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The stability of physical systems depends on the existence of a state of least energy, or ground
state. In gravity, this is guaranteed by the positive energy theorem. The proof employs spinor
structure and can fail for certain spacetime topologies, such as those arising in non-supersymmetric
Kaluza-Klein compactifications, which can decay to arbitrarily negative energy. The proof also fails
for the topology of the adS soliton, a nonsingular Einstein spacetime with negative cosmological con-
stant and negative mass-energy. Nonetheless, arguing from the adS/CFT correspondence, Horowitz
and Myers proposed a new positive energy conjecture, stating that the adS soliton is the unique,
stable ground state for its asymptotic class. We give a new general structure theorem for negative
mass spacetimes and use it to prove uniqueness of the adS soliton. Our work relies on a novel
exploitation of the special geometry of ground state spacetimes. It offers significant support for the
new positive energy conjecture and adds to the body of rigorous results inspired by the adS/CFT
correspondence.

The positive energy theorem [1,2] singles out Minkowski
spacetime as the “ground state”, or spacetime of low-
est mass-energy, within the class of asymptotically flat
spacetimes with local energy density ≥ 0 and without
naked singularities. In the presence of a negative cosmo-
logical constant the appropriate ground state is anti-de
Sitter spacetime [3]. These ground states are regular,
globally static, supersymmetric, and of constant curva-
ture. Moreover, it is known that Minkowski spacetime
is the unique asymptotically flat, regular, stationary vac-
uum spacetime [4]. The analogous uniqueness result for
the asymptotically globally adS case is proved in [5,6].

A simple scaling argument suggests that a ground state
cannot have negative mass, for then it could be scaled to
produce a state of even lesser mass [7]. Consider, then,
the surprising properties of the adS soliton, first exam-
ined by Horowitz and Myers [8], which is a negative mass,
globally static Einstein spacetime with cosmological con-
stant Λ < 0. The metric in n + 1 ≥ 4 spacetime dimen-
sions is

ds2 = −r2dt2 +
1

V (r)
dr2 + V (r)dφ2 + r2

n−2∑
i=1

(dyi)2 (1)

where V (r) = r2

`2

(
1− r0

n

rn

)
, `2 = −n(n−1)

2Λ , and r0 is
a constant. Regularity demands that φ be identified
with period β0 = 4π`2

nr0
. The periods of the yi are ar-

bitrary. The soliton is “asymptotically locally anti-de
Sitter” with boundary at conformal infinity (scri) foli-
ated by spacelike (n − 1)-tori. The time slices of space-
time itself, when conformally completed, are topologi-
cally the product of an (n− 2)-torus and a disk (a solid
torus in 3 + 1). The soliton spacetime is neither super-
symmetric nor of constant curvature, but has minimal
energy under small metric perturbations [8,9]. Remark-
ably, one cannot vary the soliton mass by simple scaling.

To see why, note that rescaling the parameter r0 → kr0 in
(1) has the same effect as the coordinate transformation
(t, r, yi, φ) 7→ (kt, k−1r, kyi, kφ). Thus the new metric
(with parameter kr0) is isometric to the original one, pro-
vided the conformal boundary data are chosen to agree,
so they must have the same physical mass.

Horowitz and Myers found that the negative mass
of the adS soliton has a natural interpretation as the
Casimir energy of a non-supersymmetric gauge theory
on the conformal boundary. If a non-supersymmetric
version of the adS/CFT conjecture holds [10], as is gen-
erally hoped, then this would indicate that the soliton
is the lowest energy solution with these boundary condi-
tions. This led them to postulate a new positive energy
conjecture, that the soliton is the unique lowest mass
solution for all spacetimes in its asymptotic class. The
validity of this conjecture is thus an important test of
the non-supersymmetric version of the adS/CFT corre-
spondence. The conjecture is all the more remarkable
because the soliton topology has certain circles that are
not contractible at infinity but are contractible in the
bulk. This leads to the failure of spinorial methods to
produce a positive energy theorem here and is linked to
a known instability in Kaluza-Klein theory [7,11].

