
ar
X

iv
:h

ep
-t

h/
02

04
08

1 
v4

   
22

 J
an

 2
00

3

On the Geometry and Mass of Static, Asymptotically AdS

Spacetimes, and the Uniqueness of the AdS Soliton

G.J. Gallowaya∗, S. Suryab,c†, E. Woolgarc,b‡

aDept. of Mathematics, University of Miami

Coral Gables, FL 33124, USA

bTheoretical Physics Institute, Dept. of Physics

University of Alberta, Edmonton, AB, Canada T6G 2J1

cDept. of Mathematical and Statistical Sciences

University of Alberta, Edmonton, AB, Canada T6G 2G1

Abstract

We prove two theorems, announced in hep-th/0108170, for static spacetimes that
solve Einstein’s equation with negative cosmological constant. The first is a general
structure theorem for spacetimes obeying a certain convexity condition near infin-
ity, analogous to the structure theorems of Cheeger and Gromoll for manifolds of
non-negative Ricci curvature. For spacetimes with Ricci-flat conformal boundary, the
convexity condition is associated with negative mass. The second theorem is a unique-
ness theorem for the negative mass AdS soliton spacetime. This result lends support
to the new positive mass conjecture due to Horowitz and Myers which states that the
unique lowest mass solution which asymptotes to the AdS soliton is the soliton itself.
This conjecture was motivated by a nonsupersymmetric version of the AdS/CFT cor-
respondence. Our results add to the growing body of rigorous mathematical results
inspired by the AdS/CFT correspondence conjecture. Our techniques exploit a spe-
cial geometric feature which the universal cover of the soliton spacetime shares with
familiar “ground state” spacetimes such as Minkowski spacetime, namely, the pres-
ence of a null line, or complete achronal null geodesic, and the totally geodesic null
hypersurface that it determines. En route, we provide an analysis of the boundary
data at conformal infinity for the Lorentzian signature static Einstein equations, in
the spirit of the Fefferman-Graham analysis for the Riemannian signature case. This
leads us to generalize to arbitrary dimension a mass definition for static asymptot-
ically AdS spacetimes given by Chruściel and Simon. We prove equivalence of this
mass definition with those of Ashtekar-Magnon and Hawking-Horowitz.
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I Introduction

There has been considerable interest in the last few years in the AdS/CFT correspondence
first proposed in [30, 40, 19]. This correspondence equates the string partition function
on an anti-de Sitter (AdS) background to that of a conformal field theory on the AdS
boundary-at-infinity (the Penrose conformal boundary, scri), and is an explicit realisation
of the holographic principle suggested in [38, 36]. In particular the large N limit of the
conformal field theory corresponds to the low energy limit of string theory, i.e., classical
supergravity. In this limit, classical properties of a spacetime have definite interpretations
in the gauge theory (see [27] for example).

Of particular interest is the question of what the positivity of gravitational energy
means in the conformal field theory. Related to this is the role of “ground” states, namely,
the lowest energy configurations classically allowed, satisfying certain physically reasonable
conditions. In asymptotically flat space, the celebrated positive energy theorem [35, 39]
tells us that Minkowski space is the unique lowest energy solution provided that the
local energy density is non-negative and that there are no naked singularities. In the
presence of a negative cosmological constant, the analogous ground state is AdS spacetime.
Both Minkowski spacetime and AdS are regular, static, supersymmetric and of constant
curvature. For each of these familiar ground states there is an associated uniqueness
theorem [29, 5, 9, 8] showing that the spacetime is unique in the class of regular, stationary,
vacuum solutions when the appropriate fall-off conditions are satisfied.

The standard conditions for an (n + 1)-dimensional spacetime to be asymptotically
AdS include a specification of the topology of the n-dimensional conformal boundary, i.e.,
that it be Sn−1×R [4]. When this topological restriction is relaxed, black hole spacetimes
which are asymptotically locally AdS and which have nonspherical horizons are known
to exist1 (for a review, see [31]). The timelike conformal infinities of these black holes
have nonspherical cross-sections [15]. However, a conformal boundary with cross-sections
of nonspherical topology cannot also serve as the conformal boundary of a nonsingular
locally AdS spacetime. Thus, AdS or its topological modifications cannot be appropriate
ground states for such black hole spacetimes.

Thus we are led to entertain the somewhat radical proposition that ground states
for spacetimes with nonspherical scri may not be conformally flat, and thus not massless
according to familiar mass formulae such as Ashtekar-Magnon [4]. For the case of toroidal
scri, a candidate ground state has been proposed by Horowitz and Myers [25], which they
dubbed the “AdS soliton”. In n + 1 ≥ 4 spacetime dimensions,2 it is a globally static
Einstein spacetime with cosmological constant Λ < 0 and has the form

ds2 = −r2dt2 +
dr2

V (r)
+ V (r)dφ2 + r2

n−2∑

i=1

(dθi)2 . (I.1)

Here, V (r) = r2

`2
(1− rn

0
rn ), with `2 = n(n−1)

−2Λ and r0 is a constant. The solution is nonsingular
1In what follows, the term locally Anti-de Sitter spacetime means “constant negative curvature space-

time”, while Anti-de Sitter (AdS) spacetime refers to the unique, geodesically complete, simply connected,
constant negative curvature spacetime. An asymptotically AdS spacetime has spherical scri, but one that
is merely asymptotically locally AdS need not have spherical scri.

2In 2 + 1 spacetime dimensions, this soliton is identical to 3-dimensional AdS.
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provided φ is periodic with period β0 = 4π`2

nr0
. The periods of the θi are arbitrary. The

soliton is asymptotically locally Anti-de Sitter with boundary-at-infinity (scri) foliated by
spacelike (n − 1)-tori. Spacetime itself, when conformally completed, has constant time
slices which are topologically the product of an (n−2)-torus and a disk (in 3+1 dimensions,
it is therefore a solid torus). Moreover, the soliton is neither of constant curvature nor
supersymmetric, but it is known to have minimal energy under small metric perturbations
[25, 10].

Curiously, the AdS soliton has negative mass relative to the natural choice that asso-
ciates the zero of energy with conformal flatness. The mass E0 depends on the period β0

of the φ coordinate according to

E0 =
−Vn−2`

n−1

16πGn+1β
n−1
0

(
4π

n

)n

, (I.2)

where Vn−2 is the product of the periods βi of the θi, these being arbitrary, and Gn+1 is
Newton’s constant in the (n+ 1)-dimensional spacetime. A simple argument may suggest
that by rescaling the parameters of a negative mass spacetime, one could get a spacetime
of even lower mass. However, for the AdS soliton, the proposed rescaling is an isometry,
and does not change the mass [16]. 3 Thus, a negative mass ground state, in this case,
need not be a contradiction after all. Page [32] has introduced a scale-invariant mass

ε := E0Vn−1 := E0Vn−2β0 = −C
(
< β >

β0

)n

, (I.3)

where C is a constant that depends on n but is invariant under rescalings of the periods,
and < β >:= (β0β1 . . . βn−2)

1/(n−1) is the geometric mean of these periods, including β0.

Horowitz and Myers found that the negative mass of the AdS soliton has a natural
interpretation as the Casimir energy of a nonsupersymmetric gauge theory on the confor-
mal boundary. If a nonsupersymmetric version of the AdS/CFT conjecture is to hold, as
is generally hoped, then this would indicate that the soliton is the lowest energy solution
with these boundary conditions. This led them to postulate a new positive energy conjec-
ture, that the soliton is the unique lowest mass solution for all spacetimes in its asymptotic
class. The validity of this conjecture is thus an important test of the nonsupersymmetric
version of the AdS/CFT correspondence.4

A preliminary indication that the soliton is the appropriate ground state comes from
a semi-classical thermodynamic analysis of Ricci flat black holes in the background of
the AdS soliton [37]. An examination of the thermodynamics of the spherical AdS black
hole showed that there is a phase transition that takes place between the black hole and
the appropriate ground state, namely AdS spacetime [22]. This phase transition was
interpreted as a confinement/deconfinement transition in the associated large N gauge
theory on the boundary [40]. Taking a cue from this, it was shown that a phase transition

3The black hole solutions of Lemos [28] are also mutually isometric under this scaling, and a similar
scaling works for the 5-dimensional nilgeometry and solvegeometry black holes of [6].

4Page ([32] points out that, given n − 1 distinct positive numbers bµ, there are n − 1 distinct solitons
for which these numbers serve as boundary data specifying the periods of the coordinates, depending on
which one of them is chosen to equal the period β0 of φ, and that the invariant energy can be minimized
only if β0 = Minµ{bµ}.
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also occurs between the toroidal black hole and the AdS soliton, and can also be interpreted
as a confinement/deconfinement transition in the boundary field theory, in much the same
way [37]. Indeed the choice of ground state is crucial to see such a phase transition.
Earlier analysis which identified the locally AdS spacetime with toroidal boundary (which
is singular) as the ground state did not give rise to such a phase transition.

In support of the Horowitz-Myers new positive energy conjecture, we prove a unique-
ness theorem for the AdS soliton, singling it out as the only suitable ground state in a large
class of negative mass spacetimes obeying certain boundary conditions. Our results are
similar in spirit to those of [29, 5], but relate to asymptotically locally AdS spacetime with
Ricci flat scri. The key elements of the proof are, briefly, (a) the use of negative mass and
certain asymptotic conditions (related to the convexity of constant lapse hypersurfaces
near scri) to establish the existence of null lines in the universal covering spacetime and
(b) the construction, using the null splitting theorem due to Galloway ([14], quoted below
as Theorem I.1), of a foliation of spacetime based on totally geodesic null hypersurfaces.

