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Abstract

We study fine differentiability properties of horizons. We show that the set of end points of
generators of ann-dimensional horizonH (which is included in an(n+1)-dimensional space–time
M) has vanishingn-dimensional Hausdorff measure. This is proved by showing that the set of end
points of generators at which the horizon is differentiable has the same property. For 1≤ k ≤ n+1,
we show (using deep results of Alberti) that the set of points where the convex hull of the set of
generators leaving the horizon has dimensionk is “almost aC2 manifold of dimensionn+1−k”: it
can be covered, up to a set of vanishing(n+1−k)-dimensional Hausdorff measure, by a countable
number ofC2 manifolds. We use our Lorentzian geometry results to derive information about the
fine differentiability properties of the distance function and the structure of cut loci in Riemannian
geometry. © 2002 Elsevier Science B.V. All rights reserved.

Keywords:Riemannian geometry; Horizons; Hausdorff measure

1. Introduction

Horizons are amongst the most important objects that one encounters in causality theory:
Cauchy horizons constitute boundaries beyond which predictability breaks down; event
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horizons are boundaries beyond which no return is possible. The key structural property of
horizons is the existence ofgenerators: recall that an embedded hypersurfaceH ⊂ M is
said to befuture null geodesically ruledif every pointp ∈ H belongs to a future inextensible
null geodesicΓ ⊂ H; those geodesics are called generators ofH. One can then extract
the essential properties of Cauchy horizons, or black hole event horizons, in the following
definition:H is a future horizonif H is anachronal, closed, future null geodesically ruled
topological hypersurface. It follows from the above definition (or from the properties of
past Cauchy horizons, or from the properties of future event horizons) that the generators
can have past endpoints onH, but no future endpoints.

The setHend of end points of generators ofH provides an important tool in the study
of the structure of horizons; for simplicity, we will refer to those points asend points. In
particular, one wants to know how “large” this set can be. One defines the multiplicityN(p)

of a pointp ∈ H as the number of generators which pass through or exitH atp; it is well
known that ifN(p) > 1, thenp is necessarily the endpoint of all relevant generators. The set
of points with multiplicityN(p) > 1 determines the differentiability properties of horizons:
as has been shown by Beem and Królak [2], horizons are non-differentiable precisely at
this set. It is also well known that the set of points at which a horizon is non-differentiable
has vanishingn-dimensional Hausdorff measure, and this gives one control over the size
of the set of endpoints with multiplicityN(p) > 1. Thus, in order to control the dimension
of Hend it remains to estimate that of the set of endpoints with multiplicityN(p) = 1.
Let us denote byHdiff the set of points ofH at whichH is differentiable; what has been
said shows that the set of endpoints with multiplicityN(p) = 1 coincides with the set
Hend ∩ Hdiff . Beem and Królak [2] have displayed an example of a horizon with an end
point with multiplicity 1 (at whichH is, of course, differentiable), thus there exist horizons
for which the setHend∩Hdiff is not empty. Our first main result is the following theorem.

Theorem 1. LetH be a future horizon in an(n+1)-dimensional space–time(M, g). Then
the setHend ∩ Hdiff has vanishing n-dimensional Hausdorff measure. Moreover, for any
C2 space-like hypersurfaceS the setHend∩Hdiff ∩ S has vanishing(n− 1)-dimensional
Hausdorff measure.

Remark 2. In fact, we expect a stronger conclusion to hold, namely that the setHend∩Hdiff
has vanishing(n− 1)-dimensional Hausdorff measure inH. The rationale for this is as fol-
lows: we first note that it is possible to weaken the regularity assumption onS. For Theorem
1 to hold it is sufficient to require thatS be a Lipschitz hypersurface that meets the horizon
transversely at almost all points of the intersection. This point, taken in conjunction with the
fact that the setHend∩Hdiff is necessarily acausal, suggests the possibility of constructing
such a Lipschitz hypersurface (or perhaps a countable collection of such Lipschitz hyper-
surfaces) that containsHend∩Hdiff , at least up to a set of vanishing(n − 1)-dimensional
Hausdorff measure. Theorem 1, under this weaker regularity assumption onS would then
give the strengthened conclusion. Initial efforts to construct such a hypersurface have not
been successful.

