 1.

BooleanExpr

Statement

Continue with rest of the program

Execution enters for statement

True

ForInit

UpdateExpr

False

3.7.1 Local Variables in the for Statement 67

We can redo the square root printing loop by using a while statement as follows.

// SquareRoots2.java - replace for with while
public class SquareRoots2 {
 public static void main(String[] args) {
 int i;
 double squareRoot;
 i = 1; // initialization-expr
 while (i <= 10) {
 squareRoot = Math.sqrt(i);
 System.out.println("the square root of " + i + " is " + squareRoot);
 i++; // iteration-expr
 }
 System.out.println("That's All!");
 }
}

In both versions of this program, the same sequence of steps occurs.

1. The variable i is initialized to 1.

2. The boolean expression i <= 10 is tested, and if true, the loop body is executed. If the expres-
sion is false, the loop statement is completed and execution continues with the next statement in
the program, the final print statement.

3. After executing the print statement within the loop, the statement incrementing the variable i is
executed, in preparation for the next loop iteration.

4. Execution continues with step 2.

3.7.1 LOCAL VARIABLES IN THE for STATEMENT

The ForInit part of the for statement can be a local declaration. For example, let’s rewrite the above for-loop.

 for (int i = 1; i <= 10; i++) {
 squareRoot = sqrt(i);
 System.out.println("the square root of " + i + " is " + squareRoot);
 }

In this case, the int variable i declared in the for statement is limited to the for statement, including the
body of the loop. The variable’s existence is tied to the for statement code; outside the for statement it dis-
appears. If you want the variable i to exist independently of the for statement you must declare it before the
for statement. It then is available throughout the block containing the for statement. The variable is said to
have local scope. We discuss scope further in Section 4.4, Scope of Variables, on page 86.

 Q squareRoot = sqrt(i);
 System.out.println("the square root of " + i + " is " + squareRoot);
}

The body of the loop is one statement—in this case a block. The braces are part of the block syntax, not
part of the syntax of a for statement.

 Q System.out.println("That's All!");

When the loop exits, program execution continues with this statement.

68 Statements and Control Flow

3.8 THE break AND continue STATEMENTS

Two special statements,

break; and continue;

interrupt the normal flow of control. The break statement causes an exit from the innermost enclosing loop.
The break statement also causes a switch statement to terminate. (We discuss the switch statement in Sec-
tion 3.9, The switch statement, on page 69.) In the following example, a test for a negative argument is made.
If the test is true, then a break statement is used to pass control to the statement immediately following the
loop.

while (true) { //seemingly an infinite loop
 System("Enter a positive integer:")
 n = scan.nextInt();
 if (n < 0)
 break; // exit loop if n is negative
 System.out.print("squareroot of " + n);
 System.out.println(" = " + Math.sqrt(n));
}
// break jumps here

This use of the break statement is typical. What would otherwise be an infinite loop is made to terminate
upon a given condition tested by the if expression.

The continue statement causes the current iteration of a loop to stop and causes the next iteration of the
loop to begin immediately. The following code adds continue to the preceding program fragment in order to
skip processing of negative values.

// BreakContinue.java - example of break and continue
import java.util.*;
class BreakContinue {
 public static void main(String[] args) {
 int n;
 Scanner scan = new Scanner(System.in);
 while (true) { //seemingly an infinite loop
 System.out.print("Enter a positive integer ");
 System.out.print("or 0 to exit:");
 n = scan.nextInt();
 if (n == 0)
 break; // exit loop if n is 0
 if (n < 0)
 continue; //wrong value
 System.out.print("squareroot of " + n);
 System.out.println(" = " + Math.sqrt(n));
 //continue lands here at end of current iteration
 }
 //break lands here
 System.out.println("a zero was entered");
 }
}

3.9 The switch statement 69

The output of this program, assuming that the user enters the values 4, 21, 9, and 0, is

The continue statement may only occur inside for, while, and do loops. As the example shows, continue
transfers control to the end of the current iteration, whereas break terminates the loop.

