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Abstract: The study of low regularity (in-)extendibility of Lorentzian manifolds is mo-
tivated by the questionwhether a given solution to the Einstein equations can be extended
(or is maximal) as a weak solution. In this paper we show that a timelike complete and
globally hyperbolic Lorentzian manifold is C0-inextendible. For the proof we make use
of the result, recently established by Sämann (Ann Henri Poincaré 17(6):1429–1455,
2016), that even for continuous Lorentzian manifolds that are globally hyperbolic, there
exists a length-maximizing causal curve between any two causally related points.

1. Introduction

A smooth Lorentzian manifold is said to be Ck-inextendible if it cannot be isometrically
embedded as a proper subset into another Lorentzian manifold of the same dimension
with a Ck-regular metric. It is a classical result that a smooth timelike geodesically
complete Lorentzian manifold is C2-inextendible (see e.g. [2, Proposition 6.16]). In this
paper we prove

Theorem 1. A smooth (at least C2) time-oriented Lorentzian manifold that is timelike
geodesically complete and globally hyperbolic is C0-inextendible.

This fundamental inextendibility result is an almost immediate consequence of the
following.

Theorem 2. Let (M, g) be a smooth (at least C2) time-oriented globally hyperbolic
Lorentzianmanifold. If (M, g)admits aC0-extension, then it contains a timelike geodesic
that has an end point on the boundary of M.

The study of extensions of Lorentzian manifolds arises naturally in Einstein’s theory
of general relativity as the classical question, whether a given Lorentzian manifold, a
solution to the Einstein equations, can be extended to a bigger solution. Traditionally, this
question has been addressedmainly for extensions with a Lorentzian metric of regularity
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at least C2. The statement that a given solution of the Einstein equations is inextendible
as a Lorentzian manifold of a certain regularity entails in particular that the solution is
inextendible (or ‘maximal’) as a solution of the considered regularity.

For a Lorentzian manifold to be a strong solution of the Einstein equations, the
Lorentzian metric has to be at least twice differentiable. For weak solutions to the
Einstein equations, one requires that the metric is at least continuous and, in some
coordinate system, the Christoffel symbols are locally in L2. Thus, in order to rule out
a continuation of a given solution of Einstein’s equations as a weak solution it suffices
to show that it is inextendible as a Lorentzian manifold with a continuous metric and
Christoffel symbols that are locally square integrable.

The study of low regularity inextendibility is in particular relevant for the strong cos-
mic censorship conjecture in general relativity. In a formulation according toChristodoulou
(see the prologue of [4]) this states that for generic asymptotically flat (or compact) initial
data for the Einstein equations the corresponding maximal globally hyperbolic develop-
ment is inextendible as a weak solution to the Einstein equations. As discussed above,
this would follow from showing that for generic asymptotically flat (or compact) initial
data for the Einstein equations the corresponding maximal globally hyperbolic develop-
ment is inextendible as a Lorentzian manifold with a continuous metric and Christoffel
symbols locally in L2. One way to paraphrase this conjecture is to say that general rel-
ativity is generically a deterministic theory. For more on this conjecture we refer the
reader to the introductions of [4,8,13,18] and references therein. A further motivation
for the study of low regularity inextendibility is to give a classification of the strength
of the breakdown of the metric, i.e., the necessary loss of regularity of an extension.
If the breakdown of the metric signals a ‘singularity’, then this would correspond to a
classification of the strength of singularities.

A systematic study of low-regularity inextendibility was started in [18], which de-
velops some general methods for proving the C0-inextendibility of Lorentzian man-
ifolds and applies them to show in particular the C0-inextendibility of the maximal
analytic Schwarzschild spacetime as well as that of the Minkowski spacetime. The
work [13] extends these methods and investigates the extendibility properties of the
open cosmological FLRW spacetimes, finding that so called ‘Milne-like’ FLRW space-
times are C0-extendible while establishing the C0-inextendibility of ‘non-Milne-like’
FLRW spacetimes in the spherically symmetric class of extension. In all of the inex-
tendibility results it is important to understand the obstruction to extensions stemming
from the region of spacetime which, in a vague sense, is ‘timelike asymptotically com-
plete’. In the Schwarzschild spacetime this would be the exterior region of the black
hole, in Minkowski space the whole spacetime, and in the open cosmological space-
times the future of any Cauchy hypersurface. The methods developed in [18] to capture
the obstruction to C0-extensions of these regions require future divergence1 and future
one-connectedness2 (at least some asymptotic form of it) of the spacetime. Especially
the property of future one-connectedness, if it holds, is often quite difficult to prove.
In this paper we circumvent the property of future one-connectedness by proving that
the properties of global hyperbolicity and timelike geodesic completeness also ensure
the C0-inextendibility of the spacetime, thus enlarging the available toolbox for proving
low-regularity inextendibility. In particular, Theorem 1 applies directly to the spacetimes