A null line in spacetime is an inextendible null geodesic which is globally achronal, i.e.,
for which no two points can be joined by a timelike curve. (Hence, each segment of a null
line is maximal with respect to the Lorentzian distance function.) Arguments involving
null lines have arisen in numerous situations, such as the Hawking-Penrose singularity
theorems [20], results on topological censorship ([15], and references cited therein), and
the Penrose-Sorkin-Woolgar approach to the positive mass theorem [33, 41] and related
results on gravitational time delay [18]. It will be convenient for the purposes of the
present paper to require null lines to be not only inextendible, but geodesically complete.

For the reader’s convenience, we quote here the null splitting theorem:

Theorem I.1 (Galloway [14]). If a null geodesically complete spacetime obeysRabX
aXb

≥ 0 for all null vectors Xa and also contains a null line η, then η lies in a smooth, achronal,
edgeless, totally geodesic null hypersurface H.

Remark I.2. (a) The spacetimes considered herein will be vacuum (with negative cos-
mological constant), so they obey RabX

aXb = 0 for all null vectors Xa. (b) Because H
is totally geodesic, the tangent vector field na to the null geodesic generators of H, when
suitably scaled, is a parallel vector field along H, Xa∇an

b = 0 for all tangent vectors X
to H. We will make use of this fact in Section III.

In Section II, we consider a boundary value problem for asymptotically locally AdS
spacetimes with Ricci flat conformal boundary. We draw on a formalism of Chruściel and
Simon [9] for static, asymptotically AdS solutions, but while they restrict to 4 spacetime
dimensions, we work in n+ 1 spacetime dimensions. To discuss boundary conditions, and
in particular to relate the sign of the mass to data on the Penrose conformal boundary,
we express the extrinsic geometry of hypersurfaces approaching scri as an expansion in a
certain coordinate distance from scri, and use this to expand the scalar curvature of the
conformal metric on constant time slices. Similar analyses appear in [23, 13, 24, 9, 2]. We
find that in the static spacetime setting with Ricci flat boundary a power series expansion
suffices for both even and odd dimension n, i.e., no log terms arise in the expansion. The
only free data is the induced boundary conformal metric and its nth “radial” derivative,
which we relate to the mass. We find it convenient to use the Chruściel-Simon mass
definition, generalized to arbitrary dimension. In Section II.3, we prove equivalence of this
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mass and the Ashtekar-Magnon mass. A proof of equivalence to the Hawking-Horowitz
mass is consigned to Appendix A. Given these equivalences, then equivalence to other
common mass definitions (esp. that of Abbott and Deser [1]) follows from existing results
[21].

In Section III, we present the first of our main theorems, a structure theorem. Here
we show, roughly speaking, that given a certain convexity condition near infinity, then
in the universal covering space of a constant time slice in the conformal spacetime, the
noncompact directions split off from the compact directions, and are flat. This result
is analogous to a structure theorem of Cheeger and Gromoll [7]. The proof works by
using our asymptotic conditions to establish the presence of a line in the universal cover.
This line can be lifted to a null line in the universal cover of the physical spacetime; this
is proved in Appendix B. By the null splitting theorem I.1, spacetimes with null lines
have a special geometry, and this yields our structure result. By further imposing certain
topological restrictions, we are then led to a uniqueness theorem for the soliton which we
prove in Section IV. The assumption of negative mass in the uniqueness theorem is used,
via the results of Section II, to show that the aforementioned convexity condition holds in
the mean, thereby permitting a weakening of the convexity condition (cf. the discussion
of Conditions (C) and (S) in Section III.1). We very briefly mention some extensions of
our results in Section V.

Of related interest, Anderson [2] has proved uniqueness for 4-dimensional hyperbolic
(thus, Riemannian) metrics, provided certain coefficients in the expansion of the conformal
metric are fixed on the conformal boundary. Also, Kiem and Park [26] have shown unique-
ness of the soliton but only under very strong assumptions, among which, for example, is
the structure theorem that we will prove in Section III.

The main theorems proved in Sections III and IV were announced in [16]. Herein, we
provide explicit, detailed proofs and associated analyses and lay a basis for the further
future work [17] briefly touched upon in Section V. Throughout, the spacetime dimension
is n+ 1.

II The Boundary Value Problem

The static Einstein equations in the asymptotically locally de Sitter setting form a highly
nonlinear elliptic, asymptotically degenerate, system of equations, and it is not clear a
priori that the AdS soliton would be a unique solution even if all the necessary boundary
data were specified. We write out the field equations with respect to the physical metric
and also with respect to a relevant conformally related metric in Section II.1. In Section
II.2, we find that the free data on the (Ricci flat) conformal boundary are the induced
metric and its normal derivatives of order n; the latter also determine the mass of the
spacetime. It is convenient to use a mass definition based on that of Chruściel and Simon
[9], so in Section II.3 we prove equivalence of this mass to the familiar Ashtekar-Magnon
mass. A feature of our uniqueness theorem is that we will not need to specify all the free
data on the conformal boundary to obtain uniqueness. Apart from the induced boundary
metric, we will specify only that the sign of the mass is negative, though we must pay
a price by requiring further topological assumptions and an assumption on the extrinsic
geometry of constant lapse surfaces near infinity (cf. Section III.1).
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II.1 The Field Equations

We consider (n+ 1)-dimensional, n ≥ 2, static spacetimes (M, g),

M = R × Σ ,

g = −N2dt2 ⊕ h , (II.1.1)

where h is the induced metric on Σ and N is the lapse, such that the triple (Σ, h,N) is Ck

(k ≥ 2) conformally compactifiable. Thus, Σ is the interior of a smooth compact manifold
with boundary Σ̃ = Σ ∪ ∂Σ̃ such that

(a) N−1 extends to a Ck function Ñ on Σ̃, with Ñ |∂Σ̃ = 0 and dÑ |∂Σ̃ 6= 0 pointwise,
and

(b) N−2h extends to a Ck Riemannian metric h̃ known as the Fermat (or optical) metric
on Σ̃.

The definition of conformally compactifiable given here precludes the existence of inter-
nal boundaries, such black hole boundaries. While this preclusion is not needed for the
asymptotic analysis presented in this section, it is used in Sections III and IV, which are
concerned with properties of globally static spacetimes. The case of black holes will be
dealt with in a forthcoming paper [17].

The triplet (Σ, h,N) obeys the static vacuum field equations

Rab =
1

N
∇a∇bN +

2Λ

n− 1
hab, (II.1.2)

∆N = − 2Λ

n− 1
N, (II.1.3)

where ∇a and Rab are respectively the covariant derivative and Ricci tensor on (Σ, h),
and Λ < 0 is the cosmological constant. These spacetimes are asymptotically constant
negative curvature.

These equations can be rewritten in terms of the Fermat metric h̃ and associated ∇̃a

and R̃ab as

R̃ab =
−(n− 1)

Ñ
∇̃a∇̃bÑ , (II.1.4)

Ñ∆̃Ñ =

(
2Λ

n− 1
+ nW̃

)
, (II.1.5)

where

W̃ := h̃ab∇̃aÑ∇̃bÑ =
1

N2
hab∇aN∇bN. (II.1.6)

A useful identity is obtained by taking the trace of (II.1.4) and combining this with (II.1.5):

Ñ2R̃+ 2Λ + n(n− 1)W̃ = 0 . (II.1.7)

Solving for Λ and reinserting into (II.1.5), we obtain

(
∆̃ +

R̃

n− 1

)
Ñ = 0 . (II.1.8)
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We will sometimes state results in terms of the triple (Σ, h,N), but because we assume
conformal compactifiability, we will often work with (Σ̃, h̃, Ñ ), and therefore we often work
with the system (II.1.4–II.1.6) rather than (II.1.2–II.1.3).

We end the section with an identity that will be of use in our discussion of mass and
boundary conditions. We define x := Ñ = 1/N and let ∂/∂x be the vector dual to dx
under the isomorphism defined by the Fermat metric h̃ab. If we then Fermat normalize
this dual vector, we obtain the vector

ña :=
−1√
W̃

(
∂

∂x

)a

=
−1√
W̃
h̃ab∇̃bÑ . (II.1.9)

Note that we have also reversed the sense of the vector by introducing a minus sign. This
is for convenience in the next section, where we will use this formula in the case where ña

will be normal to scri, and we will want it to be the outward directed normal, pointing in
the direction of decreasing x. Now from the definition (II.1.6) we have

∂W̃

∂x
=

−1√
W̃
ña∇̃aW̃ =

−2√
W̃

(
h̃ab∇̃ax

)(
ñc∇̃c∇̃bx

)

=
−2x

(n− 1)
R̃abñ

añb , (II.1.10)

where in the last step we used (II.1.4). If we now differentiate (II.1.7) with respect to
x = Ñ , use the results in the left-hand side of (II.1.10), and rearrange terms, we obtain

R̃abñ
añb − 1

n
R̃ =

x

2n

∂R̃

∂x
. (II.1.11)

II.2 The Boundary Conditions

The solution of the field equations on Σ of course will not be unique unless we specify
some boundary data on ∂Σ̃, which here is the hypersurface x := Ñ = 0. The data we wish
to specify are the induced metric on ∂Σ̃ and the sign of the mass of spacetime. The latter
is related to the nth order x-derivatives of the Fermat metric coefficients at x = 0.

