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Abstract
Standard singularity theorems are proven in Lorentzian manifolds of arbitrary
dimension n if they contain closed trapped submanifolds of arbitrary co-
dimension. By using the mean curvature vector to characterize trapped
submanifolds, a unification of the several possibilities for the boundary
conditions in the traditional theorems and their generalization to an arbitrary co-
dimension is achieved. The classical convergence conditions must be replaced
by a condition on sectional curvatures, or tidal forces, which reduces to the
former in the cases of the co-dimension 1, 2 or n.

PACS numbers: 04.20.Cv, 04.20.Dw, 04.50.−h, 02.40.Ky

1. Introduction

The celebrated Hawking–Penrose singularity theorem [8], see also [2, 7, 9, 12, 16, 20], proves
causal geodesic incompleteness of four-dimensional spacetimes under strong energy, causality
and generic conditions if there is one of the following:

• a closed achronal set without edge,
• a closed trapped surface,
• a point with a re-converging light cone.

It is interesting to note that the first case corresponds to a hypersurface (co-dimension 1
submanifold), the second case to a surface (co-dimension 2 submanifold) and the last case to a
point (co-dimension 4, in four-dimensional spacetimes). The co-dimension 3 case—a closed
spacelike curve—however, is missing in this list. One can wonder why.

In this communication we will show that the missing case can be included by using the
geometrical characterization of trapped submanifolds provided by the mean curvature vector,
and thereby one can further prove the singularity theorems in spacetimes of arbitrary dimension
with closed trapped submanifolds of arbitrary co-dimension. This was conjectured in [17],
where the main ideas and the strategy to be used were presented.
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2. The mean curvature vector and trapped submanifolds

To fix nomenclature and notation, let (V, g) be an n-dimensional causally orientable manifold
with Lorentzian metric gμν of signature −, +, +, . . . , + (μ, ν, . . . = 1, . . . , n). Let ζ be a (for
simplicity) connected (n − m)-dimensional submanifold with local intrinsic coordinates {λA}
(A,B, . . . = m + 1, . . . , n) imbedded in V by the smooth parametric equations xα = �α(λA)

where {xα} are the local coordinates for V . The tangent vectors �eA of ζ are locally given by

�eA ≡ e
μ

A

∂

∂xμ

∣∣∣∣
ζ

≡ ∂�μ

∂λA

∂

∂xμ

∣∣∣∣
ζ

and the first fundamental form of ζ in V is

γAB ≡ gμν

∣∣∣∣
ζ

∂�μ

∂λA

∂�ν

∂λB
.

We assume that ζ is spacelike and therefore γAB is positive definite. Any one-form nμ defined
on ζ and orthogonal to the tangent vectors

(
nμe

μ

A = 0
)

is called a normal one-form to ζ . At
each point on ζ there are m linearly independent normal one-forms. If m > 1 all of these can
be chosen to be null if desired.

The orthogonal splitting into directions tangential or normal to ζ leads to the standard
formula [9, 12]

∇�eA
�eB = 	

C

AB�eC − �KAB

where 	
C

AB are the symbols of the Levi-Civita connection ∇ of γ and �KAB is the shape tensor
of ζ in (V, g). Observe that �KAB = �KBA and it is orthogonal to ζ . The contraction of �KAB

with any normal one-form

KAB(�n) ≡ nμK
μ

AB = −nμeν
A∇νe

μ

B = e
μ

Beν
A∇νnμ

is the second fundamental form with respect to nμ of ζ in (V, g).
The mean curvature vector of ζ in (V, g) [9, 12] is the trace of the shape tensor

�H ≡ γ AB �KAB

where γ AB is the contravariant metric on ζ : γ ACγCB = δA
B . By definition, �H is orthogonal to

ζ . Its contraction with any normal one-form

θ(�n) ≡ nμHμ = γ ABKAB(�n)

is called the expansion of ζ along �n, and is the trace of the corresponding second fundamental
form.