1 A spacetime (M, g) is said to be future divergent iff for every future inextendible timelike curve γ :
[0,∞) → M the timelike distance d

(
γ (0), γ (s)

)
between γ (0) and γ (s) goes to infinity for s → ∞.

2 A spacetime (M, g) is said to be future one-connected iff any two future directed timelike curves with
the same endpoints are homotopic with fixed endpoints via timelike curves.
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arising dynamically from perturbed Minkowski initial data, [5], and from perturbed de
Sitter initial data, [1,10,11].

The proof of Theorem 2 makes use of the following theorem, which was recently
proved in the very nice paper of Sämann [17].

Theorem 3 ([17, Proposition 6.4]). Let (M, g) be a time-oriented globally hyperbolic
Lorentzian manifold with a continuous metric. Let q ∈ J+(p). Then there is a causal
curve γ from p to q which has length greater than or equal to that of all other causal
curves from p to q.3

The analogue of this theorem for Lorentzian manifolds (M, g) with g at least in C2

is a classical result, see for example [2]. Sämann’s proof is more in the spirit of Seifert’s
original proof [19] in the smooth setting, which is based on the compactness of C(p, q),
the space of causal curves from p to q, in a suitable topology. In Sect. 2, we include a
slightly more direct proof of Theorem 3 along the lines of [2, Proposition 14.7], based
on limit maximizing curves. Both proofs are ultimately closely related, and require the
upper semicontinuity of the length functional in appropriate settings.

TheRiemannian analogue ofTheorem3,which states that for any twopoints in a com-
plete Riemannian manifold with a continuous metric, there exists a length-minimizing
curve connecting these points, is a well-known textbook result, see for example Theorem
2.5.23 in [3]. Removing the completeness assumption, it still holds that for any point
on a Riemannian manifold with a continuous metric one can find a small neighborhood,
such that any two points in this neighborhood can be connected by a length-minimizing
curve.

With regard to Theorem 1, it is instructive to compare the Riemannian case and the
Lorentzian case. Given a complete Riemannian manifold (M, g), it also holds that it is
C0-inextendible: assuming there exists aC0-extension, one considers a neighborhood of
a boundary point and finds a length-minimizer that connects a point inM to this boundary
point. The portion of this curve in M has to be an inextendible geodesic, which by the
assumption of completeness has to have infinite length. This gives the contradiction.

In the Lorentzian case one proceeds analogously, one considers a length-maximizer
connecting the boundary point with a causally related point in M . The difference now
is that in order to obtain the contradiction, one has to rule out the subtle possiblility that
the part of this length-maximizer that is contained in M is a null geodesic (note that this
length-maximizer might have non-trivial extent in the complement of M). It is here that
we make use of the global hyperbolicity of M .

The proofs of Theorems 1 and 2 are given in Sect. 3, where we also conclude with
some applications.

2. Preliminaries

In this sectionwe introduce some basic causal theoretic notions relevant to theC0 setting.
Also, for the convenience of the reader, we present a rather basic ‘barebones’ proof of
the existence of maximizers in this setting.

By aCkspacetimewemean a smooth, connected, and paracompact d+1 dimensional
manifoldM , equippedwith aCk Lorentzianmetric g, such that (M, g) is time-orientable.
Henceforth, throughout this section, we restrict attention to C0 spacetimes. For causal

3 It is shown in [17] that the usual assumption of ‘strong causality’ in the definition of global hyperbolicity
can be weakened to that of ‘non-total imprisonment’.
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theoretic notions used here, we will by and large follow the development of Chruściel
[6] and Chruściel and Grant [7]. Fix a complete Riemannian metric h on M . A curve
γ : I → M is said to be locally Lipschitzian if given any compact K ⊂ I , there is a
constant C(K ) such that for all s1, s2 ∈ K , we have

dh
(
γ (s1), γ (s2)

