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Abstract. A uniqueness theorem for Minkowski space and de Sitter space associated
with the occurrence of null lines (inextendible globally achronal null geodesics) is pre-
sented. This result is obtained as a consequence of the null splitting theorem, which is
also discussed.

2.1 Introduction

The aim of this paper is to present some rigidity results for asymptotically
simple space-times. By a space-time we mean a smooth connected time oriented
Lorentzian manifold (M, g) of dimension ≥ 3, having signature (−+ · · ·+). We
use standard notation for causal theoretic notions, e.g., for A ⊂ M , I+(A,M),
the time-like future of A in M (resp., I−(A,M), the time-like past of A in M), is
the set of all points that can be reached from A by a future directed (resp. past
directed) time-like curve in M . For other basic definitions and results in space-
time geometry and causal theory we refer the reader to the standard references
[14, 19].

Penrose’s treatment of infinity [18, 20] in asymptotically flat space-times (and
space-times with other asymptotic structures, as well) is based on his notion
of asymptotic simplicity. A 4-dimensional, chronological space-time (M, g) is
asymptotically simple provided there exists a smooth space-time-with-boundary
(M̃, g̃) such that,

(a) M is the interior of M̃ , and hence, M̃ = M ∪I, where I = ∂M̃ ,
(b) g̃ = Ω2g, where Ω is a smooth function on M̃ such that (i) Ω > 0 on M and

(ii) Ω = 0 and dΩ �= 0 along I, and
(c) every inextendible null geodesic in M has a past and future end-point on I.

Condition (c) is a strong global assumption, which implies that M is null
geodesically complete, and ensures that I includes all of null infinity. But it also
rules out space-times with singularities, and black holes, etc. To treat such cases,
condition (c) must be suitably weakened, cf. [3, 14, 22].

In this paper, we will be primarily interested in asymptotically simple space-
times which obey the vacuum Einstein equation with cosmological term,

Ric = λ g . (2.1)

If λ = 0 (the asymptotically flat case) then I is necessarily a smooth null
hypersurface, which decomposes into two parts, I+, future null infinity, and
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I−, past null infinity. If λ > 0 (the asymptotically de Sitter case) then we have
a similar decomposition, except that I is space-like.

We present here a uniqueness theorem for Minkowski space and for de Sitter
space associated with the occurrence of null lines. A null line in a space-time
(M, g) is an inextendible null geodesic which is globally achronal (meaning that
no two points can be joined by a time-like curve). Arguments involving null lines
have arisen in many situations, such as the Hawking-Penrose singularity theo-
rems [14], results on topological censorship [4, 11], the Penrose-Sorkin-Woolgar
approach to the positive mass theorem [21, 23] (and related results on gravi-
tational time delay [13]), and most recently results concerning the AdS/CFT
Correspondence [12].

Every null geodesic in Minkowski space and de Sitter space is a null line. At
the same time, each of these space-times, and indeed any space-time satisfying
equation (2.1) (regardless of the sign of λ) obeys the null energy condition,
Ric (X,X) = RijX

iXj ≥ 0, for all null vectors X. In general, it is difficult for
complete null lines to exist in space-times which obey the null energy condition.
The null energy condition tends to focus congruences of null geodesics, which
can lead to the occurrence of null conjugate points. A null geodesic containing a
pair of conjugate points cannot be achronal. Thus we expect a space-time which
satisfies the null energy condition and which contains a complete null line to be
special in some way. The following theorem supports this point of view.

Theorem 2.1. Suppose M is an asymptotically simple space-time satisfying the
vacuum Einstein equation (2.1) with λ ≥ 0. If M contains a null line then M is
isometric to Minkowski space (if λ = 0) or de Sitter space (if λ > 0).