A spacelike submanifold ζ is said to be future trapped (f-trapped from now on) if �H is
timelike and future pointing everywhere on ζ , and similarly for past trapped. This is equivalent
to the condition that the expansions relative to all possible future-pointing normal one-forms
are negative. Observe that the extreme case where n = m (ζ is a point) can be somehow
considered to be included here if the expansion along every possible null geodesic emanating
from ζ becomes negative—as required in the Hawking–Penrose singularity theorem. If �H is
future pointing causal everywhere on ζ , then ζ is said to be weakly future trapped, while if it
is null and future pointing on ζ , then ζ is called marginally future trapped. In these cases the
expansions are non-positive. The extreme case with �H = �0 on ζ corresponds to a minimal
submanifold. Trapped submanifolds of arbitrary co-dimension m were considered in [11, 17,
18] and they appear to have many common properties independent of m.
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3. Existence of points focal to submanifolds of arbitrary dimension

In order to prove singularity theorems based on trapped submanifolds of arbitrary co-dimension
the only intermediate result that needs to be generalized is the existence of focal points along
normal geodesics. This will bring in the restrictions on the curvature that produce the necessary
convergence of neighbouring geodesics. We will concentrate on future-trapped submanifolds,
but the past case can be considered similarly.

Let nμ be any future-pointing normal to the spacelike submanifold ζ , normalized such
that nμuμ = −1 for a fixed timelike unit vector field �u, and let γ denote a geodesic curve
tangent to nμ at ζ . Let u be the affine parameter along γ , and set u = 0 at ζ . We denote by
Nμ the geodesic vector field tangent to γ and by �EA the vector fields defined by parallelly
propagating �eA along γ . Observe that �EA|u=0 = �eA, Nμ|u=0 = nμ, and that NμE

μ

A = 0 for all
u. By construction gμνE

μ

AEν
B is independent of u, so that gμνE

μ

AEν
B = gμνe

μ

Aeν
B = γAB and

one can define along γ

P νσ ≡ γ ABEν
AEσ

B

such that P νσ = P σν and P μ
μ = n − m. At u = 0 this is the projector to ζ .

Proposition 1. Let ζ be a spacelike submanifold of co-dimension m, and let nμ be a future-
pointing normal to ζ . If θ(�n) ≡ (m−n)c < 0 and the curvature tensor satisfies the inequality

RμνρσNμNρP νσ � 0 (3.1)

along γ , then there is a point focal to ζ along γ at or before γ |u=1/c, provided γ is defined up
to that point.

Proof. As null geodesics are also considered here, the energy index form (or Hessian)
[9, 12]—rather than the length index form—is appropriate. The energy index form of a
geodesic γ orthogonal to ζ is the symmetric bilinear form I (·, ·) acting on vector fields that
vanish at (say) u = b and are orthogonal to γ defined by

I ( �V , �W) ≡
∫ b

0

[
(Nρ∇ρV

μ)(Nσ∇σWμ) − NρR
ρ

μντV
μNνWτ

]
du + KAB(�n)vAwB (3.2)

where �v = �V |u=0, vA = vμe
μ

A is the part of �v tangent to ζ , and analogously for �W and �w.
Let �XA ≡ (1 − cu) �EA, that is �XA are the vector fields orthogonal to γ such that

�XA|u=0 = �eA and �XA|u=1/c = �0. Then

I ( �XA, �XB) =
∫ 1/c

0

[
c2γAB − (1 − cu)2NρR

ρ
μντE

μ

ANνEτ
B

]
du + KAB(�n)

and using γ ABKAB(�n) = θ(�n) = (m − n)c one easily gets

γ ABI ( �XA, �XB) = −
∫ 1/c

0
(1 − cu)2NρR

ρ
μντN

νP μτ du. (3.3)

Condition (3.1) implies that this is non-positive. However, standard results [9, 12] state that
there is no focal point along γ for u ∈ (0, 1/c] if and only if the energy index form I (·, ·) is
positive semi-definite, with I ( �V , �V ) = 0 only if �V is proportional to �N on γ . Given that γAB

is positive definite it follows from γ ABI ( �XA, �XB) � 0 that the energy index form cannot have
such a property, and therefore there exists a point focal to ζ along γ for u ∈ (0, 1/c]. �
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Remark.

