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1 Lorentzian manifolds

In General Relativity, the space of events is represented by a Lorentzian manifold, which

is a smooth manifold Mn+1 equipped with a metric g of Lorentzian signature. Thus, at

each p ∈M ,

g : TpM × TpM → R (1.1)

is a scalar product of signature (−,+, ...,+). With respect to an orthonormal basis

{e0, e1, ..., en}, as a matrix,

[g(ei, ej)] = diag(−1,+1, ...,+1) . (1.2)

Example: Minkowski space, the spacetime of Special Relativity. Minkowski space is Rn+1,

equipped with the Minkowski metric η: For vectors X = X i ∂
∂xi

, Y = Y i ∂
∂xi

at p, (where

xi are standard Cartesian coordinates on Rn+1),

η(X, Y ) = −X0Y 0 +

n∑
i=1

X iY i . (1.3)

Similarly, for the Lorentzian metric g, we have for vectors X = X iei, Y = Y jej at p,

g(X, Y ) = X iY jg(ei, ej) = −X0Y 0 +

n∑
i=1

X iY i . (1.4)



Thus, each tangent space of a Lorentzian manifold is isometric to Minkowski space. Hence,

one may say that Lorentzian manifolds are locally modeled on Minkowski space, just as

Riemannian manifolds are locally modeled on Euclidean space.

1.1 Causal character of vectors.

At each point, vectors fall into three classes, as follows:

X is


timelike if g(X,X) < 0

null if g(X,X) = 0

spacelike if g(X,X) > 0 .

We see that the set of null vectors X ∈ TpM forms a double cone Vp in the tangent

space TpM :

called the null cone (or light cone) at p. Timelike vectors point inside the null cone and

spacelike vectors point outside.



Time orientability. Consider at each point of p in a Lorentzian manifold M the null cone

Vp ⊂ TpM . Vp is a double cone consisting of two cones, V+
p and V−p :

We may designate one of the cones, V+
p , say, as the future null cone at p, and the other

half cone, V−p , as the past null cone at p. If this assignment can made in a continuous

manner over all of M (this can always be done locally) then we say that M is time-

orientable.

The following figure illustrates a Lorentzian manifold that is not time-orientable (even

though the underlying manifold is orientable).



There are various ways to make the phrase “continuous assignment” precise (see e.g.,

[10, p. 145]), but they all result in the following, which we adopt as the definition of of

time-orientability.

Definition 1.1. A Lorentzian manifold Mn+1 is time-orientable iff it admits a

smooth timelike vector field T .

If M is time-orientable, the choice of a smooth time-like vector field T fixes a time

orientation on M :

For any p ∈M , a (nonzero) causal (timelike or null) vector X ∈ TpM is

(1) future directed provided g(X,T ) < 0, and

(2) past directed provided g(X,T ) > 0.

Thus X is future directed if it points into the same half cone at p as T . (We remark that

if M is not time-orientable, it admits a double cover that is.)

By a spacetime we mean a connected time-oriented Lorentzian manifold (Mn+1, g).

We will usually restrict attention to spacetimes.



Lorentzian inequalities. X ∈ TpM is causal if it is timelike or null, g(X,X) ≤ 0. If X

is causal, define its length as

|X| =
√
−g(X,X) .

Proposition 1.1. The following basic inequalities hold.

(1) (Reverse Schwarz inequality) For all causal vectors X, Y ∈ TpM ,

|g(X, Y )| ≥ |X||Y | (1.5)

(2) (Reverse triangle inequality) For all causal vectors X, Y that point into the

same half cone of the null cone at p,

|X + Y | ≥ |X| + |Y | . (1.6)

Proof hints: Note (1.5) trivially holds if X is null. For X timelike, decompose Y as

Y = λX+Y ⊥, where Y ⊥ (the component of Y perpendicular toX) is necesarily spacelike.

Inequality (1.6) follows easily from (1.5).

The reverse triangle inequality is the source of the twin paradox.



1.2 Causal character of curves:

Let γ : I →M , t→ γ(t) be a smooth curve in M .

γ is said to be timelike provided γ′(t) is timelike for all t ∈ I .

In GR, a timelike curve corresponds to the history (or worldline)

of an observer.

Null curves and spacelike curves are defined analogously.

A causal curve is a curve whose tangent is either timelike or null at each point. Heuris-

tically, in accordance with relativity, information flows along causal curves, and so such

curves are the focus of our attention.

The notion of a causal curve extends in a natural way to piecewise smooth curves;

require when two segments join, the end point tangent vectors must point into the same

half cone of the null cone Vp at p.

The length of a causal curve γ : [a, b]→M , is defined by

L(γ) = Length of γ =

∫ b

a

|γ′(t)|dt =

∫ b

a

√
−〈γ′(t), γ′(t)〉 dt .



If γ is timelike one can introduce arc length parameter along γ. In general relativity, the

arc length parameter along a timelike curve is called proper time, and corresponds to time

kept by the observer.

1.3 The Levi-Civita connection and geodesics.

Recall that a Lorentzian manifold M (like any pseudo-Riemannian manifold) admits

a unique covariant derivative operator ∇ called the Levi-Civita connection. Thus for

smooth vector fields X, Y on M , ∇XY is a vector field on M (the directional derivative

of Y in the direction X) satisfying:

(1) ∇XY is linear in Y over the reals.

(2) ∇XY is linear in Y over the space of smooth functions. (In particular, ∇fXY =

f∇XY ).

(3) (Product rule) ∇XfY = X(f )Y + f∇XY .

(4) (Symmetric) [X, Y ] = ∇XY −∇YX .

(5) (Metric product rule) X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉.



∇ is uniquely determined by these properties. With respect to a coordinate neighbor-

hood (U, xi), one has,

∇XY = (X(Y k) + ΓkijX
iY j)∂k , (1.7)

where ∂k = ∂
∂xk

, X = X i∂i, Y = Y j∂j, and the Γkij’s are the Christoffel symbols,

Γkij =
1

2
gkm (gjm,i + gim,j − gij,m) ,

where gij = g(∂i, ∂j), etc.

We see from the coordinate expression in (1.7) that ∇XY depends only on the value of

X at a point and only on the values of Y along a curve, defined in neighborhood of the

point, having X as a tangent vector.

Thus the Levi-Civita connection enables one to compute the covariant derivative of a

vector field t
Y−→ Y (t) ∈ Tγ(t)M defined along a curve γ : I → M , t → γ(t). In local

coordinates γ(t) = (x1(t), ..., xn(t)), and from (1.7) we have

∇γ′Y =

(
dY k

dt
+ Γkij

dxi

dt
Y j

)
∂k . (1.8)

where γ′ = dxi

dt ∂i|γ is the tangent (or velocity) vector field along γ and Y (t) = Y i(t)∂i|γ(t).



Geodesics. Given a curve t → γ(t) in M , ∇γ′γ
′ is called the covariant acceleration of

γ. In local coordinates,

∇γ′γ
′ =

(
d2xk

dt2
+ Γkij

dxi

dt

dxj

dt

)
∂k , (1.9)

as follows by setting Y k = dxk

dt in Equation (1.8).