The set of points where the multiplicityN(p) is large has a more precise structure.
To describe this, equipM with an auxiliary complete Riemannian metricσ , and for each
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p ∈ H, letN+
p be the set of future pointingσ -unit vectors that are tangent to a generator

of H atp. We call such vectorssemi-tangentstoH. Then the number of vectors inN+
p is

just the multiplicityN(p) of p. Define

Cp := convex cone generated byN+
p .

We can measure the size of the set of generators throughp by dim(Cp) (which is the
dimension of the linear span ofCp in TpM). This is a different measure thanN(p); in
particular, this gives finer information whenN(p) = ∞. We also set

H[k] := {p : dim(Cp) ≥ k}. (1.1)

For k = 1,H[k] = H as every point is on at least one generator. Fork = 2,H[k] is the
set of points ofH that are on more than one generator. As dim(Cp) is the dimension of the
span ofN+

p andN+
p containsN(p) vectors, dim(Cp) ≤ N(p). This implies

H[k] ⊆ {p ∈ H : N(p) ≥ k}.
Also, for 1≤ k ≤ 3, anyk distinct elements ofN+

p are linearly independent.5 Therefore if
1 ≤ k ≤ 3 andN(p) ≥ k then choosingk distinct, and thus linearly independent, elements
of N+

p , shows that dim(Cp) ≥ k. Whence

H[k] = {p ∈ H : N(p) ≥ k} for 1 ≤ k ≤ 3.

Our next main result, based on the deep results6 in [1], is that the setsH[k] are “almost
C2 submanifolds of dimensionn + 1 − k, up to singular sets of lower dimension”.7 To
make this statement precise, lethm be them-dimensional Hausdorff measure onM (defined
with respect to some Riemannian metricσ onM). Recall [1, Definition 1.1, p. 19] a Borel
setΣ ⊂ M is a (hm,m) rectifiable set of classC2 iff Σ can be covered, up to a set of
vanishinghm measure, by a countable collection ofm-dimensionalC2 submanifolds ofM.
This definition is independent of the choice of the Riemannian metricσ . Following [1], we
will shorten “(hm,m) rectifiable set of classC2” to “C2 rectifiable of dimensionm”.

Theorem 3. For 1 ≤ k ≤ n+ 1 the setH[k] is aC2 rectifiable set of dimensionn+ 1− k.
ThereforeH[k] has Hausdorff dimension≤ n + 1 − k.

Usingk = 1, and thatH[1] = H, this implies that horizons areC2 rectifiable of dimension
n. As they are also locally Lipschitz graphs they have the further property thathn(H∩K) <

∞ for all compact setsK ⊆ M. Whenk = n+ 1 this implies thatH[n+ 1] is a countable
set (cf. Remark 7).

5 The linear span of two future pointingσ -unit null vectors is a two-dimensional time-like subspace and there
are only two future pointing null rays in this subspace. So a third future pointingσ -unit vector cannot be in the
span of the first two.

6 The reader is warned that the dimension indexk, inH[k], is shifted by one, as compared to that used in Theorem
3 of Alberti [1]; compare the remarks following Definitions 1.5 and 1.7 in [1].

7 We note a related result of Husa and Winicour [12], where it is shown that the set{N(p) = 2} is, up to a lower
dimensional set, a smooth submanifold of co-dimension two for the horizons considered there.
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2. Proof of Theorem 1

We shall prove the second part of the theorem; the first part follows immediately from
the second and the co-area formula. Let, then,S be as in Theorem 1; since the result is
purely local, without loss of generality we may assume thatS is the level set{t = 1} of
a time functiont , with rangeR, the level sets of which are Cauchy surfaces. We use the
constructions and notations of Chruściel et al. [4], withΣ1 = S andΣ2 = {t = 2}. Let

Ŝ1 = S ∩Hend∩Hdiff ,

and letA, φ be defined as at the beginning of the proof of Theorem 6.1 in [4]. Hence,A is
the subset ofS2 = Σ2 ∩H consisting of those points inS2 that are met by the generators
ofH that meetS1 = Σ1 ∩H, andφ : A → S1 is the map that moves the points ofA back
along these generators toS1. We can choose the auxiliary Riemannian metricσ onM so
that dt has unit length with respect to this metric. ThenA is anAδ set as defined by Eq. (6.6)
of Chrúsciel et al. [4], withδ = 1. We set

Â = φ−1(Ŝ1) ⊂ A ⊂ S2,

thus, the points inÂ are precisely those points onΣ2 ∩ H the generators through which
exitH, when followed to the past, at the differentiable end points onS.