Let us give an interpretation of Theorem 2.1 in terms of the initial value
problem for the vacuum Einstein equation, in the case λ > 0. According to the
fundamental work of Friedrich [5, 7], the set of asymptotically simple solutions to
(2.1), with λ > 0, is open in the set of all maximal globally hyperbolic solutions
with compact spatial sections. Thus, by Theorem 2.1, in conjunction with the
work of Friedrich, a sufficiently small perturbation of the Cauchy data on a
fixed Cauchy hypersurface in de Sitter space will in general destroy all the null
lines of de Sitter space, i.e., the resulting space-time that develops from the
perturbed Cauchy data will not contain any null lines. While one would expect
many of the null lines to be destroyed, it is somewhat surprising that none
of the null lines persist. One is tempted to draw a similar conclusion in the
λ = 0 case. However, the nonlinear stability of asymptotic simplicity in this
case has not been established, and, indeed may not hold, cf., [8, 9] for further
discussion. In fact at present, Minkowski space is the only known asymptotically
simple solution to (2.1) with λ = 0 (though evidence is mounting that there are
solutions distinct from, but in a suitable sense, close to Minkowski space; by
Theorem 2.1, such solutions would have no null lines). Finally, we note that an
asymptotically simple and de Sitter space-time M , which does not contain any
null lines, will not have any particle horizons, i.e., the “past null cones” ∂J−(p)
will be compact for all p ∈ M sufficiently close to I+. As all such null cones
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in de Sitter space are non-compact, this further serves to illustrate the delicate
nature of the causal structure of de Sitter space (see also [13, Corollary 1]).

Theorem 2.1 is a consequence of the null splitting theorem obtained in [10].
This latter result establishes the rigidity in general of null geodesically complete
space-times which obey the null energy condition. We discuss this result in the
next section. In Sect. 2.3 we present the proof of Theorem 2.1. For results of
related interest concerning the rigidity of asymptotically simple space-times,
see, for example, [6, 15].

2.2 The Null Splitting Theorem

The statement of the null splitting theorem involves null hypersurfaces. We recall
briefly some facts about the geometry of null hypersurfaces; see e.g., [10, 14, 19]
for more detailed discussions from slightly varying points of view.

A smooth null hypersurface in a space-time (M, g) is a smooth co-dimension
one submanifold S along which the Lorentz metric g is degenerate. Hence, S
admits a smooth future directed null vector field K, which is unique up to a
positive scale factor. As is well-known, the integral curves of K, when suitably
parameterized, are null geodesics, and are referred to as the null generators of S.

The null expansion tensor (or null second fundamental form)Θ of S measures
the variations in the spatial separation of the null generators of S. Let TS/K
denote the tangent vectors to S mod K; for each p ∈ S, TpS/K = {X̄ : X ∈
TpS}, where X̄ = {Y ∈ TpS : Y = XmodK}. TS/K is an n − 2 dimensional
vector bundle over S (n = dimM). For X̄, Ȳ ∈ TpS/K, define h(X̄, Ȳ ) =
g(X,Y ); h is a well-defined smooth Riemannian metric on TS/K. Θ is defined
as, Θ(X̄, Ȳ ) = g(∇XK,Y ), where ∇ is the Levi-Civita connection of (M, g); Θ is
a well-defined symmetric bilinear form on TS/K, unique up to the scaling of K.
By tracing Θ with respect to h, we obtain the null expansion scalar θ = habθab,
which measures the divergence of the null generators towards the future. Along
an affinely parameterized null generator, s → η(s), the null expansion θ = θ(s)
satisfies (provided K is appropriately scaled) the Raychaudhuri equation for an
irrotational null geodesic congruence,

dθ

ds
= −Ric (η′, η′)− σ2 − 1

n− 2
θ2 , (2.2)

where σ2 = σabσ
ab, and σab is the shear tensor, σab = θab − 1

n−2θ.
We say that S is totally geodesic if and only if the expansion tensor vanishes,

θab ≡ 0, or, equivalently, if and only if the expansion scalar and shear vanish,
θ ≡ 0, σab ≡ 0. This has the usual geometric meaning: A geodesic in M starting
tangent to a totally geodesic null hypersurface S remains in S. Null hyperplanes
in Minkowski space are totally geodesic, as is the event horizon in Schwarzschild
space-time.

We now state the null splitting theorem.
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Theorem 2.2. Let M be a null geodesically complete space-time which obeys
the null energy condition, Ric (X,X) = RijX

iXj ≥ 0, for all null vectors X. If
M admits a null line η then η is contained in a smooth achronal edgeless totally
geodesic null hypersurface S.