As support for the new positive energy conjecture,
we will give a uniqueness theorem for the adS soliton,
singling it out as the only suitable ground state in the
class of spacetimes with similar asymptotics. Our theo-
rem is similar in spirit to [4,5], but relates to asymptot-
ically “locally” adS spacetimes with Ricci flat conformal
boundary. The proof is based on the fact that the soli-
ton indeed shares one important geometric property with
known ground states: its universal cover admits a folia-
tion by totally geodesic null surfaces ruled by complete,
achronal null geodesics called null lines. In other words,
the spacetime admits non-focusing plane waves. A simi-
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lar idea underlies the approach to mass positivity in [12],
a significant difference being that the null lines we will
construct here do not approach scri. Our construction of
these null surfaces relies on results in [13].

Our arguments will be of necessity terse. Herein we
give the flavour of the proof; details will appear in [14].
Our results considerably generalize a uniqueness result
of [15]. Of related interest is a uniqueness theorem of
Anderson for asymptotically hyperbolic Einstein metrics
on 4-dimensional Riemannian manifolds [16].

Following the formalism of Chruściel and Simon [6], we
consider static spacetimes of the form

Mn+1 = IR× Σ, g = −N2dt2 ⊕ h. (2)

where (Σ, h,N) is conformally compactifiable. Thus we
assume that Σ is the interior of a compact manifold
with boundary Σ̃ = Σ ∪ ∂Σ̃ such that (a) 1/N ex-
tends to a smooth function Ñ on Σ̃, with Ñ = 0 and
dÑ 6= 0 along ∂Σ̃ and (b) N−2h extends to a smooth
Riemannian metric h̃. (M, g) conformally embeds into
(IR × Σ̃,−dt2 + h̃) and hence admits a natural timelike
scri structure, making precise, in the static setting, what
is meant by “asymptotically locally adS”.

We assume that (Σ, h,N) obeys the static vacuum field
equations,

Rab = N−1∇a∇bN +
2Λ
n− 1

hab , (3)

∆N = − 2Λ
n− 1

N , (4)

where ∆ = ∇2, ∇a is the covariant derivative on (Σ, hab)
and Rab is its Ricci tensor. In terms of the rescaled metric
h̃, and associated ∆̃, ∇̃a and R̃ab,

R̃ab =
−(n− 1)

Ñ
∇̃a∇̃bÑ , (5)

Ñ ∆̃Ñ =
2Λ
n− 1

+ nW̃ , (6)

where W̃ := h̃ab∇̃aÑ∇̃bÑ = N−2hab∇aN∇bN .
Recall that the rescaled metric h̃ = N−2h, sometimes

called the Fermat (optical) metric, has physical signifi-
cance: geodesics of (Σ̃, h̃) correspond to the spatial paths
of light rays in (M, g). That is, null geodesics in (M, g)
project in the obvious way to geodesics in (Σ̃, h̃) (when
suitably parametrized). Conversely, a geodesic γ in Σ̃
(viewed as the slice t = 0) passing through a point p ∈ Σ̃
lifts to a unique future directed null geodesic η passing
through p. Moreover, if γ is a length minimizing geodesic
segment in (Σ̃, h̃) then it lifts to an achronal null geodesic
segment η. Thus, a line (inextendible geodesic, length
minimizing on each segment) in (Σ̃, h̃) lifts to a null line
(achronal inextendible null geodesic) in (M, g). This ba-
sic fact is used in an essential way in our arguments.