For i = 1,2, let hn−1
hi

denote the(n − 1)-dimensional Hausdorff measure onΣi with
respect to the distance function determined by the induced metrichi onΣi . By a straight-
forward extension of the proof of Chruściel et al. [4, Proposition 6.14], one has for any
hn−1
h2

-measurable subsetΩ of A:∫
S1

N(p, S2)1φ(Ω) dhn−1
h1

(p) =
∫
Ω

J(φ)(q)dhn−1
h2

(q), (2.1)

where1U denotes the characteristic function of the setU , andJ (φ) is, in a suitably defined
sense (cf. [4, Proposition 6.14]), the Jacobian of the locally Lipschitz functionφ.

In Proposition 4, we show that there exists ahn−1
h2

-negligible setÂ′ ⊂ Â such that

J (φ)(q) = 0 for all q ∈ Â \ Â′. It then follows that:

Â ⊂ Ω ≡ {q ∈ A : J (φ) = 0} ∪ Â′, (2.2)

Ω, as defined above, is the union of ahn−1
h2

-measurable set and ahn−1
h2

-negligible set, and

hence is itselfhn−1
h2

-measurable. Eq. (2.1) then shows thatφ(Ω) is hn−1
h1

-negligible. Now,

sinceŜ1 ⊂ φ(Ω), the result follows.
It thus remains to establish the following proposition.

Proposition 4. J (φ)(q) = 0 for hn−1
h2

-almost allq ∈ Â.

Proof. We use the definitions, constructions and notations of the proof of Chruściel et al.
[4, Proposition 6.16]. Thus, letU ⊂ Σ2 be a coordinate neighborhood of the formV×(a, b)

with V ⊂ R
n−1 anda, b ∈ R, in whichU ∩ N is the graph of aC1,1 functiong : V → R,

and in whichH ∩ U is the graph of a semi-convex functionf : V → R. Here,N = Nδ
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is a locallyC1,1 hypersurface inΣ2 into whichA has been embedded. Let prA denote the
projection ontoV of A ∩ U , thusA ∩ U is the graph ofg over prA.

Now, letx0 ∈ B̂∩pr Â, whereB̂ is the set of full measure in prA constructed in the proof
of Chrúsciel et al. [4, Proposition 6.16], and prÂ is the projection ontoV of Â∩U . Sinceg
is Lipschitz, the graph ofg overB̂ ∩ pr Â has full measure in̂A. Letq0 = (x0, f (x0)) ∈ Â

be the corresponding point onH ∩Σ2, thus the generatorΓ ofH passing throughq0 exits
the horizon at a pointp ∈ S ∩Hdiff . Let Γ̂ be any null geodesic which extendsΓ to the
past, and letpn be any sequence of points on̂Γ which are to the causal past ofp and which
approachp asn tends to infinity. SinceΓ̂ is a null geodesic which exitsH atp, thepn’s lie
to the time-like pastI−(H) of H. Thus the integral curveγn of ∂/∂t starting atpn meets
H at some pointrn ∈ γn ∩H. One can then construct a causal curve frompn toH ∩ Σ2
by following γn from pn to rn, and any generator ofH passing throughrn; as(M, g) is
globally hyperbolic this generator will necessarily intersectΣ2. It follows that there exists
a time-like curveγ̂n ⊂ J−(H) from pn to H ∩ Σ2. By the compactness of the space of
causal curves, passing to a subsequence if necessary, theγ̂n’s converge (in a well-known
sense) to a causal curveγ from p to a pointq ∈ H ∩ Σ2. The achronality ofH shows that
γ is a generator ofH passing throughp, henceγ = Γ andq = q0.

Now suppose thatJ (φ)(q0) �= 0. By the construction of the set̂B, there existsgj ∈
C2(V), approximatingg, such thatSj , the graph ofgj , is aC2 hypersurface inΣ2 which,
in a well-defined sense, makes second-order contact withH∩Σ2 atq0. (More precisely,gj
andf , as well as their first derivatives, agree atq0, and the second derivative ofgj agrees
with the so-called second Alexandrov derivative off atq0.) SinceSj is tangent toH∩Σ2

at q0, the null geodesicΓ̂ is normal toSj at q0. Let φj : Sj → S be theC1 map which
moves the points ofSj along the family of null geodesics normal toSj which includesΓ̂ .
Then we haveJ (φj (q0)) = J (φ)(q0) �= 0, cf. [4, Eq. (6.40)]. Definegj,ε ∈ C2(V) by

gj,ε(x) = gj (x) + ε|x − x0|2, (2.3)

and letSj,ε be the graph ofgj,ε; for ε > 0, Sj,ε ⊂ J+(H) andSj,ε \ {q0} ⊂ I+(H). Note
that asSj,ε is tangent toSj atq0, Γ̂ is normal toSj,ε atq0.