(i) Note that for spacelike hypersurfaces, when the co-dimension m = 1, there is a unique
timelike orthogonal direction nμ. Then Pμν = gμν −(NρN

ρ)−1NμNν and condition (3.1)
reduces to simply RμνN

μNν � 0, that is to say, the timelike convergence condition [2, 7,
9, 12, 16, 20] along γ .

(ii) For the co-dimension m = 2, there are two independent null normal directions at each
point of ζ , say nμ and �μ. By propagating �μ along γ one can define the null vector
field Lμ on γ . Then, Pμν = gμν − (NρL

ρ)−1(NμLν + NνLμ) and again condition (3.1)
reduces to simply RμνN

μNν � 0, that is to say, the null convergence condition [2, 7, 9,
12, 16, 20] along γ .

(iii) For the co-dimension m > 2, the interpretation of condition (3.1) can be given physically
in terms of tidal forces, or geometrically in terms of sectional curvatures [4, 9, 12].
A completely analogous condition was used in [5] for the proper Riemannian case in
connection with minimal submanifolds (of arbitrary dimension).
For a timelike unit normal nμ one has

Rμνρσnμeνnρeσ = k(n, e)(nρnρ)(eρe
ρ) = −k(n, e)(eρeρ)

where nμeμ = 0, and k(n, e) is called the sectional curvature relative to the plane spanned
by �n and �e. Therefore, by choosing n−m mutually orthogonal vectors �eA tangent to ζ

condition (3.1) states that the sum of the n−m sectional curvatures relative to a set of
independent and mutually orthogonal timelike planes aligned with nμ is non-positive,
and remains so along γ . In physical terms, this is a statement about the attractiveness of
the gravitational field, on average. The tidal force—or geodesic deviation—in directions
initially tangent to ζ is attractive on average in such a way that the overall result is a
tendency to converge.
For a null normal nμ one may consider analogously

Rμνρσnμeνnρeσ = k(n, e)(eρeρ)

where nμeμ = 0, and k(n,e) is called the null sectional curvature relative to the plane
spanned by �n and �e. Note, as per the standard definition in this case [2], that the minus sign
is omitted. Thus, the interpretation above remains essentially the same (but with ‘non-
positive’ now replaced by ‘non-negative’) by considering both the sectional curvatures
and planes to be null.

The curvature condition (3.1) in proposition 1 can in fact be weakened. It is sufficient
that it holds on the average in a certain sense. Only a milder, integrated version, is needed, as
we now briefly discuss. Thus, the condition that tidal forces should be attractive along γ can
be substantially relaxed.

For the following, let the notation be as in proposition 1.

Proposition 2. Let ζ be a spacelike submanifold of co-dimension m, and let nμ be a future-
pointing normal to ζ . If, along γ (assumed to be future complete) the curvature tensor
satisfies ∫ ∞

0
RμνρσNμNρP νσ du > θ(�n), (3.4)

then there is a point focal to ζ along γ .

Observe that there is no restriction on the sign of θ(�n). We also note that, unlike
proposition 1, this proposition does not restrict the location of the focal point, but this will
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not be needed to prove singularity theorems under weaker curvature conditions (such as (4.1)
below).

Proof. Let f = f (u), u � 0, be the solution to the initial value problem

(n − m)f ′′ + r(u)f = 0,

f (0) = 1, f ′(0) = θ(�n)

n − m
,

where r ≡ RμνρσNμNρP νσ . Given that (3.4) holds, it follows immediately from lemma 3 in
[5] that f has a zero on (0,∞), i.e. there exists b > 0 such that f (b) = 0.