The break and continue statements can be viewed as a restricted form of a goto statement. The break is
used to go to the statement following the loop and the continue is used to go to the end of the current iter-
ation. For this reason, many programmers think that break and continue should be avoided. In fact, many
uses of break and continue can be eliminated by using the other structured control constructs. For exam-
ple, we can redo the BreakContinue example, but without break and continue, as follows.

// NoBreakContinue.java - avoiding break and continue
import java.util.*;
class NoBreakContinue {
 public static void main(String[] args) {
 int n;
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter a positive integer ");
 System.out.print("or 0 to exit:");
 n = scan.nextInt();
 while (n != 0) {
 if (n > 0) {
 System.out.print("squareroot of " + n);
 System.out.println(" = " + Math.sqrt(n));
 }
 System.out.print("Enter a positive integer ");
 System.out.print("or 0 to exit:");
 n = scan.nextInt();
 }

 System.out.println("a zero was entered");
 }
}

The loop termination condition is now explicitly stated in the while statement and not buried somewhere
inside the loop. However, we did have to repeat the prompt and the input statement—once before the loop
and once inside the loop. We eliminated continue by changing the if statement to test for when the square
root could be computed instead of testing for when it could not be computed.

3.9 THE switch STATEMENT

The switch statement can be used in place of a long chain of if-else-if-else-if-else statements when
the condition being tested evaluates to an integer numeric type. Suppose that we have an integer variable
dayOfWeek that is supposed to have a value of 1 through 7 to represent the current day of the week. We
could then print out the day as

os-prompt>java BreakContinue
Enter a positive integer or 0 to exit:4
squareroot of 4 = 2.0
Enter a positive integer or 0 to exit:-1
Enter a positive integer or 0 to exit:9
squareroot of 9 = 3.0
Enter a positive integer or 0 to exit:0
a zero was entered
os-prompt>

70 Statements and Control Flow

if (dayOfWeek == 1)
 System.out.println("Sunday");
else if (dayOfWeek == 2)
 System.out.println("Monday");
else if (dayOfWeek == 3)
 System.out.println("Tuesday");
else if (dayOfWeek == 4)
 System.out.println("Wednesday");
else if (dayOfWeek == 5)
 System.out.println("Thursday");
else if (dayOfWeek == 6)
 System.out.println("Friday");
else if (dayOfWeek == 7)
 System.out.println("Saturday");
else
 System.out.println("Not a day number " + dayOfWeek);

An alternative is to use a switch statement as follows.

switch (dayOfWeek) {
 case 1:
 System.out.println("Sunday");
 break;
 case 2:
 System.out.println("Monday");
 break;
 case 3:
 System.out.println("Tuesday");
 break;
 case 4:
 System.out.println("Wednesday");
 break;
 case 5:
 System.out.println("Thursday");
 break;
 case 6:
 System.out.println("Friday");
 break;
 case 7:
 System.out.println("Saturday");
 break;
 default:
 System.out.println("Not a day number " + dayOfWeek);
}

Unlike the if-else and looping statements described earlier in this chapter, the braces are part of the syn-
tax of the switch statement. The controlling expression in parentheses following the keyword switch must
be of integral type. Here it is the int variable dayOfWeek. After the expression has been evaluated, control
jumps to the appropriate case label. All the constant integral expressions following the case labels must be
unique. Typically, the last statement before the next case or default label is a break statement. If there is
no break statement, then execution “falls through” to the next statement in the succeeding case. Missing
break statements are a frequent cause of error in switch statements. For example, if the break; was left out
of just case 1 and if dayOfWeek was 1, the output would be

instead of just

Sunday
Monday

3.10 Using the laws of Boolean Algebra 71

There may be at most one default label in a switch statement. Typically, it occurs last, although it can
occur anywhere. The keywords case and default can’t occur outside a switch.