The fact that the Jacobian ofφj is non-zero atq0 implies thatp is not a focal point toSj
alongΓ̂ . Moreover, there can be no focal points toSj along the segment of̂Γ to the future
of p, cf. [4, Lemma 4.15]. It follows that by takingε small enough and̂Γ short enough,
there will be no focal points toSj,ε alongΓ̂ . This implies by normal exponentiation that
there exists an embeddedC2 null hypersurfaceNj,ε which containsΓ̂ and, by shrinking it if
necessary,Sj,ε, as well, cf. [4, Proposition A3]. Moreover, there exists a neighborhoodO of
Γ̂ in whichNj,ε is achronal: indeed, since space–time is time orientable,Nj,ε is a two-sided
connected embedded hypersurface inM. As suchNj,ε admits a connected neighborhood
O which is separated byNj,ε (Nj,ε ⊂ O, andO \Nj,ε consists of two components). Then
a future directed time-like curve joining points ofNj,ε would be a time-like curve from the
future side ofNj,ε to the past side ofNj,ε, which is impossible if the curve remains inO.
We conclude thatNj,ε is achronal inO.

Consider now the time-like curveŝγn ⊂ J−(H) constructed earlier in the proof; since
the γ̂n’s converge toΓ there existsn0 such that all theγ̂n’s are entirely contained inO
for n ≥ n0. Moreover, by takingn0 larger if necessary, it is clear that each suchγ̂n will
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meet the hypersurfaceP in M obtained by pushingSj,ε to the past along the integral curves
of −(∂/∂t). One can then construct a time-like curve frompn to Sj,ε contained inO by
following γ̂n from pn to P , and then an integral curve of∂/∂t to Sj,ε. This contradicts the
achronality ofNj,ε in O, and establishes Proposition 4. �

3. Proof of Theorem 3

We start by showing thatH has no worse regularity than being the boundary of a convex
set.

Proposition 5. For any pointp ∈ H there is a coordinate systemx1, . . . , xn+1 defined on
an open setU ⊆ M, so thatH∩U is given by the graphxn+1 = h(x1, . . . , xn) of a convex
function h.

Proof. It is shown in [4, Theorem 2.2] thatH is locally the graph of a semi-convex function.
That is, there is a coordinate systemy1, . . . , yn+1, so thatU ∩H is given by a graphyn+1 =
u(y1, . . . , yn) + h(x1, . . . , xn), whereu is C∞ andh is convex. Define new coordinates
by xi = yi for i = 1, . . . , n andxn+1 = yn+1 − u(x1, . . . , xn). In these coordinatesH is
given byxn+1 = h(x1, . . . , xn). �

Recall that a convex body in a finite dimensional vector space has a well-defined normal
cone at each of its boundary pointsp. One definition of this tangent cone is the set of linear
functionals on the vector space such that their restrictions to the body attain a maximum
at the pointp. The following is an adaptation of this definition to manifolds which allows
us to define the tangent cones Norp(J

+(H)) to J+(H) at pointsp ∈ H = ∂J+(H) in an
invariant manner:

Norp(J
+(H)) := {df (p) : f ∈ C∞(M,R)andf |J+(H) has a local maximum atp}.

The following is a special case of a main result (see footnote 2) in the paper of Alberti [1,
Theorem 3, p. 18] adapted to our notation.

Proposition 6. Let B be convex body in an(n + 1)-dimensional vector space. For each
k = 1,2, . . . , n+ 1, let ∂B[k] be the set of pointsp ∈ ∂B, so thatdim Norp(B) ≥ k. Then
∂B[k] is aC2 rectifiable set of dimensionn+ 1− k. Therefore the Hausdorff dimension of
∂B[k] is less than or equal ton + 1 − k.

