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Abstract

We study fine differentiability properties of horizons. We show that the set of end points of
generators of an-dimensional horizof{ (which is included in arin + 1)-dimensional space—time
M) has vanishing-dimensional Hausdorff measure. This is proved by showing that the set of end
points of generators at which the horizon is differentiable has the same property<Horln + 1,
we show (using deep results of Alberti) that the set of points where the convex hull of the set of
generators leaving the horizon has dimengiisi‘almost aC? manifold of dimensiom 4+ 1 —k”: it
can be covered, up to a set of vanishing- 1 — k)-dimensional Hausdorff measure, by a countable
number ofC2 manifolds. We use our Lorentzian geometry results to derive information about the
fine differentiability properties of the distance function and the structure of cut loci in Riemannian
geometry. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Horizons are amongst the most important objects that one encounters in causality theory:
Cauchy horizons constitute boundaries beyond which predictability breaks down; event
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horizons are boundaries beyond which no return is possible. The key structural property of
horizons is the existence generatorsrecall that an embedded hypersurfg¢ec M is
said to beuture null geodesically ruledlevery pointp € H belongs to a future inextensible
null geodesicl” C H; those geodesics are called generatorg/ofOne can then extract
the essential properties of Cauchy horizons, or black hole event horizons, in the following
definition: # is a future horizonf # is anachronal, closed, future null geodesically ruled
topological hypersurfacdt follows from the above definition (or from the properties of
past Cauchy horizons, or from the properties of future event horizons) that the generators
can have past endpoints & but no future endpoints.

The setHeng Of end points of generators @t provides an important tool in the study
of the structure of horizons; for simplicity, we will refer to those pointead pointsin
particular, one wants to know how “large” this set can be. One defines the multipVi¢ity
of a pointp € H as the number of generators which pass through off¢st p; it is well
known thatifN (p) > 1, thenp is necessarily the endpoint of all relevant generators. The set
of points with multiplicity N (p) > 1 determines the differentiability properties of horizons:
as has been shown by Beem and Krélak [2], horizons are non-differentiable precisely at
this set. It is also well known that the set of points at which a horizon is non-differentiable
has vanishing:-dimensional Hausdorff measure, and this gives one control over the size
of the set of endpoints with multiplicity (p) > 1. Thus, in order to control the dimension
of Heng it remains to estimate that of the set of endpoints with multipliditgp) = 1.
Let us denote byHgii the set of points of{ at whichH is differentiable; what has been
said shows that the set of endpoints with multiplicNyp) = 1 coincides with the set
Hend N Hgits - Beem and Krélak [2] have displayed an example of a horizon with an end
point with multiplicity 1 (at which# is, of course, differentiable), thus there exist horizons
for which the sef{engN Hif is not empty. Our first main result is the following theorem.

Theorem 1. LetH be a future horizon in an + 1)-dimensional space—tin{@1, g). Then

the setHengN Hairr has vanishing n-dimensional Hausdorff measure. Moreover, for any
C?2 space-like hypersurfac® the setiengN Haitt NS has vanishingn — 1)-dimensional
Hausdorff measure

Remark 2. Infact, we expect a stronger conclusion to hold, namely that tHésgn Hqif

has vanishingn — 1)-dimensional Hausdorff measure# The rationale for this is as fol-
lows: we first note that it is possible to weaken the regularity assumptiéhBar Theorem

1 to hold it is sufficient to require th& be a Lipschitz hypersurface that meets the horizon
transversely at almost all points of the intersection. This point, taken in conjunction with the
fact that the set{engN Hitf iS Necessarily acausal, suggests the possibility of constructing
such a Lipschitz hypersurface (or perhaps a countable collection of such Lipschitz hyper-
surfaces) that contairkeng N Hgiif , at least up to a set of vanishirig — 1)-dimensional
Hausdorff measure. Theorem 1, under this weaker regularity assumpti®mvonld then

give the strengthened conclusion. Initial efforts to construct such a hypersurface have not
been successful.

The set of points where the multiplicity (p) is large has a more precise structure.
To describe this, equip/ with an auxiliary complete Riemannian mettic and for each
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peH, IetJ\f;r be the set of future pointing-unit vectors that are tangent to a generator

of H at p. We call such vectorsemi-tangentto 4. Then the number of vectors j’lcf;r is
just the multiplicity N (p) of p. Define

. A
C, := convex cone generated Mp .

We can measure the size of the set of generators thrgulgh dim(C,) (which is the
dimension of the linear span @, in T,M). This is a different measure thavi(p); in
particular, this gives finer information whew(p) = oo. We also set

H[Kk] ;= {p : dim(C,) > k}. (1.1)

Fork = 1, H[k] = H as every point is on at least one generator.#er 2, H[k] is the
set of points off{ that are on more than one generator. As@p) is the dimension of the
span of/\/[‘,* and/\/[jr containsN (p) vectors, diniC,) < N(p). This implies

H[k] S {peH: N(p) >k}

Also, for 1 < k < 3, anyk distinct elements 0}[\/’1[,+ are linearly independert.Therefore if
1 <k <3andN(p) > k then choosing distinct, and thus linearly independent, elements
of/\/;, shows that dinC,,) > k. Whence

H[k] ={peH:N(p) =k} for 1<k=<3.