The simplest illustration of Theorem 2.2 is Minkowski space: Each null line
� in Minkowski space is contained in a unique null hyperplane Π.

We make some comments about the proof, which is based on a maximum
principle for C0 null hypersurfaces, see [10] for details. First, by way of motiva-
tion, note that the null plane Π above can be realized as the limit of the future
null cone ∂I+(x) as x goes to past null infinity along the null line �. Π can also
be realized as the limit of the past null cone ∂I−(x) as x goes to future null
infinity along the null line �. In fact, one sees that Π = ∂I+(�) = ∂I−(�).

Thus, in the setting of Theorem 2.2, consider the achronal boundaries S+ =
∂I+(η) and S− = ∂I−(η). By standard causal theoretic results [19], S+ and S−
are achronal, edgeless, C0 (but in general not smooth) hypersurfaces in M . Since
η is a achronal, it follows that S+ and S− both contain η. For simplicity, assume
S+ and S− are connected (otherwise restrict attention to the component of each
containing η). The proof then consists of showing that S+ and S− agree and
form a smooth totally geodesic null hypersurface. We give some indication as to
how this works.

By further properties of achronal boundaries (see especially [19, Lemma
3.19]), each point p ∈ S− is the past end point of a null geodesic contained
in S− which is future inextendible in M , and hence future complete, i.e., S− is a
C0 null hypersurface ruled by future complete null geodesics. Similarly, S+ is a
C0 null hypersurface ruled by past complete null geodesics. Now suppose S+ and
S− are actually smooth null hypersurfaces. Then by standard arguments, based
on Raychaudhuri’s equation (eq. (2.2)), S− must have null expansion θ− ≥ 0.
Indeed, if θ− < 0 at some point p then the null generator through p would en-
counter a null focal point in a finite affine parameter time to the future, forcing
the generator to leave S−, which is impossible. (This is the basis of the proof
of the black hole area theorem.) Time-dually, S+ has null expansion θ+ ≤ 0.
Now, let q be a point on both S+ and S−. By simple causal considerations one
observes that in the vicinity of q, S+ lies to the future side of S−. Using the
inequalities θ+ ≤ 0 ≤ θ−, and the fact that the null expansion scalar can be
expressed as a second order quasi-linear elliptic operator acting on some func-
tion related to the graph of the null hypersurface, one can apply the strong
maximum principle to conclude that S+ and S− agree near q, c.f., [10, Theorem
II.1]. Thus, the nonempty set S− ∩ S+ is both open and closed in S−, and in
S+. Hence S− = S+, and this common null hypersurface, call it S, must have
vanishing null expansion, θ ≡ 0. Equation (2.2) then implies that the shear of
the generators also vanishes, and hence S is totally geodesic.

The principal difficulty in proving Theorem 2.2 is in showing that the argu-
ments of the preceding paragraph extend to the C0 setting. In fact it is possible
to show that S+ and S− satisfy, θ+ ≤ 0 ≤ θ−, in a certain weak sense, namely,
in the sense of smooth support null hypersurfaces. Then, as an application of the
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weak version of the strong maximum principle obtained in [2] (which includes
a regularity assertion), it is again possible to show that S+ and S− agree and
form a smooth null hypersurface with vanishing null expansion scalar, cf., [10,
Theorem III.4].

2.3 Proof of Theorem 2.1

A proof of Theorem 2.1 in the case λ = 0 was given in [10]. Here we give a proof
of Theorem 2.1, different in a number of respects, which accommodates the case
λ > 0. We also correct a mistake in the proof given in [10]. The proof made use
of the erroneous assertion that M− = M ∪I− is causally simple (i.e., that the
sets of the form J±(K,M−) are closed for all compact K ⊂ M−). As pointed
out in [16], without some further assumption on I, this in principle need not
hold. In the proof presented here we circumvent the use of causal simplicity.