) ≤ C(K )|s1 − s2|
where dh is the Riemannian distance function on (M, h). (As shown in [6], this definition
is independent of the choice of the complete Riemannian metric.) By Rademacher’s the-
orem, a locally Lipschitzian curve γ is differentiable almost everywhere and γ ′ ∈ L∞

loc.
A locally Lipschitzian curve γ : I → M is said to be future timelike or future causal
if its derivative is future timelike or future causal, respectively, almost everywhere.4 For
compact intervals I , the length of γ is given by, L(γ ) = ∫

I

√−g(γ ′, γ ′). It is a useful
fact, shown in [6], that any causal curve γ : I → M can be reparameterized with respect
to h-arc length, so that γ is (uniformly) Lipschitzian in this parameterization.

LetU be an open set about p. J+(p,U ) denotes the set of points q ∈ U which can be
reached from p via a future causal curve which is contained in U . J−(p,U ) is defined
time-dually.We alsowrite J±(p) for J±(p, M). TheLorentzian distance function is the
map d : M → [0,∞] defined by d(p, q) = 0 if q /∈ J+(p) and d(p, q) = supγ L(γ )

if q ∈ J+(p), where the supremum is taken over all future causal curves joining p to q.
AC0 spacetime (M, g) is strongly causal if given any p ∈ M and any neighborhood

U of p, there is a smaller neighborhood V ⊂ U of p such that no causal curve intersects
V in a disconnected set. (V is said to be causally convex.) (M, g) is globally hyperbolic
if it is strongly causal and the sets J+(p) ∩ J−(q) are compact for all p, q ∈ M .

We now present two lemmas, the first of which establishes some simple estimates
(see also [6, Lemma 2.6.5]).

Lemma 2.1. Let (M, g) be a C0 spacetime. For any p ∈ M and any ε > 0 there exists
a coordinate neighborhood (U, x0, x1, . . . , xd) centered at p such that for any causal
curve γ : [a, b] → U,

L(γ ) < ε and Lh(γ ) < ε , (2.1)

where Lh(γ ) denotes the length of γ with respect to the Riemannian metric h.

Proof. Choose a coordinate neighborhood (V, xi ) of p so that x0 is a time function, i.e.
so that x0 has past timelike gradient (cf., [7, Propositon 1.10], [18, Lemma 2.4]). Put
u = −∇x0/|∇x0|g and ν = g(u, ·). u is a C0 future directed unit timelike vector field
on V , and ĥ := g+2ν ⊗ν is aC0 Riemannian metric on V . Putm = inf p∈U |∇x0(p)|g ,
where U is a neighborhood of p with compact closure in V . Then if γ : [a, b] → U is
any future directed g-causal curve, we have,

L(γ ) =
∫ b

a

√−g(γ ′, γ ′) =
∫ b

a

√
2[ν(γ ′)]2 − ĥ(γ ′, γ ′)

≤ √
2

∫ b

a

g(∇x0, γ ′)
|∇x0| ≤

√
2

m

∫ b

a
g(∇x0, γ ′)

=
√
2

m

∫ b

a
[x0 ◦ γ ]′ =

√
2

m

(
x0(γ (b)) − x0(γ (a))

)
.

4 This means, in particular, that the derivative is nonzero almost everywhere.
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Clearly, by shrinking U we can achieve the first inequality in (2.1) for all causal curves
γ in U . Making U even smaller, if necessary, there exists a constant C > 0 such that
h ≤ Cĥ on U . Hence, almost everywhere on [a, b],

h(γ ′, γ ′) ≤ Cĥ(γ ′, γ ′) = C(g(γ ′, γ ′) + 2[ν(γ ′)]2) ≤ 2C

|∇x0|2 [g(∇x0, γ ′)]2.

Taking square roots and integrating, we again see that, by shrinkingU further, the second
inequality in (2.1) can be satisfied for all causal curves γ in U . �

Taking limits of causal curves is fundamental to causal theory. Following Min-
guzzi [14], we say that the sequence of future causal curves γn : [0, bn] → M converges
uniformly to γ : [0, b] → M provided (i) bn → b and (ii) for every ε > 0, there is
N > 0, such that for n > N and for all t ∈ [0, b] ∩ [0, bn], dh(γ (t), γn(t)) < ε. A
future causal curve γ : [0, b] → M is a limit curve of the sequence γn : [0, bn] → M
if there is a subsequence γm that converges uniformly to γ .