Remark 7. The top and bottom dimensional cases of this are worth remarking on. When
k = n + 1 this implies that∂B[n + 1] is aC2 rectifiable set of dimension 0. But then [1,
Theorem 3 and Definition 1.1],∂B[n+ 1] is a countable union of sets of finiteh0 measure.
However, the zero-dimensional measureh0 is just the counting measure [9, p. 171], so that
h0(A) is just the number of points inA. Therefore∂B[n+1] is countable as it is a countable
union of finite sets. Consider, next,k = 1; as dim Norp(J+(H)) ≥ 1 for all p ∈ ∂B, we
have∂B = ∂B[1] and therefore∂B is aC2 rectifiable set of dimensionn. Because∂B is also
locally the graph of a Lipschitz function, it has the further property thathn(K ∩ ∂B) < ∞
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for all compact setsK. The corresponding fact is not true for∂B[k] when 2≤ k ≤ n − 1
(cf. [1, Theorem 2, p. 18]).

Theorem 3 follows immediately from this, Proposition 5, and the following lemma.

Lemma 8. For eachp ∈ H the normal coneNorp(J+(H)) is given by

Norp(J
+(H)) = {〈v, ·〉 : v ∈ Cp}.

Proof. We choose a coordinate systemx1, . . . , xn+1 on an open setU containingp as in
Proposition 5 so thatH∩U is given byxn+1 = h(x1, . . . , xn), whereh is convex. We may
assume that the pointp has coordinates(0, . . . ,0). We also assume thatU is of the form
V × (a, b) for V an open convex set inRn and thath takes values in the interval(a, b).
Thenh is locally Lipschitz and thus the Clarke differential∂h(0) exists and is a compact
convex set of linear functionals onRn [7, pp. 27–28]. Ash is convex∂h(0) is just the set
of sub-differentials toh at 0 in the sense of convex analysis [7, Proposition 2.2.7, p. 36]. It
follows that forq ∈ H ∩ U if we write q = (x, h(x)) with x ∈ V that

Norq(J
+(H)) = {λ(α − dxn+1) : λ ≥ 0, α ∈ ∂h(x)}.

There is another useful description of∂h(0). LetΩh be the set of pointsx in V , where the
classical derivative dh(x) exists. Ash is locally LipschitzΩh has full measure inV . Let
L0 be the set

L0 :=
{

lim
2→∞

dh(x2) : x2 ∈ Ωh, x2 → 0, and lim
2→∞

dh(x2)exists

}
, (3.1)

of limit points of sequences{dh(x2)} of sequences{x2} ⊂ Ωh with x2 → 0. Then [7,
Theorem 2.5.1, p. 63]

∂h(0) = convex hull ofL0. (3.2)

Letting, as in Section 1,Hdiff be the set of points whereH is differentiable, ifx ∈ V

and q = (x, h(x)) ∈ H, then x ∈ Ωh if and only if q ∈ Hdiff . By the theorem of
Beem and Królak [2] this is the case if and only ifq is on exactly one generator ofH. If
q = (x, h(x)) ∈ Hdiff then letvq ∈ N+

q be the unique semi-tangent toH at q. Then atq
the tangent plane toH can be defined either in terms of dh or in terms ofvq to be the set
of vectorsX ∈ Tq(M) so that(dh − dxn+1)(q)(X) = 0 or 〈vq,X〉 = 0. Thus there is a
positive scalarλ, so that(dh − dxn+1)(q) = λ〈vq, ·〉. Therefore the normal cone atq is
one-dimensional and

Norq(J
+(H)) = {λ〈vq, ·〉 : λ ≥ 0} = {λ(dh − dxn+1) : λ ≥ 0}.

It follows from this that if{x2} ⊂ Ωh andq2 = (x2, h(x2)) thenx2 → 0 if and only if
q2 → p and dh(x2) → α if and only if v2 → v, where〈v, ·〉 = α. Unraveling all this and
using (3.1) and (3.2) gives that in order to complete the proof it is enough to show

N+
p =

{
lim
2→∞

vq2 : q2 ∈ Hdiff , q2 → p, and lim
2→∞

vq2 exists

}
. (3.3)
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Denote the right side of this equation byTp. Then [4, Lemma 6.4], the set of semi-tangents
N+ is a closed subset ofT (M) and thereforeTp ⊆ N+

p . If v ∈ N+
p then there is a

generatorc : [0,∞) → M with c(0) = p, c′(0) = v and parameterized so that it is unit
speed with respect to the auxiliary Riemannian metricσ . For each positive integer2, c(1/2)
is an interior point of the generatorc and thusc(1/2) ∈ Hdiff . Thenvc(1/2) = c′(1/2) and
lim2→∞ vc(1/2) = lim2→∞c′(1/2) = c′(0) = v. Thusv ∈ Tp which yieldsN+

p ⊆ Tp. This
shows (3.3) holds and completes the proof of the lemma and therefore of Theorem 3.�

4. Application to distance functions and cut loci in Riemannian manifolds

Let (S, h) be a connected Riemannian manifold which we do not assume to be complete.
LetC ⊂ S be a closed set. Then define thedistance functionρC : S → [0,∞) by

ρC(p) := infimum of lengths of smooth curves inS connectingp toC.