The first, and main step in proving Theorem 2.1, is to show that (M, g)
has constant curvature. Let η be the assumed null line in M , and let S be the
component of ∂I+(η,M) containing η. By Theorem 2.2, S is a smooth totally
geodesic null hypersurface in M . The null line η acquires a past end point p on
I− and a future end point q on I+. We examine the structure of S near p. (A
similar structure will hold near q.) For this purpose it is convenient to extend
M− = M∪I− slightly beyond its boundary. Thus, without loss of generality, we
may assume that M− is contained in a space-time (without boundary) P such
that I− separates P . It follows that I− is a globally achronal null hypersurface
in P .

Observe that I+(η,M) = I+(p, P ), from which it follows that ∂I+(η,M) =
∂I+(p, P ) ∩ M (where ∂I+(A,X) refers to the boundary in X). Asymptotic
simplicity then implies that the generators of ∂I+(η,M) must have past end
points on I− at p. (A generator γ of ∂I+(p, P ) starting in M either extends to
p, or else is past inextendible in P , while remaining in ∂I+(p, P ). In the latter
case, γ meets I− transversely and enters I−(I−, P ), violating the achronality of
I−.) The generators of S ⊂ ∂I+(η,M) must coincide with those of ∂I+(η,M),
and hence have past end points on I− at p, as well. Let U be a convex normal
neighborhood of p, and let A be the “null cone” in U generated by the future
directed null geodesics in U emanating from p. A is a smooth null hypersurface
in U , except for the conical singularity at p. We can choose a smooth space-like
hypersurface in U , passing slightly to the future of p, which meets A in a 2-sphere
Σ. By invariance of domain, and the fact that S is closed in M , it is easily seen
that the subset Σ ∩ S of Σ ∩M is both open and closed in Σ ∩M . It follows
that all the null geodesics forming A correspond precisely to the generators of
S, except, in the asymptotically flat case, for the generator γp of I− with past
end point p. Note in particular, this implies that S = ∂I+(η,M).

Now, set Np = S ∪ γp in the asymptotically flat case, and Np = S ∪ {p}
in the asymptotically de Sitter case. From the above, Np is made up of all the
future inextendible null geodesics in P emanating from p. In the asymptotically
de Sitter case, I− is space-like, so ∂I+(p, P ) meets I− only at p. It follows
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from statements above that Np = ∂I+(p, P ). Suppose, in the asymptotically
flat case, that ∂I+(p, P ) meets I− at a point x, say. Then there exists a null
geodesic γ ⊂ ∂I+(p, P ) with future end point x which either extends in the past
to p or is past inextendible in M ∪ I−. In the latter case, Lemma 4.2 in [16]
implies that M ⊂ I+(γ), from which it follows that M ⊂ I+(p, P ). But this
contradicts the achronality of η. It follows that ∂I+(p, P )∩I− = γp, and again
we have Np = ∂I+(p, P ). Thus, Np is an achronal boundary, and hence is an
achronal edgeless C0 hypersurface in P . Moreover, since the future directed null
geodesics in P emanating from p do not cross and, being achronal, do not have
points conjugate to p, Np \{p} is the diffeomorphic image under the exponential
map exp : O ⊂ TpP → P of (Λ+

p \ {0}) ∩O, where Λ+
p is the future null cone in

TpP and O is the maximal open set on which exp is defined. Thus, apart from
the conical singularity at p, Np is a smooth null hypersurface. We are justified
in thinking of Np as the future null cone in P at p.

The shear tensor σab of S in the physical metric g vanishes, and so, since the
shear is a conformal invariant, the shear tensor σ̃ab of Np \ {p} vanishes in the
unphysical metric g̃. Then by the well-known propagation equation for the shear
tensor [14, Eq. 4.36], the components C̃a0b0 (with respect to an appropriately
chosen frame in which e0 is aligned along the generators) of the conformal tensor
of g̃ vanish on Np \ {p}. We can now invoke an argument of Friedrich [6] used
in essentially the same situation to prove a cosmic no-hair theorem. By use of
the regular conformal field equations, specifically the divergencelessness of the
rescaled conformal tensor,

∇̃id
i
jkl = 0 , dijkl = Ω−1C̃ijkl ,

Friedrich shows that the full rescaled conformal tensor dijkl vanishes on the fu-
ture domain of dependence D+(Np, P ) of Np. Hence, the conformal tensor with
respect to the physical metric vanishes on D+(Np, P )∩M . Together with equa-
tion (2.2), this implies that (M, g) has constant curvature on D+(Np, P )∩M . In
a precisely time-dual fashion (M, g) has constant curvature on D−(Nq, Q)∩M ,
where Q is an extension of M ∪I+ analogous to P , and Nq is the past null cone
in Q at q.