Taking advantage of the behavior when break; is not used, you can combine several cases as shown in the
following example.

switch (dayOfWeek) {
 case 1:
 case 7:
 System.out.println("Stay home today!");
 break;
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 System.out.println("Go to work.");
 break;
 default:
 println("Not a day number " + dayOfWeek);
 break;
}

Note that the break statement—not anything related to the case labels—causes execution to continue after
the switch statement. The switch statement is a structured goto statement. It allows you to go to one of
several labeled statements. It is then combined with the break statement, which does another goto, in this
case “go to the statement after the switch.”

THE EFFECT OF A switch STATEMENT

1. Evaluate the switch expression.

2. Go to the case label having a constant value that matches the value of the expression found in
step 1; or, if a match is not found, go to the default label; or, if there is no default label, termi-
nate switch.

3. Continue executing statements in order until the end of switch is reached or a break is encoun-
tered.

4. Terminate switch when a break statement is encountered, or terminate switch by “falling off
the end.”

3.10 USING THE LAWS OF BOOLEAN ALGEBRA

Boolean expressions can frequently be simplified or more efficiently evaluated by converting them to logi-
cally equivalent expressions. Several rules of Boolean algebra are useful for rewriting boolean expressions.

1. Commutative law: a or b == b or a and a and b == b and a.

2. Distributive and law: a and (b or c) == (a and b) or (a and c).

3. Distributive or law: a or (b and c) == (a or b) and (a or c).

4. Double negation: !!a == a.

5. DeMorgan’s laws: !(a or b) == (!a and !b) and !(a and b) == !a or !b.

Sunday

72 Statements and Control Flow

In the expression x || y, y will not be evaluated if x is true. The value of y in that case doesn’t matter. For
this reason, it may be more efficient to have the first argument of a boolean or expression be the one that
most often evaluates to true. This is the basis for short-circuit evaluation of the logical or operator.

while (a < b || a == 200) {
 ...
}
while (a == 200 || a < b) {
 ...
}

For the two controlling expressions, which order is more likely to be efficient? Note that by the commutative
law both while conditions are equivalent.

3.11 PROGRAMMING STYLE

We follow Java professional style throughout the programming examples. Statements should readily display
the flow of control of the program and be easy to read and follow. Only one statement should appear on a
line. Indentation should be used consistently to set off the flow of control. After a left brace, the next line
should be indented, showing that it is part of that compound statement. There are two conventional brace
styles in Java. The style we follow in this book is derived from the C and C++ professional programming com-
munity. In this style, an opening or left brace stays on the same line as the beginning of a selection or itera-
tion statement. The closing or right brace lines up under the keyword that starts the overall statement. For
example,

if (x > y) {
 System.out.println("x is larger " + x);
 max = x;
}
while (i < 10) {
 sum = sum + i;
 i++;
}

An alternative acceptable style derives from the Algol60 and Pascal communities. In this style each brace is
kept on a separate line. In those languages the keywords begin and end were used to set off compound
statements and they were placed on their own lines. For example,

if (x > y)
{
 System.out.println("x is larger " + x);
 max = x;
}

However, be consistent and use the same style as others in your class, group, or company. A style should be
universal within a given community. A single style simplifies exchanging, maintaining, and using each others’
code.

SUMMARY

Q An expression followed by a semicolon is an expression statement. Expression statements are the most
common form of statement in a program. The simplest statement is the empty statement, which syntac-
tically is just a semicolon.

3.11 Programming Style 73

Q A group of statements enclosed by braces is a block. A block can be used anywhere a statement can be
used. Blocks are important when you need to control several actions with the same condition. This is
often the case for selection or iteration statements such as the if-else statement or the for statement,
respectively.

Q All statements don’t end with a semicolon. The only statements covered in this chapter that end with a
semicolon are expression statements and declaration statements.