Many similar analyses have appeared in the literature, among them [23, 13, 24, 9, 2].
These analyses usually focus on the issue of whether the vacuum Einstein equations admits
a formal power series solution centred at conformal infinity or whether the power series
must be supplemented by log terms. Typically, these analyses deal with the full vacuum
Einstein equations, either with zero [13] or negative [24] cosmological constant. We will
deal with the static (thus, Lorentzian signature) Einstein equations in dimension n + 1,
and will focus on the case of Ricci-flat conformal boundary since this case includes the
AdS soliton. The assumption of a timelike Killing field yields a more restrictive system
of equations than the general system with no symmetries in n + 1 dimensions (that it is
not equivalent to the n-dimensional system is evident, cf. (II.1.2) below). We find formal
power series solutions for all n, in agreement with the results of [24] in dimensions 2, 4,
and 6.

We show below that the first n− 1 x-derivatives of the Fermat metric components at
x = 0 vanish if this metric is assumed to be of class Cn there. From what follows, it can
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be seen that if the order n x-derivatives of the Fermat metric components are supplied at
x = 0, then all higher x-derivatives are determined there, up to one order below that at
which differentiability fails. This behaviour does not depend on whether n is even or odd.
When the Fermat metric is of class C∞ at x = 0, this technique yields a formal power
series solution of the field equations at x = 0. Here we do not assume C∞, nor do we
concern ourselves with convergence of the power series, preferring instead to obtain our
uniqueness theorem by geometric techniques. An important ingredient of these techniques
will be Corollary II.2.3, which relates the sign of the mass aspect (Definition II.3.2) to the
mean curvature of constant lapse surfaces near infinity.

Near the boundary x = 0, we may introduce coordinates x1 = x, x2, . . . , xn so that the
metric h̃ takes the form,

h̃ =
dx2

W̃
+ b̃αβ dx

αdxβ , (II.2.1)

where b̃αβ = b̃αβ(x, xγ) is the induced metric on the constant x slice Vx ≈ ∂Σ̃ (here and
throughout this subsection, Greek indices run from 2 to n). The second fundamental form
H̃αβ = H̃αβ(x) of Vx is defined as H̃αβ = ∇̃αñβ, from which it follows that

H̃αβ =
−1

2ψ
∂xb̃αβ , (II.2.2)

where ψ := W̃−1/2.

By taking the projections of the field equation (II.1.4) tangent and normal to each Vx,
we obtain

R̃αβ =
(n− 1)

xψ
H̃αβ , (II.2.3)

R̃xx =
(n− 1)

xψ
∂xψ . (II.2.4)

We may use the standard expression for the Ricci curvature in terms of Christoffel
symbols to expand the left-hand sides of equations (II.2.3, II.2.4). Doing so, we obtain

H̃αβ =
x

n− 1

(
∂xH̃αβ +

[
2H̃α

γH̃βγ − H̃H̃αβ + Rαβ −DαDβ

]
ψ
)

, (II.2.5)

∂xψ(x) =
x

n− 1
ψ2
(
∂xH̃ −

[
D2 + H̃αβH̃

αβ
]
ψ
)

, (II.2.6)

where Dα is the Levi-Cevita connection of the induced metric on Vx and Rαβ is its Ricci
tensor. We see from (II.2.5, II.2.6) (or directly from (II.2.3, II.2.4)) that C2 regularity of
the Fermat metric at x = 0 requires that

H̃αβ(0) = ∂xψ(0) = 0 . (II.2.7)

If the terms in (II.2.5, II.2.6) are k − 1 times differentiable then, taking k ≥ 2, we
may apply ∂k−1

x := ∂k−1/∂xk−1 to these equations to obtain, for n 6= k, the following
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expressions:

∂k−1
x H̃αβ =

x

(n− k)
∂k−1

x

(
∂xH̃αβ +

[
2H̃α

γH̃βγ − H̃H̃αβ + Rαβ −DαDβ

]
ψ
)

+
(k − 1)

(n− k)
∂k−2

x

([
2H̃α

γH̃βγ − H̃H̃αβ + Rαβ −DαDβ

]
ψ
)

, (II.2.8)

∂k
xψ =

x

(n− 1)
∂k−1

x

(
ψ2∂xH̃ − ψ2

[
D2 + H̃αβH̃

αβ
]
ψ
)

+
(k − 1)

(n− 1)
∂k−2

x

(
ψ2∂xH̃ − ψ2

[
D2 + H̃αβH̃

αβ
]
ψ
)

. (II.2.9)

Proposition II.2.1. Let (Σ, h,N) be Cm+1 conformally compactifiable. We assume the
conformal boundary hypersurface x = 0 to be Ricci flat. (i) If m < n := dimΣ, the first
m x-derivatives of ψ and of b̃αβ (equivalently, from (II.2.2), H̃αβ(x) and its first m − 1

x-derivatives) vanish at x = 0. (ii) If m ≥ n, the first n− 1 x-derivatives of ψ and b̃αβ(x)
vanish at x = 0 and the remaining x-derivatives up to order m−1 inclusive are completely

determined by b̃αβ(0) and b̃
(n)
αβ (0) (equivalently, H̃

(n−1)
αβ (0)).

Proof. By assumption, the Fermat metric is Cm+1 differentiable, which is equivalent
to Cm+1 differentiability of ψ and b̃αβ, implying Cm differentiability of H̃αβ. The idea
of the proof is simple. Equations (II.2.8, II.2.9) are singular at x = 0, but we can use
Cm+1 regularity to control the behaviour of the highest derivatives on the right-hand sides.
We can then eliminate the highest derivatives in these equations by setting x = 0. The
derivatives remaining on the right are then of lower order than those on the left, so we
can proceed by induction.

To begin, observe that every term on the right-hand side of (II.2.9) can be written in
terms of b̃αβ, its inverse, its first k + 1 derivatives, and ψ and its first k + 1 derivatives.
Thus, for k ≤ m we can use Cm+1 regularity to set x = 0 in (II.2.9), thereby eliminating
the highest derivatives and obtaining

∂k
xψ

∣∣∣∣
0

=
(k − 1)

(n− 1)
∂k−2

x

(
ψ2∂xH̃ − ψ2

[
D2 + H̃αβH̃

αβ
]
ψ
) ∣∣∣∣

0

(II.2.10)

=: F(k)

(
b̃αβ(0), H̃αβ(0), . . . , H̃

(k−1)
αβ (0), ψ(0), . . . , ψ(k−2)(0)

)
, (II.2.11)

where the function F(k) is defined for k ≥ 2, a superscript p in parentheses denotes the
x-derivative of order p, and the subscript 0 denotes evaluation at x = 0. Note that F(k)

can depend on tangential derivatives of its arguments (through the D2ψ term), although
our notation does not make that explicit.

We want only order k − 1 derivatives in b̃αβ and ψ in F(k), but the appearance of

H̃
(k−1)
αβ prevents this. We can, however, express H̃

(k−1)
αβ in terms of lower order derivatives

by using equation (II.2.8). Now every term in (II.2.8) can be written as a combination
of b̃αβ(x), its inverse, its derivatives, and ψ and its derivatives, with the highest order

derivatives appearing on the right-hand side, both of b̃αβ and of ψ, being of order k + 1.
Therefore, provided k ≤ m and k 6= n, we can take x = 0 in (II.2.8), again eliminating the
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highest derivatives. We obtain

∂k−1
x H̃αβ

∣∣∣∣
0

=
(k − 1)

(n− k)
∂k−2

x

([
2H̃α

γH̃βγ − H̃H̃αβ + Rαβ −DαDβ

]
ψ
) ∣∣∣∣

0

(II.2.12)

=: G(k)αβ

(
b̃αβ(0), H̃αβ(0), . . . , H̃

(k−2)
αβ (0), ψ(0), . . . , ψ(k−2)(0)

)
, (II.2.13)

where the function G(k)αβ is defined for k ≥ 2 and k 6= n. Thus, beginning at k = 2
and excepting k = n, the system comprised of (II.2.11) and (II.2.13) expresses the order
k x-derivatives of ψ and b̃αβ (order k − 1 x-derivatives of H̃αβ) at x = 0 in terms of the
lower order x-derivatives at x = 0.

We may solve these equations iteratively, beginning with k = 2. To start the iteration,
we must supply the data ψ(0), ∂xψ(0), b̃αβ(0), and ∂xb̃αb(0) or equivalently H̃αβ(0). How-

ever, equation (II.2.7) fixes H̃αβ(0) = ∂xψ(0) = 0, while ψ(0) is determined by (II.1.7)

and the definition W̃ = 1/ψ2 to be

ψ(0) =

√
n(n− 1)

−2Λ
≡ ` . (II.2.14)

The iteration proceeds until k = n, at which point it fails to assign a value to H̃
(n−1)
αβ (0)

or equivalently to b̃
(n)
αβ (0). If a value for this quantity is assigned by fiat, the iteration can

again proceed until the limit imposed by the assumed differentiability class of the Fermat

metric is reached. Thus, the free data are b̃αβ(0) and, if k ≥ n, b
(n)
αβ (0) (equivalently,

H̃
(n−1)
αβ (0)) as well.