Our uniqueness result (Theorem 2) for the adS soliton
is obtained as a consequence of a more general structure
result (Theorem 1) which assumes a certain convexity
condition near infinity. As discussed below, this convex-
ity condition is related to the sign of the mass (or total
energy) of the spacetime. In general, as follows from eq.
(5) and the C2 smoothness of h̃ab at Ñ = 0, the con-
formal boundary ∂Σ̃ = {Ñ = 0} is totally geodesic in
(Σ̃, h̃). We say that (Σ, h,N) satisfies condition (C) if
there exists a neighbourhood of scri in which each level
surface Ñ = c is weakly convex in (Σ̃, h̃), i.e., the second
fundamental form with respect to the outward normal of
the level surface is positive semi-definite. Equivalently,
this condition requires the principal curvatures of each
level surface sufficiently close to scri be nonnegative.
Theorem 1: Consider a static spacetime as in (2) such
that (i) (Σ, h,N) is conformally compactifiable, (ii) the
static vacuum field equations hold, and (iii) condition (C)
holds. Then the Riemannian universal cover (Σ̃∗, h̃∗) of
(Σ̃, h̃) splits isometrically as

Σ̃∗ = IRk ×W, h̃∗ = hE ⊕ σ (7)

where (IRk, hE) is standard k-dimensional Euclidean
space and (W, σ) is a compact simply connected Rie-
mannian manifold-with-boundary. The Riemannian uni-
versal cover (Σ∗, h∗) of (Σ, h) splits isometrically as a
warped product of the form,

Σ∗ = IRk ×W0, h∗ = (N∗2hE)⊕ σ0 , (8)

where N∗ = N ◦ π (π = covering map) depends only on
W0, and (W0, σ0) is a complete simply connected Rie-
mannian manifold such that (W0, σ0, N) is conformally
compactifiable.

Theorem 1 is similar in spirit to a result of Cheeger
and Gromoll [17] concerning the structure of compact
Riemannian manifolds of nonnegative Ricci curvature.
It implies a strong structure result for the fundamental
group Π1(Σ̃), cf. [17].

Let us now consider how condition (C) relates to the
sign of the mass. As we are using the conformal approach,
the Ashtekar-Magnon [18] mass expression involving the
electric part of the Weyl tensor is especially convenient.
Consider a conformally compactifiable static spacetime
(Σ, h,N), and view Σ as the slice t = 0. Setting x = Ñ ,
the metric h̃ near the conformal boundary x = 0 may be
written as

h̃ = W̃−1dx2 + hAB(x, xC)dxAdxB , (9)

where hAB is the induced metric on x = const surfaces.
Let T a denote the future-timelike unit normal to Σ̃ in the
rescaled spacetime metric, and on Σ̃, let na = −

√
W̃∂x

be the outward pointing unit normal field to the slices
x = const near the conformal boundary. The Weyl mass
is then given, up to a positive constant, by

∫
∂Σ̃
µd̃A,
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where d̃A is the volume element on ∂Σ̃. The mass aspect
µ, up to a positive constant, is given by

µ = lim
x→0

ẼacT
aT c

xn−2
= lim
x→0

C̃abcdn
bndT aT c

xn−2
, (10)

where C̃abcd is the Weyl tensor (and Ẽac its electric part)
of the conformal spacetime metric g̃ = N−2g.

In the static setting, the mass aspect µ can be di-
rectly related to the geometry of (Σ̃, h̃). One finds,
using the field equations, that, up to a positive con-
stant, µ = −∂n−2R̃/∂xn−2|x=0. (Chruściel and Simon
[6] had previously identified, in the 3 + 1 dimensional
case, −∂R̃/∂x|x=0 as the mass aspect.)

Let H̃ denote the mean curvature function of the slices
x = const with respect to the outward normal na; along
each such slice, H̃ = ∇̃ana = the trace of the second
fundamental form = the sum of the principal curvatures.
Using the field equations and the Gauss equation, one
can show that H̃ is related to µ by

(n− 2)
√
W̃ H̃ = − xn−1

2(n− 1)
µ+O(xn) (11)

when the conformal boundary has Ricci flat induced met-
ric. In order to establish Equation (11), we must carry
out a Fefferman-Graham type boundary analysis [19], in
the gauge (9) relevant to our situation, and subject to
the field equations (5) and (6). This analysis implies
R̃|x=0 = 0 and ∂`R̃/∂x`|x=0 = 0 for 1 ≤ ` ≤ n− 3.