This will be Lipschitz with Lipschitz constant one:|ρC(p) − ρC(q)| ≤ d(p, q), where
d(p, q) is the Riemannian distance betweenp andq.

We will see that regularity properties ofρC and the cut locus ofC in S are closely related
to the regularity properties of horizons, by looking at the graph ofρC (cf. Proposition 10).
In this setting it is natural to consider the problem even when(S, h) is not complete. For
example, whenS is the interior of a manifoldP with boundary thenρC agrees with the
distance fromC defined by the infimum of the length of curves fromp toC in P so that the
results apply to that case as well. Also in the setting of Lorentzian geometry one can use
the graphs of functionsρC to construct examples of horizons regardless of completeness of
(S, h).

Let I ⊂ R be an interval (which may be open, closed, or half open). Then aC-minimizing
segmenton I is a unit speed geodesicγ : I → S, so that

ρC(γ (s)) = s for all s ∈ I.

We emphasize that we do not assume thatI contains 0. The Riemannian equivalent of the
fact that horizons are null-geodesically ruled is contained in the following proposition.

Proposition 9. Everyp ∈ S \ C is on at least one C-minimizing segment.

Proof. LetU be a convex normal neighborhood ofp disjoint fromC. Forr > 0 sufficiently
small the distance sphereSr(p) = {x ∈ M : d(p, x) = r} is contained inU , is compact,
and agrees with the geodesic sphere of radiusr centered atp. Then,ρC restricted toSr(p)
achieves a minimum at some pointq, say. Letγ be the unique minimizing geodesic fromq
to p. From the choice ofq onSr(p), and simple distance function considerations, one has
for eachx onγ ,

d(C, q) + d(q, x) = d(C, x), (4.1)

whered(C, x) = ρC(x). Sinceγ is minimizing on each segment, Eq. (4.1) implies thatγ ,
when suitably parameterized, is aC-minimizing segment. �
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EachC-minimizing segmentγ : I → S is contained in a maximal (with respect to the
size of the interval of definition)C-minimizing segment and from now on we assume that all
C-minimizing segments are defined on their maximal domain. We say that aC-minimizing
segmentγ : I → S has acut point iff its interval of definition is of the form [a, b] or
(a, b] with b < ∞, in which casep = γ (b) is defined to be the cut point. AC-minimizing
segment can fail to have a cut point either because its domain is unbounded, i.e. of the form
[a,∞) or (a,∞), or because the domain is bounded, say(a, b) but the limit limt↑b γ (t)
does not exist inS. The later condition cannot arise whenS is complete. WhenS is complete
the domains ofC-minimizing segments are all of the form [0, b] or [0,∞).

The collection of all cut points is thecut locusof C in S and denoted by CutC . The
cut locus CutC is a subset ofS \ C, and the definition here of CutC agrees with the usual
definition whenS is complete. For anyp ∈ S\C, letNC(p) be the number ofC-minimizing
segments on whichp lies. Then for allp ∈ S \C, we haveNC(p) ≥ 1 and it is known that
if NC(p) ≥ 2 thenp ∈ CutC . Forp ∈ S \ C, let

Mp := {−γ ′(ρC(p)) : γ is aC-minimizing segment andγ (ρC(p)) = p}

be the set of the unit vectors atp which are tangent toC-minimizing segments and which
point towardC. Then the number of vectors inMp is justNC(p).

Let M = S × (−∞,0) and givenM the Lorentzian metricg = h − dt2. LetH be the
graph of−ρC in M, that is

H := {(x,−ρC(x)) : x ∈ S \ C}.

We leave the proof of the following to the reader.

Proposition 10. The setH is a future horizon in M. The null generators ofH are (up to
reparameterization) the curvess �→ (γ (s),−ρC(γ (s))), whereγ is C-minimizing segment
of S andN(p,−ρC(p)) = NC(p). The setHendcoincides with the set{(p,−ρC(p)) : p ∈
CutC}.