Finally, since ψ(0) = ` is constant on the x = 0 surface and since we assume Rαβ(0) =
0, then one can see by applying the Leibniz rule in the definitions of F(k) and G(k)αβ that

F(k)(̃bαβ(0), 0, . . . , 0, ψ(0), 0, . . . , 0) = G(k)αβ (̃bαβ(0), 0, . . . , 0, ψ(0), 0, . . . , 0) = 0 .
(II.2.15)

Thus, if all derivatives of b̃αβ and ψ below order k vanish at x = 0, then so do the order
k derivatives, unless k = n. 2

Corollary II.2.2. If (Σ, h,N) is Cn+1 conformally compactifiable with Ricci flat confor-
mal boundary x = 0, where n := dimΣ ≥ 3, then the Fermat scalar curvature R̃ and its
first n− 3 x-derivatives vanish at x = 0.

Proof. For 1 < k < n, the definition ψ = 1/
√
W̃ yields

∂k
xW̃ = −2

∂k
xψ

ψ3
+ . . . + (−1)k(k + 1)!

(∂xψ)k

ψk+2
, (II.2.16)

where the dots represent k− 2 terms, all containing x-derivatives of ψ of order < k. Then
Proposition II.2.1 implies the vanishing of the right-hand side of (II.2.16) at x = 0. But,
differentiating (II.1.7) k ≤ n times and setting x = 0, we obtain

∂k
xW̃

∣∣∣∣
0

=
−k(k − 1)

n(n− 1)
R̃(k−2)(0) , (II.2.17)
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for k ≥ 2. Since we have just shown that the left-hand side of this expression vanishes
for k < n, so does the right-hand side, and so the first n− 3 x-derivatives of R̃ vanish at
x = 0 as claimed. 2

From (II.2.17), (II.2.16), and (II.2.11), we obtain

R̃(n−2)(0) =
2

ψ3(0)
Fn

(
b̃αβ(0), 0, . . . , 0, H̃

(n−1)
αβ (0), ψ(0), 0, . . . , 0

)
. (II.2.18)

Thus, R̃(n−2)(0) and H̃
(n−1)
αβ (0) are related, so we may regard R̃(n−2)(0) as part of the free

data. We will soon see that R̃(n−2)(0) encodes the mass, but first we determine the exact

relation between it and H̃
(n−1)
αβ (0):

Corollary II.2.3. If (Σ, h,N) is Cn+1 conformally compactifiable with Ricci flat con-
formal boundary x = 0, then the Fermat mean curvature of constant lapse surfaces near
x = 0 obeys

H̃(x) =
`

2

xn−1

(n− 1)!
R̃(n−2)(0) + O(xn) . (II.2.19)

Proof. If we contract (II.2.3) with b̃αβ , we obtain

R̃abñ
añb − R̃ = −(n− 1)

H̃

xψ
. (II.2.20)

If we use (II.1.11), (II.2.20), and the Gauss formula

R̃abñ
añb − 1

2
R̃ =

1

2

[
H̃2 − H̃αβH̃αβ −R

]
, (II.2.21)

where R is the scalar curvature of the slice Vx in the induced metric, then we can eliminate
R̃abñ

añb and R̃ to obtain

H̃ =
xψ

(n− 2)

[
x

2(n− 1)

∂R̃

∂x
+ R− H̃2 + H̃αβH̃

αβ

]
. (II.2.22)

From point (ii) of Proposition II.2.1 (and using R(0) = 0), we can write that H̃αβ =
O(xn−1), ψ = `+ O(xn), and R = O(xn), so

H̃ =
x2`

2(n − 1)(n− 2)

∂R̃

∂x
+ O(xn+1) . (II.2.23)

Finally, Corollary II.2.2 implies that

∂R̃

∂x
=

xn−3

(n− 3)!
R̃(n−2)(0) + O(xn−2) . (II.2.24)

Substitution of (II.2.24) into (II.2.23) yields (II.2.19). 2
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II.3 The Mass

We now show that R̃(n−2)(0) is, up to a factor, the “mass aspect” whose integral over the
conformal boundary agrees with the Ashtekar-Magnon conformal definition of mass. 5 In
Appendix A, we show that it is similarly related to the Hawking-Horowitz mass. Equiva-
lence to various other AdS mass definitions then follows [21]. In view of Corollary II.2.3,
this establishes that the sign of the mass aspect governs the mean convexity/concavity of
constant x surfaces near infinity.

For any spacetime of dimension n+ 1 ≥ 4 with metric gab and Riemann tensor P a
bcd,

the Weyl tensor Cabcd is defined by

Cabcd := Pabcd −
1

n− 1
(gbcSad − gbdSac + gadSbc − gacSbd) , (II.3.1)

Sab := Pab −
1

2n
gabP . (II.3.2)

Under the conformal transformation g̃ab = Ω2gab, Sab obeys

Sab = S̃ab +
(n− 1)

Ω
∇̃a∇̃bΩ − (n− 1)

2Ω2
g̃abg̃

cd∇̃cΩ∇̃dΩ . (II.3.3)

We are interested in the particular case where the metric is the conformally rescaled space-
time metric g̃ab := x2gab, with gab as in equation (II.1.1), so Ω = 1/N =: x. We maintain
our convention of having tildes denote quantities defined with respect to a rescaled metric.
We observe that g̃ab has a unit timelike Killing field, which we denote t̃a, g̃abt̃

at̃b = −1,
and therefore P̃abcdt

atc = 0. We now contract (II.3.1) with t̃añbt̃cñd, where ña is the unit
(in g̃ab) normal to the constant x surfaces (thus g̃abñ

añb = +1, g̃abt̃
añb = 0), obtaining

1

n− 1

(
S̃abñ

añb − S̃abt̃
at̃b
)

= C̃abcdt̃
añbt̃cñd =

1

x2
Cabcdt

anbtcnd =
1

x
Eact

atc , (II.3.4)

where Cabcd and ta = xt̃a are, respectively, the Weyl tensor and timelike Killing field
of the unrescaled spacetime metric, and Eab is the electric part of Cabcd with respect to
na = xña.6

To evaluate the left-hand side, we use the condition that the spacetime metric gab is
Einstein, which here we can write as Sab = (Λ/n)gab. Then (II.3.3) becomes

S̃ab = −(n− 1)

x
∇̃a∇̃bx+

1

2nx2
g̃ab

[
n(n− 1)W̃ + 2Λ

]

= R̃ab −
1

2n
R̃g̃ab , (II.3.5)

where in the last step we used equations (II.1.4) and (II.1.7). Then it is easy to evaluate
the left-hand side of (II.3.4), yielding

1

x
Eact

atc =
1

n− 1

(
R̃abñ

añb − 1

n
R̃

)
. (II.3.6)

5In [11], b̃
(n)
αβ was related to a new definition of mass.

6The Ashtekar and Magnon [4] definition of Eab differs from ours by a factor of `2. This compensates
for the fact that they use a normal vector na of magnitude 1/`, whereas we use a unit normal.

12



But we can use the identity (II.1.11) to rewrite the right-hand side, obtaining

Eact
atc =

x2

2n(n− 1)

∂R̃

∂x
=

x2

2n(n− 1)

[
xn−3

(n− 3)!
R̃(n−2)(0) + O(xn−2)

]

=
(n− 2)

2(n!)
xn−1R̃(n−2)(0) + O(xn) , (II.3.7)

where we used Corollary (II.2.2) and assumed that the metric is Cn+1. We are now in a
position to prove the following:

Proposition II.3.1. If (Σ, h,N) obeys equations (II.1.2–II.1.3) and is Cn+1 conformally
compactifiable, then the generalized (in dimension n) Ashtekar-Magnon mass MAM of Σ
is given by

MAM =
−`

16πn!

∫

∂Σ̃

∂n−2R̃

∂xn−2

∣∣∣∣
0

√
b̃ dS =

−`vol(∂Σ̃)

16πn!

〈
∂n−2R̃

∂xn−2

∣∣∣∣
0

〉
, (II.3.8)

where vol(∂Σ̃) =
∫
∂Σ̃

√
b̃ dS and angle brackets denote the average over ∂Σ̃ with respect

to the measure
√
b̃ dS.

Proof. Let ta be a timelike Killing vector field of the spacetime metric. Let Σ, ∂Σ̃ be as
above. Then we define the Ashtekar-Magnon mass (cf. [4], eq. (11) for the n = 3 case) by

MAM :=
−`

8π(n − 2)

∫

∂Σ̃
Eabt

atb
√
b dS , (II.3.9)

where
√
b dS =

√
b̃ dS/xn−1 is the measure induced on ∂Σ̃ by the (unrescaled) metric on

a constant x surface (so
√
b̃ dS is the measure induced by the Fermat metric) and the

limit x → 0 is to be taken. Since we assume the metric is Cn, we may use (II.3.7), from
which we obtain

MAM =
−`

16πn!