Q The general form of an if statement is

if (BooleanExpr)
 Statement

Q The general form of an if-else statement is

if (BooleanExpr)
 Statement1
else
 Statement2

Q When nesting an if statement inside an if-else statement or vice-versa, the else will always be
matched with the closest unmatched if. This precedence can be overridden with a block statement to
enclose a nested if statement or if-else statement.

Q The general form of the while statement is

while (BooleanExpr)
 Statement

Q The general form of the for statement is

for (ForInit ; BooleanExpr ; UpdateExpr)
 Statement

Q Java includes the usual logical operators and, or, and not.

Q The break statement can be used to terminate abruptly the execution of either a switch statement or a
looping statement. When a break is executed inside any of those statements, the enclosing switch or
loop statement is immediately terminated and execution continues with the statement following the
switch or loop.

Q The continue statement is used only inside a looping statement. When a continue is executed, the
remaining portion of the surrounding loop body is skipped and the next iteration of the loop is begun. In
the case of the while statement, the loop termination expression is tested as the next operation to be
performed after the continue. In the case of the for statement, the update expression is evaluated as the
next operation, followed by the loop termination test.

Q The switch statement is an alternative to a sequence of if-else-if-else... statements. The switch
statement can be used only when the selection is based on an integer-valued expression.

REVIEW QUESTIONS

1. True or false? An expression is a statement.

2. How do you turn an expression into a statement?

3. True or false? All statements end with a semicolon. If false, give an example to show why.

74 Statements and Control Flow

4. True or false? An if statement is always terminated with a semicolon. If false, give an example to show
why.

5. What are the values of the following Java expressions?

true && false
true || false

6. Write a Java expression that is true whenever the variable x is evenly divisible by both 3 and 5. Recall that
(x % y) is zero if y evenly divides x.

7. What is printed by the following program fragment?

x = 10;
y = 20;
if (x < y)
 System.out.println("then statement executed");
else
 System.out.println("else statement executed");
 System.out.println("when is this executed?");

8. What is printed by the following program, if 3 and 12 are entered as x and y? Now if you change the
order and enter 12 and 3, what is printed?

//PrintMin.java - print the smaller of two numbers
import java.util.*;
class PrintMin {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 System.out.println("Type two integers.");
 int x = scan.nextInt();
 int y = scan.nextInt();

 if (x < y)
 System.out.println("The smaller is " + x);
 if (y < x)
 System.out.println("The smaller is " + y);
 if (x == y)
 System.out.println("They are equal.");
 }
}

9. For the declarations shown, fill in the value of the expression or enter *illegal*.

int a = 2, b = 5, c = 0, d = 3;

10. What is printed by the following program fragment? How should it be indented to reflect what is really
going on?

EXPRESSION VALUE

b % a

a < d

(c != b) && (a > 3)

a / b > c

a * b > 2

3.11 Programming Style 75

x = 10;
y = 20;
z = 5;
if (x < y)
if (x < z)
System.out.println("statement1");
else
System.out.println("statement2");
System.out.println("statement3");

11. How many times will the following loop print testing?

int i = 10;
while (i > 0) {
 System.out.println("testing");
 i = i - 1;
}

12. How many times will the following loop print testing?

int i = 1;
while (i != 10) {
 System.out.println("testing");
 i = i + 2;
}

13. What is printed by the following loop? See Question 6, on page 74.

int i = 1;
while (i <= 100) {
 if (i % 13 == 0)
 System.out.println(i);
 i = i + 1;
}

14. Rewrite the loop in the previous question using a for statement.

15. Rewrite the following loop, using a while statement.

for (i = 0; i < 100; i++) {
 sum = sum + i;
}

16. True or false? Anything that you can do with a while statement can also be done with a for statement
and vice-versa.

17. How many times will the following loop go around? This is a trick question—look at the code fragment
carefully. It is an example of a common programming error.