By definition, a geodesic is a curve of zero covariant acceleration,

∇γ′γ
′ = 0 (Geodesic equation) (1.10)

In local coordinates the geodesic equation becomes a system of n + 1 second order

ODE’s in the coordinate functions xi = xi(t),

d2xk

dt2
+ Γkij

dxi

dt

dxj

dt
= 0 , k = 0, ..., n . (1.11)

The basic existence and uniqueness result for systems of ODE’s guarantees the following.

Proposition 1.2. Given p ∈M and v ∈ TpM , there exists an interval I about t = 0

and a unique geodesic σ : I →M , t→ σ(t), satisfying,

σ(0) = p ,
dσ

dt
(0) = v .



Convex neighborhoods: By a more refined analysis it can be shown that each p ∈ M is

contained in a (geodesically) convex neighborhood U , which has the property that any

two points in U can be joined by a unique geodesic contained in U . In fact U can be

chosen so as to be a normal neighborhood of each of its points; cf. [10], p. 129. (Recall,

a normal neighborhood of p ∈ M is the diffeomorphic image under the exponential map

of a star-shaped domain about 0 ∈ TpM .)

Finally, note if γ is a geodesic then by the metric product rule

γ′(g(γ′, γ′)) = 2g(∇γ′γ
′, γ′) = 0 ,

and hence geodesics are always constant speed curves. In GR timelike geodesics correspond

to freely falling observers and null geodesics correspond to the paths of photons.

1.4 Local Lorentz geometry.

In Minkowski space the geodesics are straight lines (the Christoffel symbols vanish in

Cartesian coordinates). Moreover the following holds:

(1) If there is a timelike curve γ from p to q then pq is timelike.

(2) L(pq) ≥ L(γ), for all causal curves γ from p to q.



Although it can be very different in the large, locally the geometry and causality of a

Lorentzian manifold is similar to Minkowski space.

Let U be a convex neighborhood in a Lorentzian manifold. Hence for each pair of points

p, q ∈ U there exists a unique geodesic segment from p to q in U , which we denote by pq.

Proposition 1.3 ([10], p. 146). Let U be a convex neighborhood in a Lorentzian

manifold Mn+1.

(1) If there is a timelike (resp., causal) curve in U from p to q then pq is timelike

(causal).

(2) If pq is timelike then L(pq) ≥ L(γ) for all causal curves γ in U from p to q.

Moreover, the inequality is strict unless, when suitable parametrized, γ = pq.

Thus, within a convex neighborhood U , timelike geodesics are maximal, i.e., are causal

curves of greatest length.) Moreover, within U null geodesics are achronal, i.e., no two

points can be joined by a timlike curve. Both of these features can fail in the large.

1.5 Curvature and the Einstein equations

The Riemann curvature tensor of (M, g) is defined in terms of second covariant deriva-

tives anti-symmetrized: For vector fields X, Y, Z ∈ X(M),

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z . (1.12)



The components Rl
kij of the Riemann curvature tensor in a coordinate chart (U, xi) are

defined by the following equation,

R(∂i, ∂j)∂k = Rl
kij∂l

The Ricci tensor is obtained by contraction,

Rij = Rl
ilj

Symmetries of the Riemann curvature tensor imply that the Ricci tensor is symmetric,

Rij = Rji. By tracing the Ricci tensor, we obtain the scalar curvature,

R = gijRij .

The Einstein equations, the field equations of GR, are given by:

Rij −
1

2
Rgij = 8πTij ,

where Tij is the energy-momentum tensor.

The Einstein equations describe how spacetime curves in the presence of matter, and

it is this curvature that is responsible for the effects of gravity. The left hand side is a

purely geometric tensor, the Einstein tensor. On the right hand side is the is the energy

momentum tensor T, which describes the energy-momentum content of matter and all

other nongravitational fields.



• From the PDE point of view, the Einstein equations form a system of second order

quasi-linear equations for the gij’s. This system may be viewed as a (highly compli-

cated!) generalization of Poisson’s equation in Newtonian gravity.

• The vacuum Einstein equations are obtained by setting Tij = 0. It is easily seen that

this equivalent to setting Rij = 0.

We will sometimes require that a spacetime satisfying the Einstein equations, obeys an

energy condition.

• The null energy condition (NEC) is the requirement that

T (X,X) =
∑
i,j

TijX
iXj ≥ 0 for all null vectors X . (1.13)

• The stronger dominant energy condtion (DEC) is the requirement,

T (X, Y ) =
∑
i,j

TijX
iY j ≥ 0 for all future directed causal vectors X, Y . (1.14)

The DEC is satisfied by most classical fields. Physically, the DEC requires that the

speed of energy flow is less than the speed of light.



2 Futures and pasts

We begin the study of causal theory in earnest. Causal theory is the study of the causal

relations ‘�’ and ‘<’.

Let (M, g) be a spacetime. A timelike (resp. causal) curve γ : I → M is said to

be future directed provided each tangent vector γ′(t), t ∈ I , is future directed. (Past-

directed timelike and causal curves are defined in a time-dual manner.)

Definition 2.1. For p, q ∈M ,

(1) p� q means there exists a future directed timelike curve in M from p to q (we

say that q is in the timelike future of p),

(2) p < q means there exists a future directed (nontrivial) causal curve in M from

p to q (we say that q is in the causal future of p),

We shall use the notation p ≤ q to mean p = q or p < q.

The causal relations � and < are clearly transitive. Also, from variational considera-

tions, it is heuristically clear that the following holds,

if p� q and q < r or if p < q and q � r then p� r .



The above statement is a consequence of the following fundamental causality result; see

[10, p. 294] for a careful proof.

Proposition 2.1. In a spacetime M , if q is in the causal future of p (p < q) but is

not in the timelike future of p (p 6� q) then any future directed causal curve γ from

p to q must be a null geodesic (when suitably parameterized).

Definition 2.2. Given any point p in a spacetime M , the timelike future and causal

future of p, denoted I+(p) and J+(p), respectively, are defined as,

I+(p) = {q ∈M : p� q} and J+(p) = {q ∈M : p ≤ q} .

Hence, I+(p) consists of all points in M that can be reached from p by a future directed

timelike curve, and J+(p) consists of the point p and all points in M that can be reached

from p by a future directed causal curve.

The timelike and causal pasts of p, I−(p) and J−(p), respectively, are defined in a

time-dual manner in terms of past directed timelike and causal curves.

Note by Proposition 2.1, if q ∈ J+(p)\I+(p) (q 6= p) then there exists a future directed

null geodesic from p to q.



Ex. Minkowski space. For p any point in Minkowski space, I+(p) is open, J+(p) is closed

and ∂I+(p) = J+(p) \ I+(p) is just the future null cone at p. I+(p) consists of all points

inside the future null cone, and J+(p) consists of all points on and inside the future null

cone.

We note, however, that curvature and topology can drastically change the structure of

‘null cones’ in spacetime.

Ex. Consider the following example of a flat spacetime cylinder, closed in space.

For any point p, ∂I+(p), is compact and consists of the two future directed null geodesic

segments emanating from p that meet to the future at a point q.



In some situations it is convenient to restrict the causal relations � and < to open

subsets U of a spacetime M . For example,

I+(p, U) = {q ∈ U : ∃ future directed timelike curve within U from p to q} .

Note that, in general I+(p, U) 6= I+(p) ∩ U .