Now let �XA ≡ f �EA on [0, b]. Substituting into (3.2), gives

I ( �XA, �XB) =
∫ b

0

[
f ′2γAB − f 2NρR

ρ
μντE

μ

ANνEτ
B

]
du + KAB(�n).

Contracting with γ AB and using f ′2 = (ff ′)′ − ff ′′, we obtain

γ ABI ( �XA, �XB) = −
∫ b

0
[(n − m)f ′′ + r(u)f ]f du + (n − m)ff ′∣∣b

0 + θ(�n) = 0.

The remainder of the argument is just as in the proof of proposition 1. �

4. Main results: singularity theorems

We start by proving the generalization of the Penrose singularity theorem [13], see also
[2, 7, 9, 12, 16, 20], which is the first of the ‘modern’ theorems. Then, we will also prove the
generalization of the more elaborated Hawking–Penrose theorem.

Recall that for any set ζ , E+(ζ ) ≡ J +(ζ )\I +(ζ ), using the standard notation for the causal
J +(ζ ) and chronological I +(ζ ) futures of ζ , see e.g. [2, 7–9, 14, 16].

Proposition 3. Let ζ be a closed f-trapped submanifold of co-dimension m > 1, and assume
that the curvature tensor satisfies the inequality

RμνρσNμNρP νσ � 0

for any future-pointing null normal one-form nμ. Then, either E+(ζ ) is compact, or the
spacetime is future null geodesically incomplete, or both.

Remark. The case with m = 1 is not included here because it is trivial. If ζ is a spacelike
hypersurface, then E+(ζ ) ⊂ ζ—and actually E+(ζ ) = ζ if ζ is achronal—and the compactness
of E+(ζ ) follows readily without any further assumptions.

Proof. Assume that (V, g) is future null geodesically complete. As ζ is f-trapped one has
θ(�n) = (m − n)c < 0 for any future-pointing null normal one-form nμ. Let (m − n)C be the
maximum value of all possible θ(�n) on the compact ζ . Due to proposition 1 every null geodesic
emanating orthogonally from ζ will have a focal point at or before the affine parameter reaches
the value 1/C. Standard results [2, 7, 9, 12, 16, 20] imply that these null geodesics enter I +(ζ )

from the focal point on. Let K be the set of points reached by all these null geodesics up to
the affine parameter 1/C inclusive, so that K is compact. Obviously E+(ζ ) ⊂ K, and thus it
is enough to prove that E+(ζ ) is closed. Let {pi} be an infinite sequence of points pi ∈ E+(ζ )

and let p be their accumulation point on the compact K. p cannot be in I +(ζ ) as otherwise,
I +(ζ ) being open, there would be a neighbourhood of p within I +(ζ ) containing some of the
pi, which is impossible as pi ∈ E+(ζ ). But p certainly is in K ⊂ J +(ζ ). Hence, p ∈ E+(ζ )

showing that E+(ζ ) is closed and thus compact. �
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The analogue of the Penrose singularity theorem can now be proven.

Theorem 1. If (V, g) contains a non-compact Cauchy hypersurface � and a closed f-trapped
submanifold ζ of arbitrary co-dimension, and if condition (3.1) holds along every future-
directed null geodesic emanating orthogonally from ζ , then (V, g) is future null geodesically
incomplete.