int i = 0;
while (i < 100) {
 System.out.println(i*i);
}

18. What is printed by the following program?

76 Statements and Control Flow

class Problem18 {
 public static void main(String[] args) {
 int i, j = 0;
 for (i = 1; i < 6; i++)
 if (i > 4)
 break;
 else {
 j = j + i;
 System.out.println("j= " + j + " i= " + i);
 }
 System.out.println("Final j= " + j + "i= " + i);
 }
}

EXERCISES

1. Write a program that asks for the number of quarters, dimes, nickels, and pennies you have. Then com-
pute the total value of your change and print the amount in the form $X.YY. See Exercise 15 on page 43
in Chapter 2.

2. Write a program that reads in two integers and then prints out the larger one. Use Review Question 8, on
page 40, as a starting point and make the necessary changes to class PrintMin to produce class
PrintMax.

3. Modify the class Average from this chapter to print a special message if the first number entered is 0.

4. Write a program that reads in four integers and then prints out yes if the numbers were entered in
increasing order and prints out no otherwise.

5. Write a program that prompts for the length of three line segments as integers. If the three lines could
form a triangle, the program prints “Is a triangle.” Otherwise, it prints “Is not a triangle.” Recall that the
sum of the lengths of any two sides of a triangle must be greater than the length of the third side. For
example, 20, 5, and 10 can’t be the lengths of the sides of a triangle because 5 + 10 is not greater than 20.

6. Write a program that tests whether the formula a2 b2+ c2= is true for three integers entered as input.
Such a triple is a Pythagorean triple and forms a right-angle triangle with these numbers as the lengths of
its sides.

7. An operator that is mildly exotic is the conditional operator ?:. This operator takes three arguments and
has precedence just above the assignment operators, as for example in

s = (a < b)? a : b;
// (a < b) true then s assigned a else s assigned b

Rewrite the code for class PrintMin, in Review Question 8, on page 74, using this operator to eliminate
the first two if statements. We chose not to use this operator because it is confusing to beginning pro-
grammers. It is unnecessary and usually can readily and transparently be replaced by an if statement.

8. Write a program that reads in integers entered at the terminal until a value of 0 is entered. A sentinel
value is used in programming to detect a special condition. In this case the sentinel value is used to
detect that no more data values are to be entered. After the sentinel is entered, the program should print
out the number of numbers that were greater than 0 and the number of numbers that were less than 0.

9. Write a program that reads in integers entered at the terminal until a sentinel value of 0 is entered. After
the sentinel is entered, the program should print out the smallest number, other than 0, that was
entered.

3.11 Programming Style 77

10. Rewrite Exercise 8 on page 76 to print the largest number entered before the sentinel value 0 is entered.
If you already did that exercise, only a few changes are needed to complete this program. Now code a fur-
ther program that ends up printing both the smallest or minimum value found and the largest or maxi-
mum value found.

11. Rewrite Exercise 5 on page 76 to continue to test triples until the sentinel value 0 is entered.

12. Write a program to input values as in Excercises 8, 9, or 10 above. This time run it with the input taken as
a file through redirection. If the compiled Java program is NumberTester.class, then the command

java NumberTester < myFile

will use myFile for input. Redirection is possible with Unix or the Windows console window. This can
save a lot of typing of input values for testing.

13. Write a program to print every even number between 0 and 100. Modify the program to allow the user to
enter a number n from 1 through 10 and have the program print every nth number from 0 through 100.
For example, if the user enters 5, then 0 5 10 15 20 . . . 95 100 are printed.

14. Write a program that will print out a box drawn with asterisks, as shown.

Use a loop so that you can easily draw a larger box. Modify the program to read in a number from the
user specifying how many asterisks high and wide the box should be.