In general the sets I+(p) in a spacetime M are open. This is heuristically rather clear:

A sufficiently small smooth perturbation of a timelike curve is still timelike. A rigorous

proof is based on the causality of convex neighborhoods.

Proposition 2.2. Let U be a convex neighborhood in a spacetime M . Then, for

each p ∈ U ,

(1) I+(p, U) is open in U (and hence M),

(2) J+(p, U) is the closure in U of I+(p, U).

This proposition follows essentially from part (1) of Proposition 1.3.

Exercise: Prove that for each p in a spacetime M , I+(p) is open.



In general, sets of the form J+(p) need not be closed: This can be seen by removing a

point from Minkowski space, as illustrated in the figure below.

For any subset S ⊂M , we define the timelike and causal future of S, I+(S) and J+(S),

respectively by

I+(S) =
⋃
p∈S

I+(p) and J+(S) =
⋃
p∈S

J+(p) .

Note:

(1) S ⊂ J+(S).

(2) I+(S) is open (union of open sets).

I−(S) and J−(S) are defined in a time-dual manner.



Although in general J+(S) 6= I+(S), the following relationships always hold between

I+(S) and J+(S).

Proposition 2.3. For all subsets S ⊂M ,

(1) int J+(S) = I+(S),

(2) J+(S) ⊂ I+(S).

Proof. Exercise.



3 Achronal boundaries

Achronal sets play an important role in causal theory.

Definition 3.1. A subset S ⊂ M is achronal provided no two of its points can be

joined by a timelike curve.

Of particular importance are achronal boundaries.

Definition 3.2. An achronal boundary is a set of the form ∂I+(S) (or ∂I−(S)),

for some S ⊂M .

The following figure illustrates some of the important structural properties of achronal

boundaries. S is the disjoint union of two spacelike disks; the achronal boundary ∂I+(S)

consists of S and the merging of two future light cones.

Proposition 3.1. An achronal boundary ∂I+(S), if nonempty, is a closed achronal

C0 hypersurface in M .



We discuss the proof of this proposition, beginning with the following basic lemma.

Lemma 3.2. If p ∈ ∂I+(S) then I+(p) ⊂ I+(S), and I−(p) ⊂M \ I+(S).

Proof. To prove the first part of the lemma, note that if q ∈ I+(p) then p ∈ I−(q), and

hence I−(q) is a neighborhood of p. Since p is on the boundary of I+(S), it follows that

I−(q) ∩ I+(S) 6= ∅, and hence q ∈ I+(S). The second part of the lemma, which can be

proved similarly, is left as an exercise.

Claim 1: An achronal boundary ∂I+(S) is achronal.

Proof of the claim: Suppose there exist p, q ∈ ∂I+(S), with q ∈ I+(p). By Lemma 3.2,

q ∈ I+(S). But since I+(S) is open, I+(S)∩∂I+(S) = ∅. Thus, ∂I+(S) is achronal.

Lemma 3.2 also implies that achronal boundaries are edgeless. We need to introduce

the edge concept.

Definition 3.3. Let S ⊂M be achronal. Then p ∈ S is an edge point of S provided

every neighborhood U of p contains a timelike curve γ from I−(p, U) to I+(p, U) that

does not meet S (see the figure).



We denote by edgeS the set of edge points of S. We note that

S \ S ⊂ edgeS ⊂ S

(exercise). If edgeS = ∅ we say that S is edgeless.

Claim 2: An achronal boundary ∂I+(S) is edgeless.

Proof of the claim: Lemma 3.2 implies that for any p ∈ ∂I+(S), any timelike curve from

I−(p) to I+(p) must meet ∂I+(S). It follows that ∂I+(S) is edgless.

Proposition 3.1 now follows from the following basic result.

Proposition 3.3. Let S be achronal. Then S \ edgeS, if nonempty, is a C0 hy-

persurface in M . In particular, an edgeless achronal set is a C0 hypersurface in

M .

Proof. We sketch the proof; for details, see [10, p. 413]. It suffices to show that in a

neighborhood of each p ∈ S \ edgeS, S \ edgeS can be expressed as a C0 graph over a

smooth hypersurface.



Fix p ∈ S \ edgeS. Since p is not an edge point there exists a neighborhood U of p

such that every timelike curve from I−(p, U) to I+(p, U) meets S.

Let X be a future directed timelike vector field on M , and let N be a smooth hyper-

surface in U transverse to X near p. Then, by choosing N small enough, each integral

curve of X through N will meet S, and meet it exactly once since S is achronal. Using

the flow generated by X , it follows that there is a neighborhood V ≈ (t1, t2) × N of p

such that S ∩ V is given as the graph of a function t = h(x), x ∈ N One can now show

that a discontinuity of h at some point x0 ∈ N leads to an achronality violation of S.

Hence h must be continuous.

The next result shows that, in general, large portions of achronal boundaries are ruled

by null geodesics. A future (resp., past) directed causal curve γ : (a, b) → M is said to

be future (resp., past) inextendible in M if limt→b− γ(t) does not exist.

Proposition 3.4. Let S ⊂ M be closed. Then each p ∈ ∂I+(S) \ S lies on a null

geodesic contained in ∂I+(S), which either has a past end point on S, or else is past

inextendible in M .



Proof. The proof uses an important tool in causal theory, namely that of taking a limit

of causal curves. This is treated carefully in the notes. Here we just want to get the main

idea across. For presentation purposes we are changing the proof a little.

• Fix p ∈ ∂I+(S) \S. Since p ∈ ∂I+(S), there exists a sequence of points pn ∈ I+(S),

such that pn → p. For each n, let γn be a past directed timelike curve from pn to

qn ∈ S

• Let M̂ = M \ S. Let γ̂n = γn \ {qn}; γ̂n is past inextendible in M̂ . Let h be a

complete Riemannian metric on M̂ , and parametrize γ̂n with respect to h-arc length;

then have γ̂n : [0,∞) → M̂ . By the Limit Curve Lemma (Lemma 3.5, p. 13 of the

notes), there exists a subsequence {γ̂m} that converges uniformly on compact subsets

to a past inextendible causal curve γ : [0,∞)→ M̂ .



NB: γ may not be a smooth causal curve - in general it will be C0 causal curve (see

the notes); C0 causal curves can be approximated by piecewise smooth causal curves

to arbitrary precision. WLOG, can assume γ is piecewise smooth causal curve.

• γ ⊂ ∂I+(S): Clearly γ ⊂ I+(S). Since p ∈ ∂I+(S), γ ⊂ ∂I+(S). (Otherwise if γ

entered I+(S) then p would be in I+(S), contradicting p being on the boundary.)

• γ is a null geodesic: Consider q ∈ γ; q ∈ J−(p) \ I−(p) =⇒ segment of γ from p to

q is a null geodesic.

• γ past inextendible in M̂ =⇒ γ is either past inextendible in M or has past end

point on S (this is treated carefully in the notes).

Achronal boundaries will play an important role in out treatment of the Penrose sin-

gularity theorem.

(Achronal boundaries have been recently employed in a fundamental way to study

Lorentzian splitting problems, cf. [5].)



4 Causality conditions

A number of results in Lorentzian geometry and general relativity require some sort of

causality condition. It is perhaps natural on physical grounds to rule out the occurrence of

closed timelike curves. Physically, the existence of such a curve signifies the existence of an

observer who is able to travel into his/her own past, which leads to variety of paradoxical

situations.