∫

∂Σ̃
R̃(n−2)(0)

√
b̃ dS , (II.3.10)

in the limit as x→ 0. 2

Definition II.3.2. In light of Proposition II.3.1, we define the mass aspect of a static,
negative mass spacetime with Ricci flat conformal boundary at x = 0 to be

µ :=
−`

2(n!)
R̃(n−2)(0) . (II.3.11)

Then notice from Corollary II.2.3 that negative mass aspect implies that surfaces x = ε =
const are mean (outward) convex for small enough ε > 0.

III A Geometric Structure Theorem and Negative Mass

En route to the uniqueness theorem for the soliton, we will obtain a more general structure
result for static spacetimes that obey a convexity condition on the extrinsic geometry of
constant lapse surfaces near scri. Section III.1 discusses the convexity condition and relates
it to negative mass, while III.2 contains the structure theorem and its proof.
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III.1 Convex Surfaces of Constant Lapse

Consider the level surfaces of the lapse N (equivalently, of x := Ñ := 1/N). Recall that
the second fundamental form H̃αβ of each level surface is defined in Section II using the

Fermat “outward” unit normal vector pointing towards scri. The eigenvalues of H̃αβ are
called the principal curvatures.

Definition III.1.1. We say that (Σ, h,N) satisfies condition (S) provided that the second
fundamental form H̃αβ of each level surface N = c is semi-definite (equivalently, provided
that the principal curvatures of each level surface N = c are either all non-negative or all
nonpositive) whenever c is sufficiently large (i.e., near scri). If H̃αβ is positive semi-definite
(equivalently, if the principal curvatures are all non-negative) for each of the level surfaces
in this neighbourhood of scri, we say that (Σ, h,N) satisfies condition (C), and the level
surfaces of N in this neighbourhood are said to be weakly convex.

In the next subsection, we will use Condition (C) to control the behaviour of certain
geodesics near scri as follows. Suppose Condition (C) holds, so that the level surfaces
N = c are weakly convex, in the sense of the definition, for all c sufficiently large. Let
V = {N = c0} be such a level surface; V has a well defined “inside” (N < c0) and “outside”
(N > c0). Then, as follows from the maximum principle, if γ is a geodesic segment with
endpoints inside V , all of γ must be contained inside V . Thus, Condition (C) provides
“barrier surfaces” for the construction of certain minimizing geodesics, as will be seen in
the next subsection.

Condition (S) allows the level surfaces N = c near scri to be either mean convex (Hαβ

positive semi-definite) or mean concave (Hαβ negative semi-definite). All the relevant
examples known to us obey condition (S), even when Condition (C) fails. As the following
lemma indicates, when Condition (S) holds, the sign of the mass aspect µ determines, in
the case of interest here, whether one gets weakly convex or weakly concave surfaces.

Lemma III.1.2. If µ < 0 pointwise on the Ricci flat conformal boundary at x = 0 of
a Cn+1 conformally compactifiable spacetime and if Condition (S) holds, then Condition
(C) holds.

Proof. From Corollary II.2.3 and Definition III.1.1, we have that µ < 0 implies H̃(1/c) > 0
whenever c > C for some C ∈ R, so the sum of the principal curvatures of each x = 1/c
level set is positive. By Condition (S), the principal curvatures are either all nonnegative
or all nonpositive, so that sign is nonnegative, implying Condition (C). 2

III.2 The Structure Theorem

Theorem III.2.1. Consider an (n + 1)-dimensional static spacetime as in (II.1.1) such
that (i) (Σ, h,N) is smoothly (C∞) conformally compactifiable, (ii) the static vacuum
field equations hold, and (iii) condition (C) holds. Then the Riemannian universal cover
(Σ̃∗, h̃∗) of the conformally related spacetime (Σ̃, h̃) splits isometrically as

Σ̃∗ = R
k × W̃ , h̃∗ = hE ⊕ σ̃ (III.2.1)

where (Rk, hE) is standard k-dimensional Euclidean space, with 0 ≤ k ≤ n, and (W̃ , σ̃)
is a compact Riemannian manifold with non-empty boundary. The Riemannian universal
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cover (Σ∗, h∗) of (Σ, h) splits isometrically as a warped product of the form

Σ∗ = R
k ×W, h∗ = (N∗2hE) ⊕ σ , (III.2.2)

where N∗ = N ◦π (π = covering map) is constant on R
k, and (W,σ) is a simply connected

Riemannian manifold such that (W,σ,N) is smoothly conformally compactifiable.

Remark III.2.2. Notice that we specify no boundary data in this theorem, instead
imposing only the convexity condition (C). In particular, this theorem does not require
Ricci flatness of the conformal boundary. However, if the conformal boundary is Ricci flat
and if the mass is negative, we may relax Condition (C) to Condition (S), obtaining in
this case a structure theorem for negative mass static spacetimes.

Remark III.2.3. Theorem III.2.1 is similar in spirit to the Cheeger-Gromoll splitting
theorem [7], or more precisely, to Theorem 3.16 in [34], a structure theorem for compact
(without boundary) Riemannian manifolds of nonnegative Ricci curvature, which is a
direct consequence of the Cheeger-Gromoll splitting theorem. Theorem III.2.1 implies a
strong structure result for the fundamental group π1(Σ̃) of Σ̃. For example, if k = 0 then
the universal cover is compact, and π1(Σ̃) is finite. More generally, Theorem III.2.1 implies
that π1(Σ̃) is “almost abelian”, i.e., that there exists a finite normal subgroup F of π1(Σ̃)
such that π1(Σ̃)/F contains a subgroup of finite index isomorphic to Z

k, cf. [7].

Proof. The proof of this theorem consists of three parts. We first show that a null line
exists in the universal covering spacetime whenever Σ∗ is noncompact. The null splitting
theorem then tells us that this null line lies in a smooth, closed, achronal, totally geodesic
null hypersurface H. Staticity then implies that Wt = Σ∗

t ∩ H is totally geodesic, where
Σ∗

t is a constant time slice. The t = 0 slice Σ∗
0 can thus be foliated by the projections of

the Wt into it. Using (II.1.2, II.1.3), we show that we can then isometrically split off an
R factor, and continuing iteratively yields the result.

(i) Construction of a null line:

A line in a Riemannian manifold is a complete geodesic, each segment of which is minimal
(length minimizing). We describe here how to construct a line in (Σ̃∗, h̃∗), provided Σ̃∗ is
noncompact. We then make use of a fundamental feature of the Fermat metric: Length
minimizing Fermat geodesics lift in an essentially unique way to achronal null geodesics
in the physical spacetime, see Appendix B.

Let (Σ̃∗, h̃∗) be the Riemannian universal cover of (Σ̃, h̃). If Σ̃∗ is compact, then k = 0
in the above splitting and we are done, so assume otherwise. Let p ∈ int(Σ̃∗) and let
{qi} be a sequence of points bounded away from ∂Σ̃∗, such that the distances from p to
successive qi tend to infinity. For each i, let γi be a minimal geodesic from p to qi. The
convexity condition (C) implies that the γi’s are uniformly bounded away from ∂Σ̃∗. Fix
a fundamental domain D ⊆ Σ∗. For each midpoint ri of γi, there is a covering space
transformation gi ∈ π1(Σ̃), possibly the identity, mapping ri into D. Because the gi are
discrete isometries, the images γ̂i = γi ◦ gi form a sequence of minimal geodesics that all
meet D and remain uniformly bounded away from ∂Σ̃∗. Since Σ̃ is compact then so is D,
and so there will be a convergent subsequence of the γ̂i whose limit is a complete, minimal
geodesic (thus a line) γ of the Fermat metric h̃∗, meeting D, which is bounded away from
∂Σ̃∗. Finally, fix a point on γ. By Lemma B.1 in Appendix B, through that point there is
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a unique, future directed null line η in (Σ∗, h∗, N∗) produced by lifting γ along the timelike
Killing field.

(ii) Splitting off one R factor:

Let λ→ µ(λ), λ ∈ I, be an inextendible null geodesic in the physical spacetime (M, g).
Using the constant of motion lemma with respect to the Killing field ∂/∂t and the fact
that µ is null, one obtains along µ that dλ = Nds (up to a factor constant along µ) and
s is h-arclength along the projection of µ into Σ. Note that since (Σ, h,N) is conformally
compactifiable, (Σ, h) is necessarily geodesically complete and N is bounded positively
away from zero. From the geodesic completeness of (Σ, h) and the inextendibility of µ, it
follows that s→ ±∞ as λ ranges over I. Since N is bounded away from zero, the equation
dλ = Nds then implies that λ ranges over all real numbers, i.e., I = R. Thus, (M, g) is
null geodesically complete, and this completeness lifts to the universal covering spacetime.

Because the null geodesically complete covering spacetime (Σ∗, h∗, N∗) satisfies the
null energy condition and admits the null line η, the null splitting theorem I.1 implies that
η is contained in a smooth, connected, achronal, edgeless totally geodesic null surface H.
By the constant of motion lemma, the equation dt/dλ = E/(N∗)2 holds along λ 7→ η(λ),
where λ is an affine parameter, E is constant along η, and, because γ is bounded away
from ∂Σ̃∗, N∗ is bounded along η. Since η is complete it follows that t ranges over all
real numbers. Thus η meets each constant t hypersurface Σ∗

t = {t} × Σ∗. Since each Σ∗
t

is totally geodesic, the codimension 2 spacelike intersections Wt = Σ∗
t ∩H are also totally

geodesic.