We now make use of the limit curve lemma in [7], to obtain the following.

Lemma 2.2. Let (M, g) be a strongly causal C0 spacetime and let K ⊂ M be compact.
Suppose γn : [0, sn] → K is a sequence of future causal curves, parameterized with
respect to h-arc length, such that γn(0) → p and γn(sn) → q. Then there is a limit
curve γ : [0, s∗] → K such that γ (0) = p and γ (s∗) = q.

Proof. We can extend each γn to a future causal curve γ̃n : [0,∞) → M , parameterized
with respect to h-arc length, which is inextendible by [6, Theorem 2.5.5]. Then, by [7,
Theorem 1.6], there exists a subsequence {γ̃m} that converges uniformly on compact
subsets to a future inextendible causal curve γ̃ : [0,∞) → M . Since K is compact, we
can cover K by a finite number of arbitrarily small causally convex neighborhoods.Using
Lemma 2.1, we then see that the sequence of h-lengths {sm} is bounded above. Passing to
a subsequence if necessary, we may assume that sm → s∗ < ∞. Hence, by the uniform
convergence, γ (s∗) = limm→∞ γm(sm) = q. Clearly γ̃ (0) = p, so let γ : [0, s∗] → M
be the restriction of γ̃ to the interval [0, s∗]. By the uniform convergence, it follows that
γ ⊂ K . �

A key step in the proof of the existence of maximizers is recognizing that the length
functional is upper semicontinuous. This was first proved by Penrose [16] for strongly
causal C2 spacetimes. It was later observed in [9,12] that the uniform convergence
on compact subsets enables one to prove upper semicontinuity in spacetimes without
assuming strong causality. We now present a proof of upper semicontinuity for C0

spacetimes; see [17, Theorem 6.3] for a closely related proof in a slightly different
setting.

Proposition 2.3. Let (M, g) be a C0 spacetime. Suppose a sequence of future causal
curves γn : [a, b] → M converges uniformly to the causal curve γ : [a, b] → M. Then
L(γ ) ≥ lim sup

n→∞
L(γn).

Proof. By Proposition 1.2 of [7], there is a family of smooth Lorentzian metrics {gε :
ε > 0} such that gε is wider than g (i.e., g(X, X) ≤ 0, X �= 0 �⇒ gε(X, X) < 0), gε

converges uniformly on compact subsets of M to g as ε → 0, and for all X ∈ T M with
|X |h = 1, we have |g(X, X) − gε(X, X)| < ε.

Hence, the curves γ and γn are future causal curves in (M, gε). By Lemma 2.1, there
exists C > 0 and a partition a = s0 < s1 < · · · < sk = b of [a, b] such that, for
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i = 0, . . . , k − 1, γ ([si , si+1]) lies in a neighborhood Vi with the property that every
g-causal curve in Vi has h-length less than C .

Now let σ be a g-causal curve in V parameterized by h-arclength, then a.e.,
√|g(σ ′, σ ′)| <

√|gε(σ ′, σ ′)| + ε <
√|gε(σ ′, σ ′)| + √

ε

and so

Lg(σ ) < Lgε (σ ) + Lh(σ )
√

ε < Lgε (σ ) + C
√

ε.

Switching the roles of g and gε , we establish that

|Lg(σ ) − Lgε (σ )| < C
√

ε. (2.2)

It follows that,

Lg(γ ) > Lgε (γ ) − Ck
√

ε , and for large n, Lgε (γn) > Lg(γn) − Ck
√

ε , (2.3)

since for large n, γn([si , si+1]) ⊂ Vi .
Now we use (2.3) along with the fact that the length functional is upper semicon-

tinuous in the smooth spacetime (M, gε). Indeed, Corollary 2.4.11 in [6] implies that
Lipschitz causal curves are continuous causal curves as defined in [14]. Upper semi-
continuity for Lipschitz curves in smooth spacetimes then follows from [14, Theorem
2.4(a)] (see also [16]).

Hence, we have,

Lg(γ ) > Lgε (γ ) − Ck
√

ε

≥ lim sup
n→∞

Lgε (γn) − Ck
√

ε

≥ lim sup
n→∞

(
Lg(γn) − Ck

√
ε
) − Ck

√
ε

= lim sup
n→∞

Lg(γn) − 2Ck
√

ε.