Chronology condition: A spacetime M satisfies the chronology condition provided

there are no closed timelike curves in M .

Compact spacetimes have limited interest in general relativity since they all violate the

chronology condition.

Proposition 4.1. Every compact spacetime contains a closed timelike curve.

Proof. The sets {I+(p); p ∈ M} form an open cover of M from which we can abstract

a finite subcover: I+(p1), I+(p2), ..., I+(pk). We may assume that this is the minimal

number of such sets covering M . Since these sets cover M , p1 ∈ I+(pi) for some i. It

follows that I+(p1) ⊂ I+(pi). Hence, if i 6= 1, we could reduce the number of sets in

the cover. Thus, p1 ∈ I+(p1) which implies that there is a closed timelike curve through

p1.

A somewhat stronger condition than the chronology condition is the



Causality condition: A spacetime M satisfies the causality condition provided there

are no closed (nontrivial) causal curves in M .

Exercise: Construct a spacetime that satisfies the chronology condition but not the causal-

ity condition.

A spacetime that satisfies the causality condition can nontheless be on the verge of failing

it, in the sense that there exist causal curves that are “almost closed”, as illustrated by

the following figure.

Strong causality is a condition that rules out almost closed causal curves.

Definition 4.1. An open set U in spacetime M is said to be causally convex provided

no causal curve in M meets U in a disconnected set.

Note the neighborhood of p above is not causally convex.



Definition 4.2. Given p ∈ M , strong causality is said to hold at p provided p has

arbitrarily small causally convex neighborhoods, i.e., for each neighborhood V of p

there exists a causally convex neighborhood U of p such that U ⊂ V .

Note that strong causality fails at the point p in the figure above. In fact strong causality

fails at all points along the dashed null geodesic. It can be shown that the set of points

at which strong causality holds is open.

Strong causality condition: A spacetime M is said to be strongly causal if strong

causality holds at all of its points.

This is the “standard” causality condition in spacetime geometry, and, although there

are even stronger causality conditions, it is sufficient for most applications. (There is an

interesting connection between strong causality and the so-called Alexandrov topology;

see the notes.)

The following lemma is often useful.

Lemma 4.2. Suppose strong causality holds at each point of a compact set K in a

spacetime M . If γ : [0, b) → M is a future inextendible causal curve that starts in

K then eventually it leaves K and does not return, i.e., there exists t0 ∈ [0, b) such

that γ(t) /∈ K for all t ∈ [t0, b).

Proof. Exercise.



In referring to the property described by this lemma, we say that a future inextendible

causal curve cannot be “imprisoned” or “partially imprisoned” in a compact set on which

strong causality holds.

4.1 Global hyperbolicity

We now come to a fundamental condition in spacetime geometry, that of global hy-

perbolicity. Mathematically, global hyperbolicity is a basic ‘niceness’ condition that often

plays a role analogous to geodesic completeness in Riemannian geometry. Physically,

global hyperbolicity is closely connected to the issue of classical determinism and the

strong cosmic censorship conjecture (that, generically, spacetime solutions to the Einstein

equations do not admit naked singularities.

Definition 4.3. A spacetime M is said to be globally hyperbolic provided

(1) M is strongly causal.

(2) (Internal Compactness) The sets J+(p) ∩ J−(q) are compact for all p, q ∈M .

Condition (2) says roughly that M has no holes or gaps.

Ex. Minkowski space is globally hyperbolic but the spacetime obtained by removing one

point from it is not.



We consider a few basic consequences of global hyperbolicity.

Proposition 4.3. Let M be a globally hyperbolic spacetime. Then,

(1) The sets J±(A) are closed, for all compact A ⊂M .

(2) The sets J+(A) ∩ J−(B) are compact, for all compact A,B ⊂M .

Proof. The following argument shows that J±(p) are closed for all p ∈M. The rest we

leave as an exercise.

Suppose q ∈ J+(p) \ J+(p) for some p ∈ M . Choose r ∈ I+(q), and {qn} ⊂ J+(p),

with qn → q. Since I−(r) is an open neighborhood of q, {qn} ⊂ J−(r) for n large. It

follows that q ∈ J+(p) ∩ J−(r) = J+(p) ∩ J−(r), since J+(p) ∩ J−(r) is compact and

hence closed. But this contradicts q /∈ J+(p) . Thus, J+(p) is closed, and similarly so is

J−(p).

Analogously to the case of Riemannian geometry, one can learn much about the global

structure of spacetime by studying its causal geodesics.

Basic question: Given q ∈ I+(p) under what circumstances does there exist a maximal

future directed timelike geodesic γ from p to q? Maximal means: L(γ) ≥ L(σ) for all

future directed causal curves σ from p to q.



Maximality can be conveniently expressed in terms of the Lorentzian distance function,

d : M ×M → [0,∞]. For p < q, let Ωp,q denote the collection of future directed causal

curves from p to q. Then, for any p, q ∈M , define

d(p, q) =

{
sup{L(σ) : σ ∈ Ωp,q}, if p < q

0, if p 6< q

While the Lorentzian distance function is not a distance function in the usual sense of

metric spaces, and may not even be finite valued, it does have a few nice properties. For

one, it obeys a reverse triangle inequality,

if p < r < q then d(p, q) ≥ d(p, r) + d(r, q) .

Exercise: Prove this.

We have the following basic fact.

Proposition 4.4. The Lorentzian distance function is lower semi-continuous.

Proof. See the notes.

Though the Lorentzian distance function is not continuous in general, it is continuous

(and finite valued) for globally hyperbolic spacetimes; cf., [10, p. 412].

Note that a timelike geodesic from p to q ∈ I+(p) is maximal provided

L(γ) = d(p, q) .



Global hyperbolicity is the standard condition to ensure the existence of maximal causal

geodesic segments.

Proposition 4.5. Let M be a globally hyperbolic spacetime. Given p, q ∈ M , with

q ∈ I+(p), there exists a maximal future directed timelike geodesic γ from p to q

(L(γ) = d(p, q)).

Proof. We sketch the idea. The proof involves a standard limit curve argument, together

with the fact that the Lorentzian arc length functional is upper semi-continuous; see [12,

p. 54].

• For each n, let γn be a future directed timelike curve from p to q, parameterized with

respect to h-arc length, such that L(γn)→ d(p, q).

• Each γn is contained in the compact set J+(p)∩J−(q). Together with strong causal-

ity, the limit curve lemma can be used to show there exists a subsequence γm that

converges to a C0 causal curve γ from p to q.

• By usc of L,

L(γ) ≥ lim sup
m→∞

L(γm) = d(p, q) ,

and so L(γ) = d(p, q).



• Each sub-segment of γ must have maximal length. Using the maximality of timelike

geodesics in convex neighborhoods (Proposition 1.3), one can show that γ is a timelike

geodesic.

Remarks:

(1) There are simple examples showing that if either of the conditions (1) or (2) fail

to hold in the definition of global hyperbolicity then maximal segments may fail to

exist.

(2) Contrary to the situation in Riemannian geometry, geodesic completeness does not

guarantee the existence of maximal segments. as is well illustrated by anti-de Sitter

space which is geodesically complete.

Two-dimensional anti-de Sitter space:

M = {(t, x) : −π/2 < x < π/2}, ds2 = sec2 x(−dt2 + dx2).