To conclude that M is everywhere of constant curvature we need to show
that M ⊂ D+(Np, P ) ∪D−(Nq, Q). Since S = ∂I+(η,M) = ∂I−(η,M), M can
be expressed as the disjoint union,

M = I−(S,M) ∪ S ∪ I+(S,M) . (2.3)

This decomposition follows from [19, Proposition 3.15], but can be easily shown
directly as follows. Let x ∈M \ S. There exists a curve σ in M (not necessarily
causal) from x to y ∈ S that meets S only at y. Either σ ∩ I−(S,M) �= ∅ or
σ∩ I+(S,M) �= ∅. If the latter holds and σ is not contained in I+(S,M), then σ
meets ∂I+(S,M) at some point z /∈ S. But since I+(S,M) = I+(∂I+(η,M)) =
I+(η,M), z ∈ ∂I+(η,M) = S, which is a contradiction. Hence, σ ⊂ I+(S,M),
and so x ∈ I+(S,M). Similarly, σ ∩ I−(S,M) �= ∅ leads to x ∈ I−(S,M), which
establishes (2.3).
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We now show that each term in (2.3) is a subset of D+(Np, P )∪D−(Nq, Q).
Trivially, S ⊂ Np ⊂ D+(Np, P ). Consider I+(S,M) ⊂ J+(Np, P ) ∩ M . We
claim that J+(Np, P )∩M ⊂ D+(Np, P )∩M . If not, then H+(Np, P )∩M �= ∅.
Choose a point x ∈ H+(Np, P )∩M , and let ν be a null generator of H+(Np, P )
with future end point x. Since Np is edgeless, ν remains in H+(Np, P ) as it is
extended into the past. By asymptotic simplicity, ν must meet I−. In fact, ν
must meet I− transversely (even in the asymptotically flat case, since ν starts
in M) and then enters I−(I−, P ). But this means that ν has left J+(Np, P ),
which is a contradiction. Hence, I+(S,M) ⊂ D+(Np, P ), and by the time-dual
argument, I−(S,M) ⊂ D−(Nq, Q).

Thus, M is globally of constant curvature. By the uniqueness of simply con-
nected Lorentzian space forms, Theorem 2.1 will follow once we show that M is
simply connected and geodesically complete. In the asymptotically flat case, it
is shown in [16] that M is simply connected (in fact, is homeomorphic to R4).
Simple connectivity in the anti-de Sitter case may be established as follows. Each
generator of S has a past end point at p and a future end point at q. By the
structure of S near p and q established above, it follows that S∪{p, q} is homeo-
morphic to the 3-sphere. Perturbing S ∪{p, q} slightly near p and q, we obtain a
smooth achronal 3-sphere S0 in M . By an argument similar to one given above,
one can show that H+(S0, P )∩M = H+(S0, Q)∩M = ∅, from which it follows
that S0 is a Cauchy surface for M . (Alternatively, it follows from Proposition
2.1 in [1] that M is globally hyperbolic. Then, since S0 is compact and achronal
it must be a Cauchy surface.) Thus M has topology R × S0, and so is simply
connected.

It remains to show that M is geodesically complete. Being asymptotically
simple, we know that M is null geodesically complete, which is essential to the
proof of full completeness. Let M̄ denote Minkowski space in the case λ = 0,
and de Sitter space in the case λ > 0. By standard results, for each x ∈M and
x̄ ∈ M̄ , there is a neighborhood of x isometric to a neighborhood of x̄. Since M
is simply connected, these local isometries can be pieced together, by an analytic
continuation type argument, to produce a local isometry φ : M → M̄ , see, for
example, Theorem 8.17 in [17]. (The assumption in [17, Th. 8.17] that M is
complete is not needed to produce the local isometry; it is used only to conclude
that φ is a covering map.)