Since ε > 0 was arbitrary, the result follows. �
Remark. Proposition 2.3 remains valid under slightly more general circumstances. For
example, one may assume that each γn is defined on an h-arc length interval [0, bn],
such that bn → b; see [14, Theorem 2.4(b)].

Theorem 2.4. Let (M, g) be a globally hyperbolic C0 spacetime. Let q ∈ J+(p). Then
there is a causal curve γ from p to q which has length greater than or equal to that of
any other causal curve from p to q (equivalently, L(γ ) = d(p, q)).

Proof. Let us first observe that the Lorentzian distance function d is finite-valued. Let
q ∈ J+(p). To prove that d(p, q) is finite, cover the compact set J+(p) ∩ J−(q) with a
finite number of causally convex neighborhoods {V1, . . . , Vk} such that dVi is bounded
by 1 for all i = 1, . . . , k (cf., Lemma 2.1). Any future causal curve λ from p to q can
only enter each Vi once so L(λ) ≤ k. Since γ was arbitrary, we have d(p, q) ≤ k.

Now by definition of d, there is a sequence of future causal curves γn : [0, sn] → M
from p to q, parameterizedwith respect to h-arc length, which satisfy L(γn) ≥ d(p, q)−
n−1. By passing to a subsequence if necessary, we may assume by Lemma 2.2 that the
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sequence γn converges uniformly to a future causal curve γ : [0, s∗] → M from p to q.
Then Proposition 2.3 (and the remark following its proof) gives

L(γ ) ≥ lim sup
n→∞

L(γn) ≥ lim sup
n→∞

(
d(p, q) − n−1) = d(p, q).

Thus γ is a maximizer. �
We note that the proof of Theorem 2.4 does not make use of the lower semicontinuity

of the Lorentzian distance function; compare, for example, the proof of Proposition 14.7
in [2] in the smooth case. In fact, lower semicontinuity does not hold in the C0 setting.
This may be seen as a result of the ‘bubbling’ phenomena discussed in [7]; see especially
[7, Example 1.11].

3. C0-Inextendibility

In this section we will use the existence of maximizers (Theorem 2.4) to prove that
timelike geodesically complete globally hyperbolic spacetimes are C0-inextendible.

A C0 spacetime (Mext, gext) is a C0-extension of a spacetime (M, g) if they are of
the same dimension and (M, g) embeds smoothly and isometrically as a proper subset
of (Mext, gext). If no C0-extension of (M, g) exists, then we say that (M, g) is C0-
inextendible.

Definition 3.1. Given a C0-extension (Mext, gext) of (M, g), we make the following
definitions (see [13]).

• The future boundary of M , denoted by ∂+M , is the set of points p ∈ ∂M such
that there exists a smooth future directed timelike curve γ : [0, 1] → Mext with
γ (1) = p, γ

([0, 1)) ⊂ M .
• The past boundary ofM , denoted by ∂−M , is the set of points p ∈ ∂M such that there

exists a smooth future directed timelike curve γ : [0, 1] → Mext with γ (0) = p,
γ
(
(0, 1]) ⊂ M .

We will need to make use of the following basic result, which is proved in [18] (see
also [13]).

Lemma 3.2. Let ι : (M, g) → (Mext, gext) be a C0-extension. Then ∂+M ∪ ∂−M �= ∅.
Therefore, if one can find a C0-extension (Mext, gext) of (M, g), then one can also

find a smooth timelike curve which leaves M and enters Mext. In fact, if (Mext, gext) is
a C2-extension of (M, g), then, by using normal neighborhoods, one can find timelike
geodesics which leave M and enter Mext. The next theorem is our key result. It says that
when (Mext, gext) is a C0-extension of a globally hyperbolic spacetime (M, g), then one
can still find timelike geodesics which leave M and enter Mext.

Theorem 3.3. Let (M, g) be a smooth (at least C2) globally hyperbolic spacetime.
Suppose (Mext, gext) is a C0-extension of (M, g). If ∂+M �= ∅, then there is a future
directed timelike geodesic in M that has a future endpoint on ∂M ⊆ Mext.