It can be shown that all future directed timelike geodesics

emanating from p refocus at r. The points p and q

are timelike related, but there is no timelike geodesic

segment from p to q.



4.2 Cauchy hypersurfaces.

Global hyperbolicity is closely related to the existence of certain ‘ideal initial value

hypersurfaces’, called Cauchy surfaces. There are slight variations in the literature in the

definition of a Cauchy surface. Here we adopt the following definition.

Definition 4.4. A Cauchy surface for a spacetime M is an achronal subset S of M

which is met by every inextendible causal curve in M .

Observations:

(1) If S is a Cauchy surface for M then ∂I+(S) = S. (Exercise! Also ∂I−(S) = S.)

It follows from Proposition 3.1 that a Cauchy surface S is a closed achronal C0

hypersurface in M .

(2) If S is Cauchy then every inextendible timelike curve meets S exactly once.

Theorem 4.6 (Geroch, [7]). If a spacetime M is globally hyperbolic then it has a

Cauchy surface S, and conversely.

Comments on the proof: The converse will be discussed in the next section.

• Introduces a measure µ on M such that µ(M) = 1, and consider the function

f : M → R defined by

f (p) =
µ(J−(p))

µ(J+(p))
.



• Internal compactness is used to show that f is continuous, and strong causality is

used to show that f is strictly increasing along future directed causal curves.

• Moreover, if γ : (a, b)→ M is a future directed inextendible causal curve in M , one

shows f (γ(t))→ 0 as t→ a+, and f (γ(t))→∞ as t→ b−.

• It follows that ‘slices’ of f , e.g., S = {p ∈ M : f (p) = 1}, are Cauchy surfaces for

M .

Remark: The function f constructed in the proof is what is referred to as a time func-

tion, namely, a continuous function that is strictly increasing along future directed causal

curves. See e.g, [1, 3] for recent developments concerning the construction of smooth time

functions, i.e., smooth functions with (past directed) timelike gradient (which hence are

necessarily time functions) and smooth spacelike Cauchy surfaces.

Proposition 4.7. Let M be gobally hyperbolic.

(1) If S is a Cauchy surface for M then M is homeomorphic to R× S.

(2) Any two Cauchy surfaces in M are homeomorphic.



Proof. To prove (1), one introduces a future directed timelike vector field X on M . X

can be scaled so that the time parameter t of each integral curve of X extends from −∞
to ∞, with t = 0 at points of S. Each p ∈ M is on an integral curve of X that meets S

in exactly one point q. This sets up a correspondence p↔ (t, q), which gives the desired

homeomorphism. A similar technique may be used to prove (2)

In view of Proposition 4.7, any nontrivial topology in a globally hyperbolic spacetime

must reside in its Cauchy surfaces.

The following fact is often useful.

Proposition 4.8. If S is a compact achronal C0 hypersurface in a globally hyperbolic

spacetime M then S must be a Cauchy surface for M .

The proof will be discussed in the next section.



5 Domains of dependence

Definition 5.1. Let S be an achronal set in a spacetime M . The future domain of

dependence of D+(S) of S is defined as follows,

D+(S) = {p ∈M : every past inextendible causal curve from p meets S}
The past domain of dependence of D−(S) is defined in a time-dual manner. The

(total) domain of dependence of S is the union, D(S) = D+(S) ∪D−(S).

In physical terms, since information travels along causal curves, a point in D+(S) only

receives information from S. Thus if physical laws are suitably causal, initial data on S

should determine the physics on D+(S).

Below we show a few examples of future and past domains of dependence.

Note: D+(S) ⊃ S.



If S is achronal, the future Cauchy horizon H+(S) of S is the future boundary of

D+(S). This is made precise in the following definition.

Definition 5.2. Let S ⊂M be achronal. The future Cauchy horizon H+(S) of S is

defined as follows

H+(S) = {p ∈ D+(S) : I+(p) ∩D+(S) = ∅}
= D+(S) \ I−(D+(S)) .

The past Cauchy horizon H−(S) is defined time-dually. The (total) Cauchy horizon

of S is defined as the union, H(S) = H+(S) ∪H−(S). (See the figure below.)

We record some basic facts about domains of dependence and Cauchy horizons.



Proposition 5.1. Let S be an achronal subset of M . Then the following hold.

(1) If p ∈ D+(S) then I−(p) ∩ I+(S) ⊂ D+(S).

(2) ∂D+(S) = H+(S) ∪ S.

(3) H+(S) is achronal.

(4) edgeH+(S) ⊂ edge S, with equality holding if S is closed.

Comment on the proof: The achronality of H+(S) follows almost immediately from the

definition: Suppose p, q ∈ H+(S) with q ∈ I+(p). Since q ∈ D+(S), and I+(p) is a

neighborhood of q, I+(p) meets D+(S), contradicting the definition of H+(S). We leave

the proofs of the other parts as an exercise.

Cauchy horizons have structural properties similar to achronal boundaries, as indicated

in the next two results. From Proposition 3.3, we obtain the following.

Proposition 5.2. Let S ⊂M be achronal. Then H+(S) \ edgeH+(S), if nonempty,

is an achronal C0 hypersurface in M .



In a similar vein to Proposition 3.4, we have the following.

Proposition 5.3. Let S be an achronal subset of M . Then H+(S) is ruled by null

geodesics, i.e., every point of H+(S)\ edgeS is the future endpoint of a null geodesic

in H+(S) which is either past inextendible in M or else has a past end point on

edgeS.

Comments on the proof. The proof uses a limit curve argument. Consider the case p ∈
H+(S) \ S. Since I+(p) ∩ D+(S) = ∅, we can find a sequence of points pn /∈ D+(S),

such that pn → p. For each n, there exists a past inextendible causal curve γn that does

not meet S. By the limit curve lemma there exists a subsequence γm that converges to

a past inextendible C0 causal curve γ starting at p. Near p this defines the desired null

geodesic (see the figure below).

The case p ∈ S \ edgeS is handled somewhat differently; for details see [13, p. 203].



Proposition 5.4. Let S be an achronal subset of a spacetime M . Then, S is a

Cauchy surface for M if and only if D(S) = M if and only if H(S) = ∅.

Proof. Follows straight-forwardly from definitions, together with the fact that, for S

achronal, ∂D(S) = H(S) (exercise).

The following basic result ties domains of dependence to global hyperbolicity.

Proposition 5.5. Let S ⊂M be achronal.

(1) Strong causality holds on intD(S).

(2) Internal compactness holds on intD(S), i.e., for all p, q ∈ intD(S),

J+(p) ∩ J−(q) is compact.

Proof. See the notes.

We can now address the converse part of Theorem 4.6.

Corollary 5.6. If S is a Cauchy surface for M then M is globally hyperbolic.

Proof. This follows immediately from Propositions 5.4 and 5.5: S Cauchy =⇒ D(S) =

M =⇒ intD(S) = M =⇒ M is globally hyperbolic.



Re: Proposition 4.8.: If S is a compact achronal C0 hypersurface in a globally

hyperbolic spacetime M then S must be a Cauchy surface for M .