15. Write a program that reads in numbers until the same number is typed twice in a row. Modify it to go
until three in a row are typed. Modify it so that it first asks for “how many in a row should I wait for?”
and then it goes until some number is typed that many times. For example, for two in a row, if the user
typed “1 2 5 3 4 5 7” the program would still be looking for two in a row. The number 5 had been typed
twice, but not in a row. If the user then typed 7, that would terminate the program because two 7s were
typed, one directly after the other.

16. Write a program that prints all the prime numbers in 2 through 100. A prime number is an integer that is
greater than 1 and is divisible only by 1 and itself. For example, 2 is the only even prime. Why?

PSEUDOCODE FOR FINDING PRIMES

for n = 2 until 100

 for i = 2 until the square root of n

 if n % i == 0 the number is divisible by i

 otherwise n is prime

Can you explain or prove why the inner-loop test only needs to go up to the square root of n ?

17. Write a program that prints the first 100 prime numbers. Use the same algorithm as in Exercise 16 on
page 77, but terminate the program upon finding the 100th prime. Assume that the search needs to go
no farther than n = 10,000.

18. Write a program that generates all Pythagorean triples (see Exercise 6 on page 76) whose small sides are
no larger than n. Try it with n < 200. (Hint: Use two for loops to enumerate possible values for the small
sides and then test to determine whether the result is an integral square.

* *
* *
* *

78 Statements and Control Flow

19. Write a program that gives you a different message each day of the week. Use a switch statement. Take
as input an integer in the range 1 through 7. For example, if 6 means Friday, the message might say,
Today is Friday, tGif. If the user inputs a number other than 1 through 7, have the default issue an
appropriate message.

20. Write a program that gives you a fortune based on an astrological sign. Use a switch statement to struc-
ture the code.

21. Write a program that generates an approximation of the real number e. Use the formula

where k! means k factorial = 1 * 2 * . . . *k. Keep track of term 1/k! by using a double. Each iteration
should use the previous value of this term to compute the next term, as in

Run the computation for 20 terms, printing the answer after each new term is computed.

22. Write your own pseudorandom number generator. A pseudorandom sequence of numbers appears to be
chosen at random. Say that all the numbers you are interested in are placed in a large fishbowl and you
reach in and pick out one at a time without looking where you are picking. After reading the number, you
replace it and pick another. Now you want to simulate this behavior in a computation. You can do so by
using the formulaXn 1+ aXn c+() mod= m. Let a be 3,141,592,621, c be 1, and m be 10,000,000,000
(see Knuth, Seminumerical Algorithms, Addison-Wesley 1969, p. 86). Generate and print the first 100
such numbers as long integers. Let X1 = 1.

APPLET EXERCISE

Redo any one of the first ten exercises in this chapter but use an applet for input and output. You are to do
so by modifying the following applet. Recall that the Applet exercise in Chapter 2, on page 44 introduced a
special kind of Java program called an applet. Among other things, an applet may be used to create graphical
output such as plots or diagrams. In order to be useful, most programs, including applets, need some way to
receive input. For the regular applications that we’ve created so far, we’ve used scan.nextInt(), etc., to
read values from the console. This exercise introduces you to the use of a JTextField object to get input
from an applet. For this exercise we need to introduce two more methods: init() and actionPerformed().
As with the earlier applet exercise, for now you need only to concentrate on the body of the methods init()
and actionPerformed(), treating the surrounding code as a template to be copied verbatim. The following
applet reads two numbers and then displays their sum.