The theorem of Beem and Królak [2] that a pointp of a horizon is differentiable if and
only if N(p) = 1 implies the following Riemannian result.

Proposition 11. With notation as above, the pointp ∈ S \C is a differentiable point of the
distance functionρC if and only ifNC(p) = 1.

Remark 12. While to best of our knowledge this result has not appeared in the literature on
the regularity of Riemannian distance functions, it would be surprising if it were not known,
at least in the case of complete manifolds, to experts. It can also be deduced from general
facts about the Clarke differential in non-smooth analysis. Explicitly, it follows from Clarke
[6, Theorem 2.1(4), p. 251], a result about the generalized gradients of functions that are
pointwise minimums of families of smooth functions with appropriate Hessian bounds, that
the Clarke differential ofρC atx ∈ N \ C is

∂ρC(x) = convex hull of{−〈u, ·〉 : u ∈Mx}.
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(WhenS is Euclidean space this is [10, Lemma 4.2, pp. 1037–1038]. The extension to com-
plete Riemannian manifolds is not hard.) The functionρC is semi-convex and a semi-convex
function is differentiable atx if and only its Clarke differential atx is a singleton.8 There-
fore ρC is differentiable atx if and only if NC(x) = 1. It is also possible to carry out a
proof of the Beem and Królak result along these lines.

In [5] horizons in Lorentzian manifolds are constructed that are non-differentiable on a
dense set. Another family of such examples, possessing genericity properties, is given in
[3]. When translated into Riemannian terms the examples of Chruściel and Galloway [5]
imply the following proposition.

Proposition 13. There exists a closed Lipschitz curveC ⊂ R
2 such that its distance function

ρC is non-differentiable on a dense subset of the setρC ≤ 1 of the unbounded component
of R

2 \ C.

In both [3,5] it is shown how to obtain higher dimensional examples. Theorem 1 implies
the following proposition.

Proposition 14. If C is a closed set in an n-dimensional Riemannian manifold(S, h), then
hnH (CutC) = 0.

WhenC is a smooth submanifold ofS (for example whenC is a point) and the manifold
(S, h) is complete then a recent result of Itoh and Tanaka [14, Theorem B, p. 22] implies
that CutC has Hausdorff dimension at mostn − 1. (WhenS is two-dimensional andC is a
point this had been done earlier by Hebda [11] and Itoh [13].) However, for arbitrary closed
sets the question of the Hausdorff dimension of CutC is open. In particular, it is not known
if there is a closed subsetC of the Euclidean planeR2, with its usual metric, so that the
Hausdorff dimension of CutC is 2. (Proposition 14 impliesh2(CutC) = 0, but this does not
rule out the possibility that the Hausdorff dimension is 2.)

If M = S × (−∞,0) is given as its auxiliary Riemannian metricσ = h + dt2, then the
set of semi-tangents toH atp = (x,−ρC(x)) isN+

p = {(2−1/2u,2−1/2∂/∂t) : u ∈Mx}.
Set

CutC [k] := {x ∈ S \ C : dim Span{(u, ∂/∂t) : u ∈Mx} ≥ k}.
As in Section 1{x ∈ S \ C : NC(p) ≥ k} ⊆ CutC [k] and equality holds if 1≤ k ≤ 3.
Note fork ≥ 2 that CutC [k] ⊂ CutC , while for k = 1, we have CutC [1] = S \ C. The set
{x ∈ N \C : NC(x) ≥ 2} = CutC [2] is thestrict cut locusand for some special choices of
C, for example a point or a submanifold, its structure has been studied by several authors
(cf. [11,14] and the references therein). Using that the epigraph of a distance function has
locally positive reach, it follows from results of Federer [8, Remark 4.15(3), p. 447] that
each set CutC [k] is countable rectifiable of dimensionn + 1 − k. Theorem 3 allows us to
refine this toC2 rectifiablity.

8 The general semi-convex case reduces to the case of convex functions. For a convex function the Clarke
differential is the sub-differential in the sense of convex analysis [7, Proposition 2.2.7, p. 36] and a convex
function is differentiable at the point if and only if its sub-differential is a singleton.
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Proposition 15. For 1 ≤ k ≤ n + 1, the setCutC [k] is aC2 rectifiable set of dimension
n + 1 − k. ThereforeCutC [k] has Hausdorff dimension≤ n + 1 − k.