Proof of Proposition 4.8. It suffices to show thatH(S) = H+(S)∪H−(S) = ∅. Suppose

there exists p ∈ H+(S). Since S is edgeless, it follows from Proposition 5.3 that p is

the future endpoint of a past inextendible null geodesic γ ⊂ H+(S). Then since γ ⊂
D+(S)∩J−(p) (exercise: show this), we have that γ is contained in the set J+(S)∩J−(p),

which is compact by Proposition 4.3. By Lemma 4.2 strong causality must be violated at

some point of J+(S) ∩ J−(p). Thus H+(S) = ∅, and time-dually, H−(S) = ∅.
The notes conclude this section with the statement of several lemmas that are useful

in proving some of the results described here, as well as other results concerning domains

of dependence.



6 The geometry of null hypersurfaces

In addition to curves, one can discuss the causality of certain higher dimensional sub-

manifolds. For example, a spacelike hypersurface is a hypersurface all of whose tangent

vectors are spacelike, or, equivalently, whose normal vectors are timelike:

More precisely, a hypersurface is spacelike if the induced metric is positive definite (i.e.

Riemannian). In GR, a spacelike hypersurface represents space at a given instant of time.

A null hypersurface is a hypersurface such that the null cone is tangent to at each of

its points:

Null hypersurfaces play an important role in GR as they represent horizons of various

sorts. For example the event horizons in the Schwarzschild and Kerr spacetimes are null



hypersurfaces. Null hypersurfaces have an interesting geometry which we would like to

discuss in this section.

Definition 6.1. A null hypersurface in a spacetime (M, g) is a smooth co-dimension

one submanifold S of M , such that at each p ∈ S, g : TpS×TpS → R is degenerate.

This means that there exists a nonzero vector Kp ∈ TpS (the direction of degeneracy)

such that

〈Kp, X〉 = 0 for all X ∈ TpS
where we have introduced the shorthand metric notation: 〈U, V 〉 = g(U, V ). In particular,

(1) Kp is a null vector, 〈Kp, Kp〉 = 0, which we can choose to be future pointing, and

(2) [Kp]
⊥ = TpS.

(3) Moreover, every (nonzero) vector X ∈ TpS that is not a multiple of Kp is spacelike.

Thus, every null hypersurface S gives rise to a smooth future directed null vector field

K on S, unique up to a positive pointwise scale factor.

p ∈ S K−→ Kp ∈ TpS,



Ex. Mn+1 = Minkowski space.

(1) Null hyperplanes in Mn+1: Each nonzero null vector X ∈ TpMn+1 determines a null

hyperplane Π = {q ∈Mn+1 : 〈pq,X〉 = 0}.
(2) Null cones in Mn+1: The past and future cones, ∂I−(p) and ∂I+(p), respectively,

are smooth null hypersurfaces away from the vertex p.

The following fact is fundamental.

Proposition 6.1. Let S be a smooth null hypersurface and let K be a smooth future

directed null vector field on S. Then the integral curves of K are null geodesics

(when suitably parameterized),

Remark: The integral curves of K are called the null generators of S. Apart from param-

eterizations, the null generators are intrinsic to the null hypersurface.

Proof. Suffices to show:

∇KK = λK

This follows by showing at each p ∈ S,

∇KK ⊥ TpS , i.e., 〈∇KK,X〉 = 0 ∀X ∈ TpS



Extend X ∈ TpS by making it invariant under the flow generated by K,

[K,X ] = ∇KX −∇XK = 0

X remains tangent to S, so along the flow line through p,

〈K,X〉 = 0 (6.15)

Differentiating,

K〈K,X〉 = 〈∇KK,X〉 + 〈K,∇KX〉 = 0

〈∇KK,X〉 = −〈K,∇XK〉 = −1

2
X〈K,K〉 = 0.

To study the ‘shape’ of the null hypersurface S we study how the null vector field K

varies along S. Since K is actually orthogonal to S, this is somewhat analogous to how

we study the shape of a hypersurface in a Riemannian manifold, or spacelike hypersurface

in a Lorentzian manifold, by introducing the shape operator (or Weingarten map) and



associated second fundamental form. We proceed to introduce null analogues of these

objects. For technical reasons one works “mod K”, as described below.

Null Weingarten Map/Null 2nd Fundamental Form.

• We introduce the following equivalence relation on tangent vectors: For X, Y ∈ TpS,

X = Y mod K ⇐⇒ X − Y = λK (6.16)

Let X denote the equivalence class of X ∈ TpS and let,

TpS/K = {X : X ∈ TpS} (6.17)

Then,

TS/K = ∪p∈STpS/K (6.18)

is a rank n−1 vector bundle over S (n = dimS). This vector bundle does not depend

on the particular choice of null vector field K.

• There is a natural positive definite metric h on TS/K induced from 〈 , 〉: For each

p ∈ S, define h : TpS/K × TpS/K → R by

h(X,Y ) = 〈X, Y 〉.



Well-defined: If X ′ = X mod K, Y ′ = Y mod K then

〈X ′, Y ′〉 = 〈X + αK, Y + βK〉
= 〈X, Y 〉 + β〈X,K〉 + α〈K,Y 〉 + αβ〈K,K〉
= 〈X, Y 〉 .

• The null Weingarten map b = bK of S with respect to K is, for each point p ∈ S,

a linear map b : TpS/K → TpS/K defined by

b(X) = ∇XK .

b is well-defined: X ′ = X mod K ⇒

∇X ′K = ∇X+αKK

= ∇XK + α∇KK = ∇XK + αλK

= ∇XK mod K

• b is self adjoint with respect to h, i.e., h(b(X), Y ) = h(X, b(Y )), for all X,Y ∈
TpS/K.



Proof. Extend X, Y ∈ TpS to vector fields tangent to S near p. Using X〈K,Y 〉 = 0

and Y 〈K,X〉 = 0, we obtain,

h(b(X), Y ) = 〈∇XK,Y 〉 = −〈K,∇XY 〉 = −〈K,∇YX〉 + 〈K, [X, Y ]〉
= 〈∇YK,X〉 = h(X, b(Y )) .

• The null second fundamental form B = BK of S with respect to K is the bilinear

form associated to b via h: For each p ∈ S, B : TpS/K × TpS/K → R is defined by,

B(X,Y ) = h(b(X), Y ) = h(∇XK,Y ) = 〈∇XK,Y 〉 .

Since b is self-adjoint, B is symmetric.

• The null mean curvature (or null expansion scalar) of S with respect to K is the

smooth scalar field θ on S defined by,

θ = tr b

.

θ has a natural geometric interpretation. Let Σ be the intersection of S with a

hypersurface in M which is transverse to K near p ∈ S; Σ will be a co-dimension

two spacelike submanifold of M , along which K is orthogonal.



Let {e1, e2, · · · , en−1} be an orthonormal basis for TpΣ in the induced metric. Then

{e1, e2, · · · , en−1} is an orthonormal basis for TpS/K. Hence at p,

θ = tr b =

n−1∑
i=1

h(b(ei), ei) =

n−1∑
i=1

〈∇eiK, ei〉.

= divΣK . (6.19)

where divΣK is the divergence of K along Σ.

Thus, θ measures the overall expansion of the null generators of S towards the future.