/* <applet code="AppletSum.class"
 width=420 height=100></applet> */
//AppletSum.java - Text input with an applet
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class AppletSum extends JApplet implements ActionListener
{
 JTextField inputOne = new JTextField(20);
 JTextField inputTwo = new JTextField(20);
 JTextField output = new JTextField(20);

e 1 1
1!
----- 1

2!
----- 1

3!
----- … 1

k!
----- …+ + + + + +≈

Tk 1+ Tk
1

k 1+
-------------×=

3.11 Programming Style 79

 public void init() {
 Container pane = getContentPane();
 pane.setLayout(new FlowLayout());
 pane.add(new JLabel("Enter one number."));
 pane.add(inputOne);
 pane.add(new JLabel("Enter a number and hit return."));
 pane.add(inputTwo);
 pane.add(new JLabel("Their sum is:"));
 pane.add(output);
 inputTwo.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 double first, second, sum;
 first = Double.parseDouble(inputOne.getText());
 second = Double.parseDouble(inputTwo.getText());
 sum = first + second;
 output.setText(String.valueOf(sum));
 }
}

Dissection of the AppletSum Program

 Q import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class AppletSum extends JApplet implements ActionListener

For now this code is all part of the template for an applet. The only part that you should change is to
replace AppletSum with the name of your applet. The import statements tell the Java compiler where to
find the various classes used in this program, such as JTextField and JApplet. The extends JApplet
phrase is how we indicate that this class is defining an applet instead of a regular application. The
implements ActionListener phrase is needed if we want to have our program do something when the
user has finished entering data.

 Q JTextField inputOne = new JTextField(20);
JTextField inputTwo = new JTextField(20);
JTextField output = new JTextField(20);

JTextField is a standard Java class. A JTextField is a graphical user interface component in which the
user can enter text and the program can then read the text entered by the user. This program will create
three text fields—two for the input values and one to display the sum of the first two. Note that these
variables aren’t declared inside any method. These variables need to be referenced by both the methods
in this applet. You should think of them as part of the applet class AppletSum and not part of any one
method. (We discuss such declarations in Section 6.9, Static Fields and Methods, on page 169.)

 Q public void init() {
 Container pane = getContentPane();
 pane.setLayout(new FlowLayout());

The method init() is rather like main() for an applet. This method is called to initialize the applet. The
first thing we do in the method is get the content pane. The content pane is the part of the applet used to
display the various graphical components that we add to the applet. The setLayout() method is used
to adjust the content pane so that when components are added, they are arranged in lines, like words of
text in a word processor. The components are allowed to “flow” from one line to the next. For now, just
always include the two statements in your init() method.

80 Statements and Control Flow

 Q pane.add(new JLabel("Enter one number."));
pane.add(inputOne);
pane.add(new JLabel("Enter a number and hit return."));
pane.add(inputTwo);
pane.add(new JLabel("Their sum is:"));
pane.add(output);

The method add() is used to add some labels and text fields to the content pane of the applet. JLabel is
a standard Java class that is used to place labels in graphical user interfaces. Unlike with a JTextField,
the user can’t enter text in a JLabel when the applet is running. The order in which we add all the com-
ponents to the applet is important. The components are placed in the applet, like words in a word pro-
cessor. That is, the components will be displayed from left to right across the applet until the next
component won’t fit, in which case a new line of components is started. Later, you’ll learn more about
controlling the placement of components, but for now just add them in the desired order and then
adjust the width of the applet to get the desired appearance. Here is what the applet will look like.

 Q inputTwo.addActionListener(this);

The last statement in the init() method says that the actionPerformed() method in the applet
referred to by this should be called when Return is hit in the text field, inputTwo.

 Q public void actionPerformed(ActionEvent e) {
 double first, second, sum;
 first = Double.parseDouble(inputOne.getText());
 second = Double.parseDouble(inputTwo.getText());
 sum = first + second;
 output.setText(String.valueOf(sum));
}

This method is called each time the user hits Return with the cursor placed in the text field inputTwo.
The method gets the text that was entered in the first two text fields by invoking their getText() meth-
ods. The resulting strings are then converted to floating point numbers, using the standard Java method
Double.parseDouble(). Next the two numbers are added and stored in the variable sum. The floating
point value stored in sum is converted to a String, using String.valueOf(), which can be used to con-
vert any primitive value to a String. Finally the method setText() from the class JTextField is used
to set the value of the text displayed in the JTextField object output.