Remark 16. By a theorem of Rademacher the set of non-differentiable points of a Lipschitz
function on ann-dimensional manifold hashn measure zero. In the case that the function is
a distance function,ρC , this can be improved. By Proposition 11 the set CutC [2] is exactly
the set of pointsp ∈ S \ C, where the distance functionρC is not differentiable. Thus, by
Proposition 15, the set of non-differentiable points ofρC is aC2 rectifiable set of dimension
n − 1 and therefore has Hausdorff dimension at mostn − 1.

For eachr > 0, let τr (C) := {p ∈ S : ρC(p) = r} be the tube of radiusr aboutC. In
general, these tubes can have singularities and need not be topological hypersurfaces inS.
We now look at what the Riemannian versions of Chruściel et al. [4, Section 5] have to say
about the regularity ofτr (C) andρC . By Proposition 5 the functionρC is semi-convex on
S \ C. Therefore by Alexandrov’s theorem for almost allp ∈ S \ C the functionρC has
second Alexandrov derivatives. This means that in local coordinatesx1, . . . , xn centered at
p the functionρC has a second order Taylor expansion

ρC = ρC(p) + dρC(p)x + 1
2D2ρC(p)(x, x) + o(|x|2),

wherex = (x1, . . . , xn), dρC(p) is a covector atp and D2ρC(p) : Tp(S) × Tp(S) → R

is a symmetric bilinear form. Denote bySAl the set of Alexandrov points ofρC . At points
p ∈ SAl the functionρC is differentiable and therefore the discussion above yields that
NC(p) = 1 and that dρC(p) = −〈u, ·〉, whereu ∈Mp. If p ∈ SAl andr = ρC(p) then the
level setτr (C) has a well-defined tangent spaceTp(τr(C)) := {X ∈ TpS : dρC(p)X = 0}
and a well-defined second fundamental formI atp given by

Ip(X, Y ) = −D2ρC(p)(X, Y ) for X, Y ∈ Tp(τr(C)).

LetAp : Tp(τr(C)) → Tp(τr(C)) be the corresponding Weingarten map defined by

〈ApX, Y 〉 := Ip(X, Y ) for X, Y ∈ Tp(τr(C)).

That isAp is the tensor of type(1,1) corresponding to the tensorI of type(0,2) andAp is
a self-adjoint linear map. With the choice of signs here, whenS = R

n andC is the origin
(so thatτr (C) is the sphere of radiusr) for p ∈ τr (C), we haveAp = −(1/r)I . Let the
Riemannian connection onS be denoted by∇ and letR be the curvature tensor ofS with
signs chosen so thatR(X, Y )Z = (∇X∇Y − ∇Y∇X − ∇[X,Y ])Z. For U ∈ TpM define
a linear mapRU : TpS → TpS beRUX = R(X,U)U . The following summarizes the
Riemannian versions of Propositions 3.1 and 3.5 and Theorems 5.1 and 5.6 of Chruściel
et al. [4].

Theorem 17. Let γ : I → S by a C-minimizing segment withγ (0) ∈ C. If γ (t0) ∈ SAl
for somet0 ∈ I , thenγ (t) ∈ SAl for all t ∈ I0 := {t0} ∪ (I ∩ [t0,∞))◦ (whereJ ◦ is the
interior of J ⊂ R). The Weingarten mapsAγ(t) of the tubesτρC(γ (t))(C) vary smoothly on
the intervalI0 and satisfy the usual Riccati equation for parallel hypersurfaces:

∇d/dtAγ (t) = A2
γ (t) + Rγ ′(t).
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Moreover, for allr ∈ (0,∞) the tubeτr (C) has locally finitehn−1-dimensional measure
and for almost allr ∈ (0,∞) there is a setP ⊂ τr (C) with hn−1(P ) = 0, so that every
C-minimizing segmentγ : I → S which meetsτr (C) \ P will haveγ (t) ∈ SAl for t ∈ I ◦.

In the terminology of Chrúsciel et al. [4] “Alexandrov points propagate to the past along
generators” of horizons. In the Riemannian setting Alexandrov points of a distance function
ρC propagate away fromC alongC-minimizing segments. The last sentence of Theorem
17 implies loosely that almost everyC-minimizing segment is anAlexandrov segmentin
the sense that all of its points other than its endpoints are inSAl .
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