Let µ be any other null generator of H passing through W0. Since H is totally geodesic,
its null generators have zero expansion and shear. It follows that the spatial separation
of µ and η remains constant along these generators. Hence, the projection of µ into Σ∗

will also be bounded away from ∂Σ̃∗, and by the same argument as above, t will range
over all reals along µ. Thus, the null generators of H meeting W0 can be parametrized by
time t ∈ R so as to define a flow F : R ×W0 → H along H. Using that H is connected
and closed, it can be shown that F is onto. Hence, fixing any t ∈ R, the flow induces a
diffeomorphism W0 → Wt.

Let P denote projection into Σ∗
0 along integral curves of ∂/∂t and let Wt := P(Wt)

(note that W0 ≡ W0). The composition of F with P defines a flow F := P ◦F : R×W0 →
Σ∗

0 on the t = 0 hypersurface. The t parametrization on F gives a parametrization for

F by arclength in the Fermat metric h̃∗ := h∗/(N∗)2 = (Pg)/(N∗)2. The equipotentials
are P(Wt) ≡ Wt and are all diffeomorphic copies of W0. The flow lines t 7→ F (t, q),
q ∈W0, being projections of the null generators of H, are Fermat geodesics orthogonal to
the Wts. We prefer to relabel the parameter along the flow F as u from here onward, so
we write the equipotentials as Wu and the flow field orthogonal to them as ∂/∂u. Since
P|H is both an open and closed mapping, it follows that P(H) = Σ∗

0. Thus, F maps
R ×W0 diffeomorphically onto Σ∗

0, i.e., Σ∗
0 ≈ R ×W0. Finally, we pull this back along

the embedding i : Σ∗ → Σ∗
0 to obtain Σ∗ ≈ R ×W where W0 = i(W ). Thus, we have

extracted the first topological factor of R. We now turn our attention to the geometrical
splitting.

In coordinates adapted to the flow, which in fact are just Gaussian normal coordinates
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about W0, the Fermat metric takes the form

h̃∗ = du2 + σ̃ijdy
idyj , (III.2.3)

where u ∈ R, ~y represents coordinates on W0, and σ̃ij(u, ~y) is the induced metric on W0.
The physical metric h∗ is then

h∗ = N∗2(u, ~y)du2 + σij(~y)dy
idyj , (III.2.4)

where, since each Wu is totally geodesic in the physical metric, the induced metric σij(~y) =
N∗2σ̃ij on W0 is u-independent.

We now show that the lapse N∗ is independent of u. Let Na = 1
N∗ ( ∂

∂u)a be the unit
normal to the surfaces Wu. Since the Wu are totally geodesic, the Codazzi relation yields
R∗

abN
ah∗bc = 0, so that R∗

abN
aY b = 0 for any Y a tangent to Wu. Using this in eq. (II.1.2),

we get
NaY b∇a∇bN

∗ = 0 , ∀Y a ∈ TWu . (III.2.5)

But the surfaces Wu are totally geodesic, so the Hessian in (III.2.5) becomes the double
directional derivative ∇N (∇YN

∗). Since this vanishes for all Y a ∈ TWu, the general
solution is N∗ = α(u)β(~y). Contracting equation (II.1.2) with NaN b yields,

R∗
abN

aN b =
1

α2β2
R∗

uu

=
1

α2β2

(
1

α

d2α

du2
− 1

α2

(
dα

du

)2

+ α2σij ∂β

∂yi

∂β

∂yj
+

2Λ

(n− 1)
α2β2

)
. (III.2.6)

Since N = α(u)β(~y), we can make the coordinate transformation v =
∫
αdu, and since

α > 0 is uniformly bounded above and away from zero below and u takes values throughout
R, so does v. Notice that ( ∂

∂v )a is a Killing vector in h∗ (but not necessarily in the full
spacetime). In the new coordinates (v, ~y), we have R∗

uu = α2R∗
vv , where R∗

vv is independent
of v. Eq. (III.2.6) is thus separable in v and ~y, and takes the form

R∗
vv − σij ∂β

∂yi

∂β

∂yj
− 2Λ

(n − 1)
β2 =

1

α3

d2α

du2
− 1

α4

(
dα

du

)2

=
1

α(v)

d2α

dv2
, (III.2.7)

yielding in particular
1

α(v)

d2α

dv2
= c , (III.2.8)

where c is the separation constant. Obviously the only solution suitably bounded on all
of R is α = const., which occurs only for c = 0. This in turn implies that the lapse N∗ is
independent of u, which implies that the Wu are totally geodesic in the Fermat metric.

The spacetime (Σ∗, h∗, N∗) therefore splits as Σ∗ = R ×W , and h∗ = N∗2du2 ⊕ σ,

where N∗ and σ are u-independent. (Σ̃∗, h̃∗, Ñ∗) then splits as a product Σ̃∗ = R × W̃ ,
h̃∗ = du2 ⊕ σ̃ (the splitting clearly extending to the boundary).
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(iii) Iteration:

If W̃ is compact then we are done and k = 1. If not, we proceed inductively. Assume that
we have split off p factors of R, so that

Σ̃∗ = R
p × W̃ , h̃∗ =




p∑

j=1

du2
j


⊕ σ̃(n−p) ,

∂N∗

∂uj
= 0 , (III.2.9)

and W̃ is noncompact. We then proceed to split off another factor of R as follows.

Let W̃(n−p) =
p⋂

j=1
{uj = 0}∩Σ̃∗

0. We first show that since W̃(n−p) is noncompact, not all

the lines in Σ̃∗
0 can lie in R

p. Let us assume otherwise, i.e., that all lines in Σ̃∗
0 have the form

γ(s) = (γ1(s), x), where γ1(s) is a line in R
p and x ∈ W̃(n−p). Under the covering space

isometry, g ∈ π1(Σ̃), lines get mapped to lines. Now, each vector in the tangent space of
R

p is tangent to a line in R
p. By assumption, all the lines lie in the R

p factor, so that
the endomorphism ϕ on T Σ̃∗

0 induced by g preserves the tangent space TR
p ⊂ T Σ̃∗

0. Since

TW̃(n−p) is orthogonal to TR
p and ϕ is linear, ϕ preserves TW̃(n−p) as well. Since W̃(n−p)

is noncompact, we may repeat the construction, as in part (i), of a sequence of minimal

geodesic segments γi in W̃(n−p), whose lengths diverge to infinity, and which are uniformly

bounded away from ∂W̃(n−p). Again, we use the covering transformations gi to map the

midpoints ri of γi, to the fundamental domain D of Σ̃∗
0. As before, the minimal geodesics

γ′i = γi◦gi meet the compact set D, and, by passing to a subsequence if necessary, converge
to a line γ. By assumption, γ lies in the factor R

p. Since gi maps the velocity vectors of γi

to the velocity vectors of γ′i, it follows that for large i, gi maps vectors tangent to W̃(n−p)

to vectors nearly perpendicular to W̃(n−p). This is a contradiction, so we conclude that
not all lines lie in R

p.

Since the uj-directions are flat in the Fermat metric any line γ : (−∞,∞) → Σ̃∗
0 =

R
p × W̃(n−p) itself splits as γ(s) = (γ1(s), γ2(s)), where γ1 is a line in R

p and γ2 is a line

in W̃(n−p)—or possibly one of γ1, γ2 is constant, but since not all lines lie in the R
p factor,

(W̃(n−p), σ̃(n−p)) itself must contain at least one line. Call it ζ̃. Since the hypersurfaces
uj = 0 are all timelike, (W(n−p), σ(n−p), N

∗) is a static spacetime S in its own right (even if
it may not satisfy equations (II.1.2, II.1.3), preventing us from applying the null splitting
theorem directly). Thus, ζ̃ can be lifted to a null line ζ in S. Because the covering
spacetime (Σ∗, h∗, N∗) is the metric product R

p × S, ζ is also a null line in (Σ∗, h∗, N∗).
The null splitting theorem can now be applied to show that ζ lies in a smooth, edgeless,
achronal, totally geodesic null hypersurface Hp+1.

We now apply the construction of part (ii) to Hp+1 to produce a foliation of W̃(n−p).

As in part (ii), there is a null geodesic flow on Hp+1 that projects to a flow on Σ̃∗
0. We

must show that this flow is tangent to W̃(n−p). Equivalently, the flow on Hp+1 must be

tangent to S. But this follows because ζ ⊂ S, so ζ̇a ∈ TS, and the flow vector field on
Hp+1 to which ζ̇a belongs is parallel (cf. Remark I.2(b)).

We thus obtain the splitting (W̃(n−p), σ̃(n−p)) = (R × W̃(n−p−1), du
2
p+1 ⊕ σ̃(n−p−1)),

with σ̃ independent of up+1, or (W(n−p), σ(n−p)) = (R ×W(n−p−1), N
∗2du2

p+1 ⊕ σ(n−p−1)).

18



Repeating the arguments of part (ii), we obtain that N∗ is up+1-independent, and thus so
is σ. Hence we write

h∗ =


N∗2

p+1∑

j=1

du2
j


⊕ σ ,

∂N∗

∂uj
= 0 , j = 1, . . . , p+ 1 , (III.2.10)

where σ is independent of the uj . Since this procedure is valid for any p = 1, . . . , n, one
can continue splitting off R factors until what remains is compact. 2

IV The Uniqueness Theorem

Theorem IV.1. Consider a static spacetime as in (II.1.1) such that (Σ, h,N) (1) is
smoothly conformally compactifiable, (2) satisfies the static vacuum field equations, and
(3) satisfies condition (S). In addition, assume the following conditions to hold:

(a) The boundary geometry of (Σ̃, h̃) is the same as that of (I.1), i.e., ∂Σ̃ = T n−2 × S1,

h̃|∂Σ̃ =
n−2∑
i=1

(dθi)2 + 1
`2
dφ2.