Proof. Let p ∈ ∂+M . Let γ : [0, 1] → Mext be a smooth future directed timelike curve
such that γ (1) = p and γ

([0, 1)) ⊂ M . Let ε > 0 to be fixed later. By continuity of
gext and after a possible reparameterization of γ , there is a δ > 0 (depending on ε) and
a coordinate system

φ = (x0, x1, . . . , xd) : Uε → (−4δ, 4δ)d+1
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around p, where Uε is a relatively compact open subset of Mext, such that (cf. [18,
Lemma 2.4]),

(a) xμ(p) = 0.
(b) x0

(
γ (s)

) = δ(s − 1) and xi
(
γ (s)

) = 0 for all i = 1, . . . , d.
(c) gμν(p) = ημν

(d) |gμν(x) − ημν | < ε for all x ∈ Uε

(e) The negative x0-axis lies inside M .

Here ημν are the usual components of theMinkowski metric and gμν are the components
of gext with respect to (x0, x1, . . . , xd). Note that we still assume the entire negative
x0-axis lies inside M , but we will be mainly interested in the curve γ (which makes up
1/4 of the negative x0-axis).

Consider the following smooth Lorentzian metrics on Uε

η(2) = −1

4
(dx0)2 +

d∑

i=1

(dxi )2

η(1/2) = − 4(dx0)2 +
d∑

i=1

(dxi )2.

By continuity of the metric, there is an ε0 > 0 such that for any 0 < ε < ε0 and any
X ∈ TUε , we have (cf., [7, Proposition 1.10],

η(2)(X, X) ≤ 0 �⇒ gext(X, X) < 0 (3.4)

gext(X, X) ≤ 0 �⇒ η(1/2)(X, X) < 0. (3.5)

For 0 < ε < ε0 we consider Vε ⊂ Uε which is given by

Vε = I +
η(1/2)

(
φ−1 (−2δ, 0, . . . , 0) ,Uε

)
∩ I−

η(1/2)

(
φ−1(2δ, 0, . . . , 0),Uε

)
.

Weshow that (Vε, gext|Vε ) is globally hyperbolic: First note that, by [6, Corollary 2.4.11],
Lipschitz causal curves in (Vε, η

(1/2)) can be closely approximated by piecewise smooth
causal curves. Hence, since (Vε, η

(1/2)) is strongly causal and η(1/2) is wider than gext,
it is almost immediate that (Vε, gext|Vε ) is strongly causal. Now fix r, s ∈ Vε with
s ∈ J+gext(r, Vε). We have to show D := J+gext(r, Vε) ∩ J−

gext(s, Vε) is compact. Since

η(1/2) is wider than gext, it is easy to see that D is a subset of J+
η(1/2) (r, Vε)∩ J−

η(1/2) (s, Vε),
which is clearly compact in Uε . Hence, it is sufficient to show that D is closed in Vε .
This follows from an application of Lemma 2.2.

By Theorem 2.4, there is a maximizer α : [0, 2] → Vε from q := γ (0) =
φ−1(−δ, 0, . . . , 0) to p = γ (1). Since α is a maximizer, we know that

L(α) ≥ L(γ ).

Now α begins in the physical spacetime (M, g) and ends at p ∈ ∂+M . Therefore, we
can break α into two curves σ : [0, 1) → Vε and λ : [1, 2] → Vε where

(1) σ(s) = α(s) for s ∈ [0, 1)
(2) λ(s) = α(s) for s ∈ [1, 2]
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(3) σ
([0, 1)) ⊂ M

(4) λ(1) ∈ ∂M .

Since α is a maximizer in Vε , we know that σ is a maximizer in Vε . Since σ lies inside
M , it follows from [15, Proposition 34, p. 147] (which can be extended toLipschitz causal
curves using [6, Proposition 2.4.5]) that, up to parametrization, σ is either a timelike or
a null geodesic. (In the special case α

([0, 2)) ⊂ M , it’s easy to conclude that α|[0,2) is
a timelike geodesic with endpoint p.)

Thus it suffices to show that σ cannot be a null geodesic. So let us suppose that σ is
a null geodesic. We are going to obtain a contradiction by showing that, for sufficiently
small ε, we will have

L(λ) = L(α) < L(γ ).

We will do this by putting a lower bound on L(γ ) and an upper bound on L(λ). To
simplify the estimates, we will use the fact that γ and λ can be reparameterized with
respect to the x0 coordinate. We can do this since for a small enough neighborhood, x0

is a time function (cf. [6]).

Lower Bound on L(γ ):
With respect to the x0-parameterization, we have γ (t) = φ−1(t, 0, . . . , 0). Therefore

L(γ ) =
∫ 0

−δ

√
−gext

(
γ ′(t), γ ′(t)

)
dt

=
∫ 0

−δ

√
−g00

(
γ (t)

)
dt

≥ δ
√
1 − ε.