θ > 0 θ < 0



Re: The Geometry of Null Hypersurfaces

• S = null hypersurface in spacetime M

K = associated future directed null vector field

• Equivalence relation:

X = Y mod K ⇐⇒ X − Y = λK

• mod K tangent space: TpS/K = {X : X ∈ TpS}
mod K tangent bundle: TS/K = ∪p∈STpS/K
• Metric h on TS/K: h(X,Y ) = 〈X, Y 〉 (positive definite).

• Null Weingarten map b : TpS/K → TpS/K, defined by

b(X) = ∇XK

• Associated null second fundamental form B : TpS/K × TpS/K → R,

B(X,Y ) = h(b(X), Y ) = h(∇XK,Y ) = 〈∇XK,Y 〉
• Null expansion scalar θ,

θ := tr b = trB = divΣK



Exercise: Effect of scaling. Show that if K̃ = fK, f ∈ C∞(S), is any other future directed

null vector field on S, then bK̃ = fbK , and hence, θ̃ = fθ. It follows that the Weingarten

map b = bK at a point p is uniquely determined by the value of K at p.

Comparison Theory

We now study how the null Weingarten map propagates along the null geodesic gener-

ators of S.

Let η : I → M , s → η(s), be a future directed affinely parameterized null geodesic

generator of S. For each s ∈ I , consider the Weingarten map b = b(s) based at η(s) with

respect to the null vector field K = η′(s) at η(s),

b(s) = bη′(s) : Tη(s)S/η
′(s)→ Tη(s)S/η

′(s)

Proposition 6.2. The one parameter family of Weingarten maps s → b(s), obeys

the following Riccati equation,

b′ + b2 + R = 0 , ′ = ∇η′ (6.20)

where R : Tη(s)S/η
′(s)→ Tη(s)S/η

′(s) is given by R(X) = R(X, η′(s))η′(s).



Remark on notation: In general, if Y = Y (s) is a vector field along η tangent to S, we

define, (Y )′ = Y ′. Then, if X = X(s) is a vector field along η tangent to S, b′ is defined

by,

b′(X) := b(X)′ − b(X ′) . (6.21)

Proof. Fix a point p = η(s0), s0 ∈ (a, b), on η. On a neighborhood U of p in S we can

scale the null vector field K so that K is a geodesic vector field, ∇KK = 0, and so that

K, restricted to η, is the velocity vector field to η, i.e., for each s near s0, Kη(s) = η′(s).
Let X ∈ TpM . Shrinking U if necessary, we can extend X to a smooth vector field on U

so that [X,K] = ∇XK −∇KX = 0. Then,

R(X,K)K = ∇X∇KK −∇K∇XK −∇[X,K]K = −∇K∇KX

Hence along η we have, X ′′ = −R(X, η′)η′ (which implies that X , restricted to η, is a

Jacobi field along η).

Thus, from Equation (6.21), at the point p we have,

b′(X) = ∇XK
′ − b(∇KX) = ∇KX

′ − b(∇XK)

= X ′′ − b(b(X)) = −R(X, η′)η′ − b2(X)

= −R(X)− b2(X),

which establishes Equation 6.20.



By taking the trace of (6.20) we obtain the following formula for the derivative of the

null mean curvature θ = θ(s) along η,

θ′ = −Ric(η′, η′)− σ2 − 1

n− 1
θ2, (6.22)

where σ := (tr b̂2)1/2 is the shear scalar, b̂ := b − 1
n−1θ · id is the trace free part of the

Weingarten map, and Ric(η′, η′) is the spacetime Ricci tensor evaluated on the tangent

vector η′.
Equation 6.22 is known in relativity as the Raychaudhuri equation (for an ir-

rotational null geodesic congruence). This equation shows how the Ricci curvature of

spacetime influences the null mean curvature of a null hypersurface.

We consider a basic application of the Raychaudhuri equation.

Proposition 6.3. Let M be a spacetime which obeys the null enery condition (NEC),

Ric (X,X) ≥ 0 for all null vectors X, and let S be a smooth null hypersurface in M .

If the null generators of S are future geodesically complete then S has nonnegative

null expansion, θ ≥ 0.

Proof. Suppose θ < 0 at p ∈ S. Let s→ η(s) be the null generator of S passing through

p = η(0), affinely parametrized. Let b(s) = bη′(s), and take θ = tr b. By the invariance of

sign under scaling, one has θ(0) < 0.



Raychaudhuri’s equation and the NEC imply that θ = θ(s) obeys the inequality,

dθ

ds
≤ − 1

n− 1
θ2 , (6.23)

and hence θ < 0 for all s > 0. Dividing through by θ2 then gives,

d

ds

(
1

θ

)
≥ 1

n− 1
, (6.24)

which implies 1/θ → 0, i.e., θ → −∞ in finite affine parameter time, contradicting the

smoothness of θ.

Exercise. Let Σ be a local cross section of the null hypersurface S, (as in hte figure on p.

53), with volume form ω. If Σ is moved under flow generated by K, show that LKω = θ ω,

where L = Lie derivative.

Thus, Proposition 6.3 implies, under the given assumptions, that cross sections of S are

nondecreasing in area as one moves towards the future. Proposition 6.3 is the simplest

form of Hawking’s black hole area theorem [8]. For a study of the area theorem, with a

focus on issues of regularity, see [2].



7 Trapped surfaces and the Penrose Singularity Theorem

In this section we introduce the important notion of a trapped surface and present the

classical Penrose singularity theorem.

• Let (Mn+1, g) be an (n + 1)-dimensional spacetime, n ≥ 3.

Let Σn−1 be a closed (i.e., compact without boundary) co-dimension two spacelike

submanifold of M .

• Each normal space of Σ, [TpΣ]⊥, p ∈ Σ, is timelike and 2-dimensional, and hence

admits two future directed null directions orthogonal to Σ.

Thus, under suitable orientation assumptions, Σ admits two smooth nonvanishing

future directed null normal vector fields l+ and l− (unique up to positive rescaling).
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and if its generators are future complete then Proposition 7.1 implies that E has
nonnegative null expansion. This in turn implies that “cross-sections” of E are
nondecreasing in area as one moves towards the future, as asserted by the area
theorem. In the context of black hole thermodynamics, the area theorem is referred
to as the second law of black mechanics, and provides a link between gravity and
quantum physics. As it turns out, the area theorem remains valid without imposing
any smoothness assumptions; for a recent study of the area theorem, which focuses
on these issues of regularity, see [131].

7.2. Trapped and marginally trapped surfaces. We begin with some defini-
tions. Let Σ = Σn−1, n ≥ 3, be a spacelike submanifold of co-dimension two in a
space-time (M n+1, g). Regardless of the dimension of space-time, we shall refer to
Σ as a surface, which it actually is in the 3 + 1 case. We are primarily interested
in the case where Σ is compact (without boundary), and so we simply assume this
from the outset.

Each normal space of Σ, [TpΣ]
⊥, p ∈ Σ, is timelike and 2-dimensional, and

hence admits two future directed null directions orthogonal to Σ. Thus, if the
normal bundle is trivial, Σ admits two smooth nonvanishing future directed null
normal vector fields l+ and l−, which are unique up to positive pointwise scaling,
see Figure 7.1. By convention, we refer to l+ as outward pointing and l− as inward
pointing.21 In relativity it is standard to decompose the second fundamental form

l− l+

Figure 7.1. The null future normals l± to Σ.

of Σ into two scalar valued null second forms χ+ and χ−, associated to l+ and l−,
respectively. For each p ∈ Σ, χ± : TpΣ× TpΣ → R is the bilinear form defined by,

χ±(X,Y ) = g(∇X l±, Y ) for all X,Y ∈ TpΣ .(7.5)

A standard argument shows that χ± is symmetric. Hence, χ+ and χ− can be traced
with respect to the induced metric γ on Σ to obtain the null mean curvatures (or
null expansion scalars),

(7.6) θ± = trγ χ± = γij(χ±)ij = divΣl± .