For Ricci flat conformal boundary, as is the case for the
soliton, equation (11) implies that if the mass aspect µ is
(pointwise) negative, the level surfaces Ñ = c near con-
formal infinity are outwardly mean convex in (Σ̃, h̃), i.e.,
have strictly positive mean curvature (and hence the sum
of the principal curvatures is positive). In other words,
if the mass aspect is negative (as it is for the adS soli-
ton) then condition (C) holds in the mean. However, our
proof of uniqueness of the adS soliton requires not just
mean convexity, but (weak) convexity near infinity, and
so we need to impose the following condition. We say
that (Σ, h,N) satisfies condition (S) provided the prin-
cipal curvatures of the level surfaces Ñ = c near infinity
are either all non-negative or all non-positive. This con-
dition holds trivially in the adS soliton, since all but one
of the principal curvatures vanish. It also holds in the
Kottler spacetimes, regardless of the sign of the mass.
Theorem 2: Consider a static spacetime as in (2) such
that (i) (Σ, h,N) is conformally compactifiable, (ii) the
static vacuum field equations hold, and (iii) condition (S)
holds. Suppose in addition, that

(a) The boundary geometry of (Σ̃, h̃) is the same as

that of (1), i.e., ∂Σ̃ = Tn−2 × S1, h̃|
∂Σ̃

= dφ2 +
n−2∑
i=1

(dyi)2, with the same periods for φ and the yi.

(b) The mass aspect µ of (Σ, h,N) is pointwise nega-
tive.

(c) Given the inclusion map i : ∂Σ̃ → Σ̃, the kernel of
the induced homomorphism of fundamental groups,
i∗ : Π1(∂Σ̃) → Π1(Σ̃), is generated by the S1 fac-
tor.

Then the spacetime (2) determined by (Σ, h,N) is iso-
metric to the adS soliton (1).

Assumption (a) is a natural boundary condition. As-
sumption (b), together with condition (S), guarantees
that condition (C) of Theorem 1 holds. Assumption (c)
asserts that the generator of the S1 factor is contractible
in Σ̃, and moreover, that any loop in ∂Σ̃ contractible
in Σ̃ is a multiple of the generator. As discussed in
the proof, assumptions (a) and (c) together imply that
Π1(Σ̃) ≈ Zn−2. Were we to adopt the latter condition
in lieu of assumption (c), then one could only conclude
that (Σ, h,N) is locally isometric to the adS soliton (the
universal covers will be isometric, however). For further
discussion of this discrete nonuniqueness relevant to the
adS soliton in 3 + 1 dimensions, see [16]. We note that in
3 + 1 dimensions, assumption (b) (when µ is constant),
and the condition Π1(Σ̃) ≈ Zn−2, hold automatically, cf.
[6,20].

We now sketch the proofs of Theorems 1 and 2; details
will appear in [14].
Sketch of the proof of Theorem 1. We proceed induc-
tively, working in (Σ̃∗, h̃∗). If Σ̃∗ is compact then Theo-
rem 1 holds with k = 0. So suppose Σ̃∗ is noncompact.
In this case there is a procedure for constructing a line
in (Σ̃∗, h̃∗). Fix a point p in the interior, and let {pi}
be a sequence of points uniformly bounded away from
∂Σ̃∗, such that the distance from p to pi tends to infinity.
For each i, p and pi can be joined by a length minimiz-
ing geodesic segment γi which cannot meet the boundary
(since it’s totally geodesic). In fact, by condition (C), the
segments γi must be uniformly bounded away from ∂Σ̃∗.
Each geodesic segment γi will have a midpoint ri. Now
since Σ̃ is compact, it will have a compact fundamental
domain D in Σ̃∗. For each point in the covering space,
there will be a covering space transformation mapping
that point to a point in D. We therefore apply to each
geodesic segment γi a covering space transformation that
maps ri into D. This produces a sequence of minimiz-
ing geodesic segments σi, still uniformly bounded away
from ∂Σ̃∗, whose lengths are unbounded in both direc-
tions. By standard compactness results, this sequence
possesses a limit curve which is a complete, length mini-
mizing geodesic, i.e., a line, in the interior of Σ̃∗.