Upper Bound on L(λ):
Let us write λ(t) = φ−1

(
t, x1(t), . . . , xd(t)

)
. Let −a ∈ (−δ, 0) denote the starting

parameter value of λ with respect to the x0-parameterization. Then

L(λ) =
∫ 0

−a

√
−gext

(
λ′(t), λ′(t)

)
dt

=
∫ 0

−a

[
− g00

(
λ(t)

) − 2
d∑

i=1

g0i
(
λ(t)

)
ẋ i (t)

− 2
∑

1≤i< j≤d

gi j
(
λ(t)

)
ẋ i (t)ẋ j (t) −

d∑

i=1

gii
(
λ(t)

)|ẋ i (t)|2
]1/2

dt

≤
∫ 0

−a

⎡

⎣(1 + ε) + 2
d∑

i=1

ε|ẋ i (t)| + 2
∑

1≤i< j≤d

ε|ẋ i (t)ẋ j (t)|
⎤

⎦

1/2

dt

≤
∫ 0

−a

[
(1 + ε) + 4dε + 4d(d − 1)ε

]1/2dt

= a
√
1 + ε + 4d2ε
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.

γ

.p ∈ ∂+M

q =( −δ, 0)

α = σ + λ

σ

λ

x0

xi

x0 = −2|x|

x0 = 1
2 |x| − δ

−a−

I−
η(2)(p,V ) ∩ I+

η(1/2)(q,V )

(− 4
5δ, 2

5δ)

Fig. 1. λ(−a) lies to the future of the wide cone and is on or outside the “narrow” cone

The third line follows from |gμν(x)−ημν | < ε for all x ∈ Vε and the fourth line follows
from the fact that |ẋ i (t)| < 2, which is a consequence of the bound (3.5).

Now the bounds on L(λ) and L(γ ) and the fact that L(λ) ≥ L(γ ) gives

a
√
1 + ε + 4d2ε ≥ δ

√
1 − ε.

Equivalently,

a

δ
≥

√
1 − ε√

1 + ε + 4d2ε
.

Now the aim is show that there is a constant C < 1 such that a/δ ≤ C and that this
constant C is independent of ε. Then by choosing ε small enough, we will contradict
the above inequality.

Finding C :
With respect to the x0 parameterization, λ(−a) is the starting point of λ. By the bounds
(3.5), we have λ(−a) ∈ I +

η(1/2) (q, Vε). Recall q = φ−1(−δ, 0, . . . , 0). We claim that

λ(−a) /∈ I−
η(2) (p, Vε). Let’s assume this to be true for themoment.We then haveλ(−a) /∈

I−
η(2) (p, Vε) ∩ I +

η(1/2)
(q, Vε), and it follows from elementary geometry, see Fig. 1, that

−a ≥ − 4
5δ. That is, a ≤ (4/5)δ, and so we can take C = 4/5. Note that this C value

works for all 0 < ε < ε0. So we obtain our contradiction by taking ε > 0 small enough
so that

√
1 − ε√

1 + ε + 4d2ε
>

4

5
.

Last Step. Proving λ(−a) /∈ I−
η(2) (p, Vε):

This is the only place where we will use that (M, g) is globally hyperbolic. Recall that
λ(−a) ∈ I +

η(1/2) (q, Vε), which in particular implies x0
(
λ(−a)

)
> −δ. Hence it suffices

to show λ(−a) /∈ I−
η(2) (p, Vε) ∩ {φ−1

({x0 > −δ})}. The proof relies on the following
lemma.
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Lemma 3.4. Let a0 and b0 be any points on the negative x0-axis, with a0 to the past of
b0. Then

I +
η(2) (a0, Vε) ∩ I−

η(2) (b0, Vε) ⊂ M.

In particular, the lemma implies

I−
η(2) (p, Vε) ∩

( ⋃

−δ>s1>−2δ

I +
η(2) (φ

−1(s1, 0 . . . , 0), Vε)
)

=
( ⋃

0>s0>−δ

I−
η(2) (φ

−1(s0, 0 . . . , 0), Vε)
)

∩
( ⋃

−δ>s1>−2δ

I +
η(2) (φ

−1(s1, 0 . . . , 0), Vε)
)

⊆ M.