(b) The mass aspect µ of (Σ, h,N) is pointwise negative.

(c) Given the inclusion map i : ∂Σ̃ → Σ̃, the kernel of the induced homomorphism of
fundamental groups, i∗ : π1(∂Σ̃) → π1(Σ̃), is generated by the S1 factor.

Then the spacetime (II.1.1) determined by (Σ, h,N) is isometric to the Horowitz-Myers
soliton (I.1).

Assumptions (a) and (b) are natural boundary conditions for the uniqueness problem.
(Recall from Section II that the mass aspect is related to the free boundary data.) As
shown in [9], in 3 + 1 dimensions, (b) automatically holds, provided µ is constant. As-
sumption (c) pertains to a distinctive topological feature of the AdS soliton. It asserts
that the generator of the S1 factor in (∂Σ̃, h̃|∂Σ̃) is contractible in Σ̃, and moreover, that

any loop in ∂Σ̃ contractible in Σ̃ is a multiple of the generator. As shown in the proof,
assumptions (a) and (c) together imply that π1(Σ̃) ≈ Z

n−2. Were we to adopt the latter
condition en lieu of assumption (c), without assuming the geometrical S1 factor is con-
tractible in the bulk, then one could still conclude via the following proof that (Σ, h,N) is
locally isometric to the AdS soliton (the universal covers will be isometric). For example,
this situation can arise when some loop not in the ∂Σ̃ homotopy class of the geometrical
S1 factor (i.e., some loop not homotopic to an integral curve of ∂/∂φ) is contractible in
Σ̃. For further discussion of this issue see Remark IV.3. We note that in 3+1 dimensions,
the condition π1(Σ̃) ≈ Z

n−2 holds automatically, cf. [15].

Proof. There are two main parts to this proof. First, using the splitting theorem and
the topological assumption (c), we show that the number of R factors in the splitting is
precisely n−2. This means that the submanifoldW is 2-dimensional. Using the topological
censorship theorem [15], we then show that Σ̃ ' T n−2 × W . The only undetermined
functions are then the 2-dimensional metric σ̃AB(~y) on W and the lapse Ñ(~y), which,
with the aid of the field equations, can be solved for explicitly.
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(i) The product structure of Σ̃:

As discussed in (III.1), the assumption of negative mass along with condition (S) implies
condition (C). Thus, we can invoke the splitting theorem which tells us that there are k
noncompact directions in the universal covering space Σ̃∗, so that Σ̃∗ = R

k ×W , where W
is compact. By results on topological censorship [15], the homomorphism i∗ : π1(∂Σ̃) →
π1(Σ̃) is onto. But ∂Σ̃ = A × B, where A is the (n − 2) torus and B is the circle of
assumption (a), whence π1(∂Σ̃) ≈ π1(A)×π1(B). Since, by assumption (c), ker i∗ = π1(B),
it follows that i∗|π1(A) : π1(A) → π1(Σ̃) is an isomorphism, and hence π1(Σ̃) ≈ Z

n−2. But

by Remark III.2.3, π1(Σ̃) must contain a subgroup of finite index isomorphic to Z
k, from

which it follows that k = n− 2.

Thus, the universal cover Σ̃∗ splits isometrically as R
n−2 ×W . W is therefore a 2-

dimensional, compact, simply connected manifold with boundary and is thus diffeomorphic
to a disk. The covering isometries of Σ̃∗ split as g = (g′, g′′), where g

′ and g
′′ are isometries

of R
n−2 and W , respectively. Let A∗ ' R

n−2 denote the universal cover of A. Then
A∗ ×B is the covering of A×B associated with the subgroup π1(A) ⊂ π1(A×B). Since
i∗|π1(A) : π1(A) → π1(Σ̃) is an isomorphism, the group of covering isometries of Σ̃∗ is

naturally isomorphic to π1(A). By this isomorphism, the covering isometries of Σ̃∗ restrict
on ∂Σ̃∗ ' R

n−2×S1 to the covering isometries of A∗×B. Since the latter fix the circle B,
the former fix the disk W , i.e., the covering isometries of Σ̃∗ act only on the R

n−2 factor.
It follows that

Σ̃ ' (Rn−2 ×W )/π1(A) ' (Rn−2/π1(A)) ×W ' A×W ' T n−2 ×D2, (IV.1)

where D2 is a closed 2-disc and T n−2 is the (n− 2)-torus of assumption (a).

(ii) Solving for the lapse and metric on the disc:

By the splitting obtained in part (i), the Fermat metric takes the form

ds̃2 =
n−2∑

i=1

(dui)2 + σ̃ij(~y)dy
idyj ,

∂N

∂ui
= 0, (IV.2)

where ~y = (y1, y2) and σ̃ij are the coordinates and metric on the disk W ' D2, respec-
tively. Since there are n− 2 flat directions, the only contribution to the curvature comes
from Km

ijk, the curvature tensor associated with σ̃ij . As σ̃ij is 2-dimensional, the curva-
ture tensor can be expressed as, Km

ijk = 1
2K (σ̃ikσ̃

m
j − σ̃ m

i σ̃jk), where K is the scalar
curvature. The field equations (II.1.4) thus simplify to

DiDjÑ = − ÑK

2(n− 1)
σ̃ij , (IV.3)

where D is the covariant derivative compatible with σ̃ij . Differentiating, antisymmetrizing,
and contracting with σ̃kj, we get

σ̃kj
D[kDi]DjÑ = − σ̃kj

2(n− 1)
σ̃j[iDk](ÑK) , (IV.4)

which yields the integrability condition Di(ÑK) = (n − 1)KDi(Ñ). Thus, K = CÑn−2,
where C is an integration constant.
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Let us now consider a neighbourhood U of the boundary ∂W ' S1. In this neighbour-
hood, we can write σ̃ij in Gaussian normal coordinates (ρ, φ) with respect to the boundary
at ρ = 0 as

dσ̃2 = dρ2 +G2(ρ, φ)dφ2 . (IV.5)

Using the condition K = CÑn−2, equations (IV.3) become,

∂2Ñ

∂ρ2
= − C

2(n− 1)
Ñn−1 , (IV.6)

∂2Ñ

∂ρ∂φ
=

1

G

∂G

∂ρ

∂Ñ

∂φ
, (IV.7)

∂2Ñ

∂φ2
= −G∂G

∂ρ

∂Ñ

∂ρ
+

1

G

∂G

∂φ

∂Ñ

∂φ
− CÑn−1G2

2(n − 1)
. (IV.8)

The boundary conditions for this system of equations at ρ = 0 are

G(0, φ) =
1

`
,

∂Ñ

∂φ

∣∣∣∣
ρ=0

= 0 ,
∂Ñ

∂ρ

∣∣∣∣
ρ=0

=
1

`
. (IV.9)

The first of these conditions arises by comparison of (IV.5) and assumption (a) of the
Theorem, the second arises since we assume Ñ = 0 pointwise on the boundary, and the
last is obtained by combining (II.1.6), (II.1.7), (II.2.14), (IV.5), and the second boundary
condition. Now, (IV.7) simplifies to

∂ρ

(
1

G
∂φÑ

)
= 0 ⇒ 1

G
∂φÑ = ξ(φ) . (IV.10)

(IV.9) implies that ξ(φ) = 0, or ∂φÑ = 0 everywhere. Thus, (IV.6) reduces to an ordinary
differential equation,

d2Ñ

dρ2
= − C

2(n− 1)
Ñn−1 , (IV.11)

which integrates to give

dÑ

dρ
=

1

`

(
1 − C`2Ñn

n(n− 1)

)1/2

, (IV.12)

given the boundary conditions (IV.9). Next, combining (IV.6) and (IV.8) and using ∂φÑ =
0, we get

∂ρ

(
1

G
∂ρÑ

)
= 0 ⇒ 1

G
∂ρÑ = ζ(φ) , (IV.13)

which along with (IV.9) implies that ζ(φ) = 1, or ∂φG = 0 identically, so that G(ρ) = dÑ
dρ .

Using (IV.12) we can rewrite the metric (IV.5) as

dσ̃2 =
`2

r4
(
1 − C`2

n(n−1)rn

)dr2 +
1

`2

(
1 − C`2

n(n− 1)rn

)
dφ2 , Ñ =

1

r
= Ω . (IV.14)
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Inserting into (IV.2) and comparing with (I.1), we see that the particular identification
C`2

n(n−1) = rn
0 yields precisely the soliton metric in the neighbourhood U of the boundary.