By the relationship between Fermat and null geodesics,
this line lifts to a complete null line η in the physical cov-
ering spacetime (M∗, g∗), which is null geodesically com-
plete and obeys the null energy condition, RabXaXb ≥ 0
for all null vectors Xa. Then a null line will exist only
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under special circumstances. As proved in [13], η must
be contained in a smooth achronal edgeless null hyper-
surface H which is totally geodesic (i.e., has vanishing
expansion and shear). In a static spacetime this has fur-
ther consequences. Since Σ∗ (viewed as the slice t = 0)
is totally geodesic, H meets Σ∗ in a totally geodesic sub-
manifoldW of codimension one in Σ∗. But by moving H
invariantly under the flow generated by ∂/∂t, we see that
spacetime is actually foliated by totally geodesic null hy-
persurfaces, and this gives rise to a foliation {Wu} of Σ∗

by totally geodesic hypersurfaces in Σ∗. Moreover, it can
be seen that this foliation is achieved by exponentiating
out along the unit speed normal geodesics to W in the
Fermat metric. The physical metric then takes the form,

h∗ = N∗2(u, xA)du2 + hAB(x)dxAdxB . (12)

Up to this point we have only used the null energy con-
dition. Now using the field equations in a more explicit
way, one can show ∂N∗/∂u = 0, and hence the met-
ric (12) is a genuine warped product. By multiplying
(12) by (N∗)−2, and showing that everything extends
smoothly to the boundary, we conclude that (Σ̃∗, h̃∗) is
isometric to the Riemannian product (IR×W, du2+dσ̃2),
where (W, dσ̃2) is a complete Riemannian manifold-with-
boundary. If W is compact then Theorem 1 holds with
k = 1. If W is noncompact then one can carry out es-
sentially the same procedure again to construct a line in
W, lift it to a new null line spatially orthogonal to the
first, and split off another IR factor. One can continue
splitting off IR factors until what remains is compact.
Sketch of the proof of Theorem 2. Let (Σ0, h0, N0) de-
note the adS soliton associated with the boundary data
in assumption (a), and let (Σ̃0, h̃0, Ñ0) denote the corre-
sponding conformally compactified soliton. Assumption
(b), condition (S) and equation (11) imply that condition
(C) holds, and hence we can apply Theorem 1. Hence we
can apply Theorem 1. As shown below, Π1(Σ̃) ≈ Zn−2,
from which it follows that k = n−2. Thus, the universal
cover Σ̃∗ splits isometrically as IRn−2×W, whereW is dif-
feomorphic to a disk, and the metric onW is determined
by the field equations (5), (6). By results on topological
censorship [20], the homomorphism i∗ : Π1(∂Σ̃)→ Π1(Σ̃)
is onto. But ∂Σ̃ = A × B, where A is the (n − 2)
torus and B is the circle of assumption (a), whence
Π1(∂Σ) ≈ Π1(A) × Π1(B). Since, by assumption (c),
ker i∗ = Π1(B), it follows that i∗|Π1(A) : Π1(A)→ Π1(Σ̃)
is an isomorphism. This implies that the covering trans-
formations of Σ̃∗ are in one-to-one correspondence, via
i∗|Π1(A), to those of A∗, the universal covering space
of A. Thus, Σ̃ ' Σ̃∗/Π1(Σ̃) ' (IRn−2 × W)/Π1(A) '
(A∗/Π1(A)) × W ' A × W, i.e., Σ̃ is isometric to
Tn−2 ×W, where Tn−2 is the torus in assumption (a).
Because of the product structure of Σ̃, and the fact that
Ñ depends only on W, the field equations (5) and (6)

descend to the disk W, and can be solved explicitly and
uniquely, subject to the appropriate boundary conditions
on ∂Σ̃. The result is that Σ̃ is isometric to Σ̃0 and
Ñ = Ñ0, from which we conclude that (Σ, h,N) is iso-
metric to the adS soliton (Σ0, h0, N0).
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