By elementary geometry we have

I−
η(2) (p, Vε) ∩

{
φ−1({x0 > −δ})

}

⊆ I−
η(2) (p, Vε) ∩

( ⋃

−δ>s1>−2δ

I +
η(2) (φ

−1(s1, 0 . . . , 0), Vε)
)

,

from which, together with λ(−a) ∈ ∂M , the claim follows. This concludes the proof of
Theorem 3.3. �
Proof of Lemma 3.4. For technical reasons, it is better to work with the set M1, where
M1 is the connected component of M ∩ Vε which contains the negative x0-axis. Each
connected component of the intersection of two globally hyperbolic sub-spacetimes is
globally hyperbolic, so we know that (M1, g|M1) is globally hyperbolic. It suffices to
prove

I +
η(2) (a0, Vε) ∩ I−

η(2) (b0, Vε) ⊂ M1.

Suppose this were not the case. Then there is a point c0 ∈ I +
η(2) (a0, Vε)∩ I−

η(2) (b0, Vε)

while c0 /∈ M1. Let us construct two ‘straight’ lines α and β from a0 to c0 and b0 to c0,
respectively. Here straight means with respect to the usual Euclidean metric δμνdxμdxν .
The points a0, 0b, and c0 form a two-dimensional trianglewith sides given by the negative
x0-axis from a0 to b0, α, and β. Let us call this triangle �. By rotating coordinates, we
can assume that � lies in the (x0, x1)-plane and that � lies in x1 ≥ 0.

Consider the vertical line segments which join α to β while keeping x1-constant. Let
T (x1) denote any one of these vertical lines, so that T (x1) foliates � with parameter
x1. Note T (0) is just the negative x0-axis from a0 to b0. Let us define

x1∗ = sup{x1 | T (x1) ⊂ M1}.
Since T (0) ⊂ M1 is compact, we know that x1∗ > 0. Moreover, since c0 /∈ M1, we know
that x1∗ ≤ (

x0(b0)− x0(a0)
)
/4. Thus there is some point c∗ ∈ T (x1∗) such that c∗ /∈ M1.

However T (x1) ⊂ M1 for all x1 < x1∗ . Therefore we can generate a sequence of points
cn ∈ T (x1∗ −1/n)whose only accumulation point is c∗. Thus J+(a0, M1)∩ J−(b0, M1)

is not compact which contradicts M1 being globally hyperbolic. �
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Proof of Theorems 1 and 2 in the introduction. Lemma3.2 andTheorem3.3 (alongwith
its time dual) together imply Theorem 2. Now assume (M, g) is timelike geodesically
complete and globally hyperbolic. If (Mext, gext) is a C0-extension, then by Theorem
2 there exists a timelike geodesic γ in M with endpoint on the boundary. Since γ has
infinite length, this contradicts Lemma 2.1. �

It is perhaps worth noting that the full strength of global hyperbolicity is not needed
in Theorem 1. Indeed, nowhere in the proof of Theorem 3.3 is strong causality used,
only the compactness of ‘causal diamonds’.

Theorem 1 directly applies to the spacetimes arising in the proof of the stability
of Minkowski and de Sitter space, by virtue of their global hyperbolicity and timelike
completeness:

Corollary 3.5. (1) The spacetimes constructed in [5]which arise dynamically from per-
turbed Minkowski initial data are C0-inextendible.

(2) The spacetimes constructed in [1,10,11] which arise dynamically from perturbed
de Sitter initial data are C0-inextendible.

We also note that Theorem 3.3 implies the following.

Theorem 3.6. Let (M, g) be a smooth (at least C2) globally hyperbolic spacetime.
Suppose (Mext, gext) is aC0-extension of (M, g). If (M, g) is future timelike geodesically
complete, then ∂+M = ∅.

For globally hyperbolic, future timelike geodesically complete spacetimes, we then
have the following structural result for ∂−M .

Corollary 3.7. Let (M, g) be a smooth (at least C2) globally hyperbolic spacetime
which is future timelike geodesically complete. Suppose (Mext, gext) is a C0-extension of
(M, g). Then ∂−M is an achronal (with respect to smooth timelike curves) topological
hypersurface.

Proof. By Theorem 3.6, we know that ∂+M = ∅. The corollary is then an immediate
consequence of Theorem 2.6 in [13]. �

Wenote further that, since Theorem 3.6 avoids the future one-connectedness assump-
tion, Theorem 3.2 in [13] now extends to FLRW type models with compact Cauchy
surfaces.
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