Finally, we note that the assumption of negative mass implies that r0 > 0 and therefore
C > 0. Our coordinates, valid on a neighbourhood of scri, thus extend to all r > rn

+ :=
C`2

n(n−1) , and the metric is unique on this domain. Now, by the boundary conditions, φ is

periodic with period 4π`2

nr0
, and so the further extension to r = r+ is a cone point singularity,

except that it is a smooth point iff we choose C such that C = C0 :=
n(n−1)rn

0
`2

(as can be
seen by the standard technique of expanding dσ̃2 in polar coordinates about r = r+). Thus,
there is a unique nonsingular extension of the solution in the neighbourhood R

n−2 ×U of
scri to all of R

n−2 ×W ' R
n−2 ×D2. 2

Remark IV.2. One may impose in Theorem II1.2.1 and, subsequently, Theorem IV.1
a weaker regularity requirement, i.e., one may assume that (Σ, h,N) is Ck conformally
compactifiable, for some k ≥ n+ 1, but then the isometries constructed will in general be
of finite differentiability.

Remark IV.3 (Non-Uniqueness). Let us consider, in Theorem IV.1, the somewhat
more general situation in which ∂Σ̃ is an (n − 1)-torus with a fixed, but arbitrary, flat
structure. Each free homotopy class of ∂Σ̃ can be represented by a closed geodesic β.
Suppose more generally, in Theorem IV.1, that a fixed but arbitrary embedded closed
geodesic β generates the kernel of i∗. One still has in this somewhat more general setting
that π1(Σ̃) = Z

n−2. As in the proof of Theorem IV.1, it follows that the universal cover of
Σ̃ is isometric to Euclidean (n− 2)-space times a 2-disk, whose boundary circle has length
L(β) = length of β. One can again solve for the geometry on the 2-disk to conclude that
the universal cover of spacetime is isometric to an open adS soliton (spacetime with metric
of the form I.1, but where the θi coordinates are no longer periodic but range through all
of R). Thus, the physical spacetime M is isometric to an open adS soliton quotiented out
by a certain Z

n−2 action, M ' (open AdS Soliton)/Zn−2. Since the cycle β may no longer
be geometrically an S1 factor of ∂Σ̃, the Zn−2-action may no longer fix the disk W , as it
had done in part (i) of the above proof, and we may lose the global geometric factorization
(IV.1). Nonetheless, the relevant actions have been described explicitly in the 3 + 1 (i.e.,
n = 3) case in [2]. In this case one obtains a countable class of locally isometric but
isometrically distinct spacetimes, generalized AdS solitons, whose mass depends on L(β).
Similar behavior will occur in higher dimensions.

Thus, fixing the conformal boundary, we obtain a spectrum of solitons of differing
masses as we vary the choice of cycle C representing ker i∗. For a given flat torus, the
ground state soliton arises by choosing C to be the shortest cycle on the torus. Other
choices give rise to solitons that are excited states (they are still local minima of energy, by
the Constable-Myers analysis [10]). The excited states have roles to play in the AdS/CFT
correspondence. For example, they contribute to the Conformal Field Theory partition
function [12]. A particularly interesting application is to consider homotopically distinct
closed geodesics g1, g2, g3 . . . on a given torus, ordered by increasing length. Consider the
solitons S1, S2 that arise by taking C1, respectively C2, as the bulk-contractible cycle
C. Then S1 is the ground state and S2 is the first excited state. Now vary the conformal
structure so that the lengths of g1 and g2 cross, but remain less than the lengths of the other
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homotopically distinct cycles, so (the variation of) S2 becomes the ground state. Page [32]
has shown that this produces a zero temperature phase transition in the boundary CFT,
as the pressures exerted on area elements transverse to g1 and g2 suddenly change sign.

V Concluding Remarks

In a sequel to this paper [17], we make use of many of the techniques and results pre-
sented here to study static, asymptotically locally AdS spacetimes which contain black
hole horizons (e.g., which contain non-naked singularities). For instance we show that a
static spacetime asymptotic to the AdS soliton cannot have negative mass if it contains a
horizon. This result is well illustrated by the toroidal Kottler spacetimes. In the sequel,
we will also apply the results of Section II to study the case of an asymptotically locally
AdS spacetime with conformal boundary admitting non-negative Ricci curvature.
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A Hawking-Horowitz Mass

Under the conformal transformation that replaces the geometry induced by the Fermat
metric with that induced by the spacetime metric, the respective mean curvatures obey

H = xH̃ − (n− 1)ñc∇̃cx

= xH̃ +
(n− 1)

ψ
. (A.1)

The xH̃ term can be estimated using (II.2.19), but to estimate the second term requires
some further work. We begin with the identity (II.1.7), which together with the definition

W̃ = 1/ψ2 gives

1

ψ2
=

−2Λ − x2R̃

n(n− 1)
. (A.2)

Now this can be estimated by combining (II.1.11), (II.2.21), and the estimates of Section
II to obtain

R̃ =
x

n− 2

∂R̃

∂x
+ O(xn) =

xn−2

(n− 2)!
R̃(n−2)(0) + O(xn) , (A.3)

which can be substituted into (A.2) to yield

1

ψ2
=

−2Λ

n(n− 1)
− xn

n!
R̃(n−2)(0) + O(xn+2) . (A.4)

We take the square root, substitute the result into the last term in (A.1), and use (II.2.19)
to estimate the first term, obtaining

H =
(n− 1)

`
+

xn`

2(n!)
R̃(n−2)(0) + O(xn+2) . (A.5)

Following Hawking and Horowitz, we multiply H by the lapse N = 1/x and integrate

over a constant x surface Yx using the volume element
√
b =

√
b̃/xn−1 of the (unrescaled)

first fundamental form bab := N2b̃ab. This gives

∫

Yx

NH
√
b dYx =

(n− 1)

xn`
vol(Yx) +

`

2(n!)

∫

Yx

R̃(n−2)(0)
√
b̃ dYx + O(x2) . (A.6)

By the Hawking-Horowitz prescription, we must now embed a surface Y ′
x in a slice

of a reference spacetime, compute its mean curvature H0, pull this back to Yx (call the
pullback H∗

0 ), integrate it as above, compute the difference between the resulting integral
and (A.6), and finally take x→ 0. The intrinsic geometry on Y ′

x induced from the reference
spacetime must match that on Yx. The reference spacetime we will use is of constant
negative curvature and is assumed to have the same Penrose conformal boundary as the
physical spacetime (this may force the reference spacetime to be incomplete; see [25] for a
discussion). We embed within a moment of time symmetry thereof, so the scalar curvature
of this slice is constant. Thus

H0 =
(n− 1)

`
+ O(xn+2) , (A.7)
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and thus

lim
x→0

∫

Yx

N(H −H∗
0 )
√
b dYx =

`

2(n!)

∫

Y
R̃(n−2)(0)

√
b̃ dY , (A.8)

where Y := limx→0 Yx. Thus we have:

Proposition A.1. Let (Σ, h,N) obey equations (II.1.2–II.1.3) and be Cn conformally
compactifiable. Then the Hawking-Horowitz mass MHH of Σ is given by

MHH =
−`

16π(n!)

∫

Y
R̃(n−2)(0)

√
b̃ dY . (A.9)

Proof. Follows from (A.8) by comparing its left-hand side to the definition of MHH

appearing in equation (2.14) of [21]. 2

Remark A.2. By setting Y = ∂Σ̃ and comparing (A.9) to (II.3.10), we have MHH =
MAM in this setting.

B Fermat and Null Lines

Lemma B.1. Let (Σ, h,N) be a static spacetime with lapse N bounded from below. Let
π : (M,gab) → (Σ̃, h̃ab) be the projection along integral curves of the timelike Killing field
∂/∂t. Then, for every Fermat line ρ : R → (Σ̃, h̃ab) through p there is a unique future
directed null line γ : R → (M,gab) through p, with ρ = π(γ).

Remark. There are in fact two null lines through p that project to ρ, but one reverses
orientation.

Proof. Let σ̃ be an arclength (i.e., affine) parameter along ρ. Without loss of generality,
we can take ρ to be of unit speed. On π−1(ρ), we can thus define the future directed null
vector field, ∂

∂t + ρ̇(σ̃) and let γ be the unique integral curve through p. Then along γ, we
have dt = dσ̃.

We now show that γ is achronal. Let us assume otherwise. Then there exist points
q, q′ ∈ γ, with q = γ(a), q′ = γ(b) and a < b ∈ R, such that there is a timelike curve γ′

from q to q′. Let ρ′ be its projection into Σ. Since dt = dσ̃ along γ, we can integrate
this to obtain ∆t := b− a = L̃(ρ), which is the Fermat length of ρ between the projected
points π(q) and π(q′). Since ρ is a Fermat line, L̃(ρ) equals the Fermat distance from
π(q) to π(q′). Using σ̃ to also parameterise γ′, we see that dt > dσ̃, which integrates to
give ∆t = b − a > L̃(ρ′), the length of ρ′ between π(q) and π(q′). But this means that
L(ρ′) < L(ρ), which contradicts the claim that ρ is minimal.

Finally, we show that γ is also complete. That it is geodesic follows from the fact
that it is null and achronal. However, the parameterisation σ̃ is not affine. Using the
condition of staticity it can be shown that, up to a constant of proportionality, γ has
affine parameter λ related to σ̃ by dλ = N2dt = N2dσ̃. Now, assume that γ is incomplete,
i.e., that it is inextendible in at least one direction in which it has a bounded range of affine
parameter. Since N is bounded away from zero, this means that the affine parameter σ̃
in that direction is also bounded above, so that ρ would be incomplete, which again is a
contradiction.

Thus, γ is a complete achronal null line. 2
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