Proof. The proof is standard [2, 7, 12, 13, 16, 20], so we just sketch it. If (V, g) were null
geodesically complete E+(ζ ) would be compact due to proposition 3. But the spacetime is
globally hyperbolic so that

(i) E+(ζ ) = ∂J +(ζ ) is the boundary of the future set J +(ζ ) and therefore a proper achronal
boundary, ergo an imbedded submanifold without boundary [7–9, 14, 16, 20]; and

(ii) the manifold is the product V = R × �, see [3] and references therein.
Then the canonical projection on � of the compact achronal E+(ζ ) would have to have a

boundary, ergo the contradiction. �

Theorem 2. The conclusion of propositon 3, and hence, of theorem 1, remains valid if the
curvature condition and the trapping condition assumed there are jointly replaced by∫ a

0
RμνρσNμNρP νσ du > θ(�n), (4.1)

along each future inextendible null geodesic γ : [0, a) → V , a ∈ (0,∞], emanating
orthogonally from ζ with initial tangent nμ.

Proof. We shall assume that ζ is acausal. (The case in which ζ is not acausal can be handled by
considering a suitable finite cover of ζ by acausal subsets.) To prove theorem 2, it is sufficient
to show that E+(ζ ) is compact under the assumption of future null geodesic completeness.
Under this assumption (in which case a = ∞ in (4.1)), proposition 2 implies that there is a
focal point along each future-directed null geodesic emanating orthogonally from ζ . Since cut
points to ζ 3 come at or before focal points, there is a null cut point along each of these null
geodesics. The compactness of ζ and the fact that the affine distance to each null cut point is
upper semi-continuous, as a function of points in ζ , imply that there exists C∗ > 0 such that
each cut point occurs at or before the affine value C∗. Let K be the set of points reached by
all these null geodesics up to the affine parameter C∗ inclusive, so that K is compact. Since
E+(ζ ) ⊂ K, and, as argued in proposition 3, E+(ζ ) is closed, we have that E+(ζ ) is compact.

�

Thus, for example, even if ζ is only weakly or marginally f-trapped, or minimal,
the conclusion of future null geodesic incompleteness in theorem 1 still holds, provided
inequality (3.1) is strict at least at one point on each future-directed null geodesic γ emanating
orthogonally from ζ .

Let us finally consider the more powerful Hawking–Penrose singularity theorem [8]. As
is known, this theorem is based on the Hawking–Penrose lemma, proven in [8], see also
[2, 7, 9, 16], stating that the following three statements cannot hold simultaneously in a given
spacetime:

• every endless causal geodesic has a pair of conjugate points;
• there are no closed timelike curves (chronology condition);
• there is an achronal set η such that E+(η) is compact.

3 See [10] for relevant definitions and properties in the co-dimension 2 case; the higher co-dimension case works
similarly.
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This result holds independently of the dimension, and the achronal set η can also be anything
as long as E+(η) is compact. Thus, one only has to ensure that the standard result leading to the
compactness of E+(η) is achieved if there is a f-trapped submanifold of arbitrary dimension.
This is proven now—for the definition of strong causality refer to any standard reference
[2, 7, 9, 12, 14, 16, 20].

Proposition 4. If (V, g) is strongly causal and there is a closed f-trapped submanifold ζ

of arbitrary co-dimension m > 1 such that condition (3.1) holds along every null geodesic
emanating orthogonally from ζ , then either E+(E+(ζ ) ∩ ζ ) is compact, or the spacetime is
null geodesically incomplete, or both.

Remark. Thus, η ≡ E+(ζ ) ∩ ζ provides the needed set in the Hawking–Penrose lemma
above, the achronality of η being a direct consequence of the achronality of E+(ζ ).

Proof. Assume that (V, g) is null geodesically complete; hence, E+(ζ ) is compact due to
proposition 3 so that η is also compact. The set η is also non-empty, as otherwise ζ ⊂ I +(ζ )

against the assumption of strong causality [2, 7, 16]. One only needs to prove that actually
E+(η) = E+(ζ ), ergo compact. This can be done in standard fashion [2, 16] by covering
the compact ζ with convex normal neighbourhoods such that the piece of ζ on each of them
is achronal, extracting a finite sub-cover, and then showing that I +(ζ ) ⊂ I +(η), leading
immediately to I +(ζ ) = I +(η). Consider now q ∈ J +(ζ ). From the previous equality, if
q ∈ I +(ζ ), then q ∈ I +(η) ⊂ J +(η). If q /∈ I +(ζ ) = I +(η), then there is a point p ∈ ζ