Let x be any point in M , and let x̄ = φ(x). Then, from the fact that φ is a
local isometry and M is null geodesically complete, it follows that any (broken)
null geodesic segment in M̄ starting at x̄ can be lifted uniquely via φ to a (broken)
null geodesic segment in M starting at x. From this it follows that φ is onto:
Fix x ∈ M and let x̄ = φ(x). Let ν̄ be a broken null geodesic in M̄ from x̄ to
any other point ȳ. Let ν be the lift of ν̄ starting at x, and let y be its final end
point; since ν covers ν̄, we must have φ(y) = ȳ.

To establish geodesic completeness, it is sufficient to show that any unit
speed time-like or space-like geodesic γ : [0, a) → M , t → γ(t), continuously
extends to t = a. Let γ̄ = φ ◦ γ; γ̄ can be extended to a complete geodesic in M̄
which we still refer to as γ̄. Fixing u0 ∈ [0, a) sufficiently close to a, one easily
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constructs a C0 homotopy of curves {σ̄u}, u0 ≤ u < a, from γ̄(0) to γ̄(a), where,
for each u ∈ [u0, a), σ̄u consists of the segment γ̄|[0,u], followed by a suitably
chosen two-segment broken null geodesic ν̄u from γ̄(u) to γ̄(a), such that the
length of ν̄u (in some background Riemannian metric) goes to zero as u → a.
The broken null segments ν̄u can be constructed from the two families of null
geodesics foliating a totally geodesic time-like 2-surface containing γ̄|[u0,a]. By
the nature of the lifting procedure, the homotopy {σ̄u}, u0 ≤ u < a can be
lifted to a C0 homotopy {σu}, u0 ≤ u < a, where, for each u, σu consists of the
segment γ|[0,u], followed by a two-segment broken geodesic νu covering ν̄u. The
curves σu must have a common final end point q, say. Since the length of νu goes
to zero (in the lifted Riemannian metric) as u → a, it follows that γ(u) → q as
u→ a, i.e., γ is extendible to q. This completes the proof of Theorem 2.1.

2.4 Concluding Remarks

It is possible to formulate a version of Theorem 2.1 applicable to anti-de Sit-
ter space. However, since in this case I is time-like, the characteristic initial
value problem encountered in the proof of Theorem 2.1 would become an initial-
boundary value problem, and it would be necessary to impose boundary data
(namely the vanishing of the conformal tensor) on I. In this case one might ex-
pect to establish the uniqueness of anti-de Sitter space without the assumption
of a null line.

We believe that one should be able to generalize Theorem 2.1 in certain
directions. For example, in the asymptotically flat case, we expect that the vac-
uum assumption could be weakened to allow for the presence of matter. For
instance, if we assume space-time M satisfies the null energy condition, and is
vacuum in a neighborhood of I, then the proof of Theorem 2.1 implies the ex-
istence of open sets near scri which are flat. If the vacuum region is analytic
then it follows that a neighborhood of scri is flat, and so M should have van-
ishing mass. By a suitable version of the positive mass theorem, M should be
isometric to Minkowski space. Thus, we conjecture that, in the asymptotically
flat case, the vacuum assumption can be replaced by the null energy condition
and a requirement that the space-time Ricci tensor falls off at an appropriate
rate on approach to I. It may also be possible, in the asymptotically flat case,
to prove a version of Theorem 2.1 for weakly asymptotically simple space-times,
which allows for the occurrence of black holes. By imposing suitable conditions
on the domain of outer communications I−(I+) ∩ I+(I−) (e.g., that the DOC
be globally hyperbolic) one might expect to be able to show that the DOC is
flat. To accomplish this, one may be able to exploit the fact that the proof of
the null splitting theorem does not actually require the full null completeness
of space-time. As the discussion of Theorem (2.2) shows, if η is the null line, it
is sufficient to require that the generators of ∂I−(η) (respectively, ∂I+(η)) be
future (resp., past) complete.

We mention in closing that the null splitting theorem has recently been used
[1] to obtain restrictions on the topology of asymptotically simple and de Sitter
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space-times obeying the null energy condition. It is shown that the Cauchy
surfaces of such space-times must be compact and have finite fundamental group.
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