θ± depends on the scaling of l± in a simple way. As follows from Equation (7.5),
multiplying l± by a positive function f simply scales θ± by the same function.
Thus, the sign of θ± does not depend on the scaling of l±. Physically, θ+ (resp.,
θ−) measures the divergence of the outgoing (resp., ingoing) light rays emanating
from Σ.

It is useful to note the connection between the null expansion scalars θ± and the
expansion of the generators of a null hypersurface, as discussed in Section 7.1. Let
N+ be the null hypersurface, defined and smooth near Σ, generated by the null

21In many situations, there is a natural choice of “inward” and “outward”.

By convention, we refer to l+ as outward pointing and l− as inward pointing.



• Associated to l+ and l−, are the two null second fundamental forms, χ+ and χ−,

respectively, defined as

χ± : TpΣ× TpΣ→ R, χ±(X, Y ) = g(∇Xl±, Y ) . (7.25)

• The null expansion scalars (or null mean curvatures) θ± of Σ are obtained by

tracing χ± with respect to the induced metric γ on Σ,

θ± = trγχ± = γABχ±AB = div Σl± . (7.26)

The sign of θ± does not depend on the scaling of l±. Physically, θ+ (resp., θ−) measures

the divergence of the outgoing (resp., ingoing) light rays emanating orthogonally from

Σ.

(There is a natural connection between these null expansion scalars and the null

expansion of null hypersurfaces; see the notes.)

• For round spheres in Euclidean slices in Minkowski space (and, more generally, large

“radial” spheres in AF spacelike hypersurfaces),

§

 0> +µ 0< {µ



• However, in regions of spacetime where the gravitational field is strong, one can have

both

θ− < 0 and θ+ < 0 ,

in which case Σ is called a trapped surface.

As we now discuss, under appropriate energy and causality conditions, the occurrence

of a trapped surface signals the onset of gravitational collapse

7.1 The Penrose Singularity Theorem.

The Penrose singularity theorem [11] is the first of the famous singularity theorems of

general relativity. The singularity theorems establish, under generic circumstances, the

existence in spacetime of incomplete timelike or null geodesics.

Such incompleteness indicates that spacetime comes to an end either in the past or

future. Future incompleteness is often associated with gravitational collapse and the

formation of a black hole (such as in Schwarzschild and Kerr).

All the classical singularity theorems require energy conditions. The Penrose singularity

theorem assumes the NEC, Ric(X,X) ≥ 0 for all null vectors X , holds.

It also assumes the existence of a noncompact Cauchy surface. This is consistent

with modeling an isolated gravitating system, where one takes spacetime (or space) to be

asymptotically flat.



What Penrose proves is that if the gravitational field becomes sufficiently strong that

trapped surfaces appear (as they do in the Schwarzschild solution) then the development

of singularities is inevitable.

Theorem 7.1 (Penrose singularity theorem). Let M be a globally hyperbolic spacetime

which satisfies the null energy condition and which has noncompact Cauchy surfaces.

If M contains a trapped surface Σ then M is future null geodesically incomplete.

Proof. The proof is by contradiction. Assume M is future null geodesically complete.

Then what we actually show is the following.

Claim: If M is future null geodesically complete then the ∂I+(Σ) is compact.

But ∂I+(Σ) is an achronal C0 hypersurface (Proposition 3.1), and hence, by Proposi-

tion 4.8, is a compact Cauchy surface. This contradicts the assumption that M admits a

noncompact Cauchy surface.

Proof of Claim: Suppose to the contrary that ∂I+(Σ) is noncompact.

• By Proposition 3.4 (or Proposition 2.1) each q ∈ ∂I+(Σ) lies on a null geodesic in

∂I+(Σ) with past end point on Σ. Moreover this null geodesic meets Σ orthogonally

(due to achronality, cf. [10, Lemma 50, p. 298])).



• Since ∂I+(Σ) is closed and noncompact, there exists a sequence of points {qn} ⊂
∂I+(Σ) that diverges to infinity. For each n, there is a null geodesic ηn from Σ to qn,

which is contained in ∂I+(Σ) and meets Σ orthogonally.

• By compactness of Σ, some subsequence converges to a future inextendible, and hence

future complete, null geodesic η : [0,∞) → M contained in ∂I+(Σ), and meeting Σ

orthogonally (at p, say).

• By achronality of ∂I+(Σ),

– No other null geodesic in ∂I+(Σ) starting on Σ can meet η.

– There can be no null focal point to Σ along η (cf. [10, Prop. 48, p. 296]).

• It follows that η is contained in a smooth (perhaps very thin) null hypersurface

H ⊂ ∂I+(Σ).

• Let θ be the null expansion of H along η. Since Σ is a trapped surface θ(p) < 0.

Arguing just as in the “area theorem” (Proposition 6.3), using Raychaudhuri + NEC,

θ must go to −∞ in finite affine parameter time →←



7.2 A variant of the Penrose singularity theorem.

For certain applications, the following variant of the Penrose singularity theorem is

useful.

Theorem 7.2. Let M be a globally hyperbolic spacetime satisfying the null energy

condition, with smooth spacelike Cauchy surface V . Let Σ be a smooth closed (com-

pact without boundary) hypersurface in V which separates V into an “inside” U and

an “outside” W , i.e., V \ Σ = U ∪W where U,W ⊂ V are connected disjoint sets.

Suppose, further, that W is non-compact. If Σ is outer-trapped ( θ+ < 0) then

M is future null geodesically incomplete.

Proof. Exercise. Hint: Consider the achronal boundary ∂I+(U) and argue similarly to

the proof of the Penrose singularity theorem.

This version of the Penrose singularity theorem may be used to prove the following

beautiful result of Gannon [6] and Lee [9].



Theorem 7.3. Let M be a globally hyperbolic spacetime which satisfies the null

energy condition and which contains a smooth asymptotically flat spacelike Cauchy

surface V . If V is not simply connected (π1(V ) 6= 0) then M is future null geodesi-

cally incomplete.

Thus, as suggested by this theorem, nontrivial topology tends to induce gravitational

collapse. In the standard collapse scenario (based on the weak cosmic censorship conjec-

ture) the process of gravitational collapse leads to the formation of an event horizon which

shields the singularities from view. According to the principle of topological censorship

the nontrivial topology that induced collapse should end up behind hidden the event

horizon, and the region outside the black hole should have simple topology. There are a

number of results supporting this view. See [4] for further discussion, relevant references

and related results.

Exercise: Let M be a globally hyperbolic spacetime which satisfies the null energy con-

dition and which contains a smooth asymptotically flat spacelike Cauchy surface V . Use

Theorem 7.2 to show that if V has more than one asymptotically flat end then M is future

null geodesically incomplete. Thus, in Theorem 7.3 one might as well assume that V has

only one asymptotically flat end.
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