with q ∈ E+(p). It is obvious that p /∈ I +(ζ ) because q /∈ I +(ζ ); hence, p ∈ ζ − I +(ζ )

ergo p ∈ E+(ζ ) ∩ ζ = η so that q ∈ J +(η), implying that J +(ζ ) = J +(η). Finally,
E+(η) = J +(η) − I +(η) = J +(ζ ) − I +(ζ ) = E+(ζ ) as required. �

From this result the analogue of the Hawking–Penrose theorem follows at once.

Theorem 3. If the chronology, generic and strong energy conditions hold and there is a closed
f-trapped submanifold ζ of arbitrary co-dimension such that condition (3.1) holds along
every null geodesic emanating orhogonally from ζ , then the spacetime is causal geodesically
incomplete.

Remark. Of course, for the co-dimension m = 1 there are no null geodesics orthogonal to
ζ and there is no need to assume (3.1) nor anything concerning the mean curvature vector of
ζ , as in the remark to proposition 3. For co-dimension m = 2 the condition (3.1) is actually
included in the strong energy condition as explained in remark (ii) to proposition 1. The same
happens for co-dimension m = n. These three cases cover the original Hawking–Penrose
theorem.

In principle, any other singularity theorem assuming a closed trapped surface can be
appropriately generalized to the arbitrary co-dimension by means of propositions 1–4.

5. Discussion with some applications

The main application of these theorems is, of course, to higher dimensional spacetimes,
and therefore they can be used in the fashionable Kaluza–Klein/string/supergravity/M-type
theories. In dimension 11, say, there are now ten different possibilities for the boundary
condition in the theorems, in contrast with the classical three possibilities. All these should
be explored and can have relevance in connection with the compactified extra-dimensions.

7
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For example, the singularity theorems proven in this communication reinforce the
arguments put forward by Penrose [15] about the classical instability of spatial extra-
dimensions, as they might develop singularities within a tiny fraction of a second. In a
ten-dimensional spacetime, the argument in [15] needs some ad hoc splittings, and some
restrictions on the Ricci tensor that can be avoided by using the theorems proven herein. It is
enough that the compact extra-dimensional space, or any of its compact less-dimensional
subsets, satisfies the trapping condition, and the restriction on Ricci curvatures can be
replaced by the appropriate (averaged) condition on tidal forces. All in all, the basic
argument of Penrose acquires a wider applicability and requires less restrictions by using
the singularities proven to develop under the existence of compact submanifolds of any
dimension.

Even in the traditional four-dimensional Lorentzian manifolds of any classical
gravitational theory, the new theorem may have some applications when considering the
case of a closed trapped curve. Observe that these are just curves whose acceleration
vector is timelike. An obvious relevant example, as explained in [17], is the case of
spacetimes with whole cylindrical symmetry [19], expressed in local coordinates by the line
element

ds2 = −A2 dt2 + B2 dρ2 + F 2 dϕ2 + E2 dz2, (5.1)

where ∂ϕ, ∂z are the spacelike commuting Killing vectors. The coordinate ϕ is closed with
standard periodicity 2π . The cylinders given by constant values of t and ρ are geometrically
preferred 2-surfaces; however, these cylinders are not compact in general, so that they have
no direct implication in the development of geodesic incompleteness.

Nevertheless, the spacelike curves defined by constant values of t, ρ and z are also
geometrically distinguished and certainly closed. Their mean curvature vector is easily seen
to be proportional to dF . Thus, the causal character of the gradient of only the function F,
which is the norm of the circular Killing vector ∂ϕ , characterizes the trapping of these closed
circles. Thereby, many results on incompleteness of geodesics can be found. Moreover, there
arises a new hypersurface, defined as the set of points where dF is null, which is a new type of
horizon, being a boundary separating the trapped from the untrapped circles, and containing
marginally trapped circles.

We now consider an application of theorem 1 (or, more precisely, its time-dual) to the
existence of initial singularities in asymptotically de Sitter spacetimes with compact Cauchy
hypersurfaces. This, as we shall see, also involves trapped circles. In [1, 6], results were
obtained that establish a connection between Cauchy hypersurfaces with nontrivial topology
and the occurrence of past singularities in such spacetimes. This behaviour is well illustrated by
dust-filled FLRW solutions to the Einstein equations [19] with positive cosmological constant,
� > 0; cf the discussion [6]. Such models with spherical spatial topology (de Sitter spacetime
being the limiting case) need not have past singularities, whereas models which have, e.g.
toroidal spatial topology, all have past singularities. We now present another general result
along these lines.

We shall say that a group G is sufficiently large provided it has a nontrivial normal
subgroup H such that |G/H | = ∞ (i.e. the cardinality of G/H is not finite.) The fundamental
group π1(T

k) = Z
k of the k-torus Tk, k � 2, is an example of a sufficiently large group.

Theorem 4. Let (V, g) have dimension n � 3, with all null-sectional curvatures non-negative.
Suppose � is a compact Cauchy hypersurface for (V, g) which is expanding to the future in
all directions, i.e. which has positive definite second fundamental form with respect to the
future-pointing normal. Then, if π1(�) is sufficiently large, (V, g) is past null geodesically
incomplete.

8
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Remark. We note that the curvature condition in theorem 4 is satisfied strictly in the FLRW
models mentioned above, as well as in sufficiently small perturbations of those models. Since
the timelike convergence condition [7, section 4.3] is not assumed in theorem 4, and indeed
does not in general hold in spacetimes which satisfy the Einstein equations with positive
cosmological constant, many of the standard singularity theorems (such as theorem 4 in [7, p
272]) are not applicable to the setting considered in theorem 4.

Proof. Let H be a nontrivial normal subgroup of π1(�) such that |π1(�)/H | = ∞. Since
� is compact we can minimize arc length in the free homotopy class of a nontrival element
of H to obtain a closed geodesic σ in �. Since � has negative definite second fundamental
form with respect to the past-pointing unit normal, one easily verifies that σ is a past-trapped
co-dimension n − 1 submanifold in (V, g). If (V, g) were past null geodesically complete,
then the time-dual of proposition 3 and the curvature condition would imply that E−(σ ) is
compact. Since all the Cauchy hypersurfaces of (V, g) are compact [3], this does not directly
lead to a contradiction. But now we pass to a covering spacetime. By standard covering space
theory there exists a covering manifold �̃ of �, with covering map p : �̃ → �, such that the
induced map on fundamental groups p∗ : π1(�̃) → H ⊂ π1(�) is an isomorphism. Since
|π1(�)/H | = ∞, this is an infinite sheeted covering, and hence �̃ is non-compact. We know
by the global hyperbolicity of (V, g) that V is diffeomorphic to R × � [3], and hence that the
fundamental groups of � and V are isomorphic. From this it follows that there is a covering
spacetime (Ṽ, g̃), with covering map P : Ṽ → V , such that (i) P is a local isometry, (g̃ is
the pullback of g via P), and (ii) Ṽ contains �̃ as a Cauchy hypersurface, such that P |�̃ = p.
Now, since p∗ is an isomorphism, σ lifts to a closed geodesic σ̃ in �̃, which, because P is a
local isometry, is past trapped in (Ṽ, g̃). Then, since the curvature condition lifts to (Ṽ, g̃),
the time-dual of theorem 1 implies that there exists a past incomplete null geodesic in (Ṽ, g̃).
This projects, via P, to a past incomplete null geodesic in (V, g). �

Of course, this theorem has a dual version to the future, if the compact Cauchy
hypersurface is contracting.
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