Our next main result, based on the deep reSuits[1], is that the set§{[k] are “almost
C? submanifolds of dimension + 1 — k, up to singular sets of lower dimensiori” To
make this statement precise, ¢t be them-dimensional Hausdorff measure sh(defined
with respect to some Riemannian metrion M). Recall [1, Definition 1.1, p. 19] a Borel
setY c M is a(h™, m) rectifiable set of clas€? iff X can be covered, up to a set of
vanishingh™ measure, by a countable collectiormofdimensionalC? submanifolds of/.
This definition is independent of the choice of the Riemannian metrllowing [1], we
will shorten “(h™, m) rectifiable set of clas62” to “ C2 rectifiable of dimensiom”.

Theorem 3. For 1 < k < n + 1the setH[k] is aC? rectifiable set of dimension+ 1 — k.
ThereforeH[k] has Hausdorff dimensiog n + 1 — k.

Usingk = 1, andthaf{[1] = #, thisimplies that horizons ar? rectifiable of dimension
n. As they are also locally Lipschitz graphs they have the further property'tt#&tn K) <
oo for all compact set&X < M. Whenk = n + 1 this implies tha#{[» + 1] is a countable
set (cf. Remark 7).

5 The linear span of two future pointing-unit null vectors is a two-dimensional time-like subspace and there
are only two future pointing null rays in this subspace. So a third future poiatingit vector cannot be in the
span of the first two.

6 The reader is warned that the dimension intigr [k], is shifted by one, as compared to that used in Theorem
3 of Alberti [1]; compare the remarks following Definitions 1.5 and 1.7 in [1].

7 We note a related result of Husa and Winicour [12], where it is shown that th&/égj = 2} is, up to a lower
dimensional set, a smooth submanifold of co-dimension two for the horizons considered there.
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2. Proof of Theorem 1

We shall prove the second part of the theorem; the first part follows immediately from
the second and the co-area formula. Let, th&re as in Theorem 1; since the result is
purely local, without loss of generality we may assume thad the level se{r = 1} of
a time functionz, with rangeR, the level sets of which are Cauchy surfaces. We use the
constructions and notations of CBuaiel et al. [4], with¥1 = S and X, = {r = 2}. Let

S5=8n Hend N Hdiff »

and letA, ¢ be defined as at the beginning of the proof of Theorem 6.1 in [4]. Hehce,
the subset o> = X N H consisting of those points ifb that are met by the generators
of H that meetS; = X1 NH, and¢ : A — S1 is the map that moves the points Afback
along these generators $@. We can choose the auxiliary Riemannian medrion M so
that ¢ has unit length with respect to this metric. Theérs anA; set as defined by Eq. (6.6)
of Chrusciel et al. [4], withs = 1. We set

A=¢YS)cAacs,,

thus, the points im are precisely those points o, N H the generators through which
exit #, when followed to the past, at the differentiable end point§on
Fori = 1,2, let b’;llfl denote thgn — 1)-dimensional Hausdorff measure an with
respect to the distance function determined by the induced nigton X;. By a straight-
forward extension of the proof of Clhéuaiel et al. [4, Proposition 6.14], one has for any
i ~1-measurable subset of A:

N(p, S2)Lp(e T2 (p) = /Q J@) @) db k@), (2.1)

S1

wherely denotes the characteristic function of thelgetandJ (¢) is, in a suitably defined
sense (cf. [4, Proposition 6.14]), the Jacobian of the locally Lipschitz fungtion
In Proposition 4, we show that there existsbjgl-negligible setA’ C A such that

J(¢)(g) =O0forallg € A\ A'. It then follows that:
Ac={geA:J¢)=0UA (2.2)

£2, as defined above, is the union olj}?;-xz‘l—measurable set andhéz‘l-negligible set, and
hence is itseth;l-measurable. Eqg. (2.1) then shows thaf2) is bzl_l-negligible. Now,

sinceS1 C ¢(£2), the result follows.
It thus remains to establish the following proposition.

Proposition 4. J(¢)(g) = 0for hZ;l-aImost allg € A.

Proof. We use the definitions, constructions and notations of the proof ofsCielLet al.
[4, Proposition 6.16]. Thus, Iét C X be a coordinate neighborhood of the forhx (a, b)
with V ¢ R"~! anda, b € R, in whicht/ N N is the graph of a1 functiong : V — R,
and in which?# N U/ is the graph of a semi-convex functigh: V — R. Here,N = N;
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is a locallyCt* hypersurface ir®, into which A has been embedded. Letpdenote the
projection onto) of A NU, thusA N is the graph og over prA.

Now, letxo € BNpr A, whereB is the set of full measure in pt constructed in the proof
of Chrusciel et al. [4, Proposition 6.16], and pris the projection ont® of ANU. Sinceg
is Lipschitz, the graph of overBn prA has full measure id. Letgo = (x0, f(x0)) € A
be the corresponding point GdN X», thus the generatdr of H passing througho exits
the horizon at a poinp € S N Hgirr . Let I be any null geodesic which extendisto the
past, and lep,, be any sequence of points dhwhich are to the causal past pfand which
approactp asn tends to infinity. Since” is a null geodesic which exitd at p, the p,'s lie
to the time-like pasf — (#) of H. Thus the integral curvg, of 9/d¢ starting atp,, meets
‘H at some point,, € y, N H. One can then construct a causal curve frgpto H N X
by following y, from p, to r,, and any generator @ passing through,; as(M, g) is
globally hyperbolic this generator will necessarily intersEet It follows that there exists
a time-like curvep, c J~(H) from p, to H N X>. By the compactness of the space of
causal curves, passing to a subsequence if necessaty, sheonverge (in a well-known
sense) to a causal curyefrom p to a pointg € H N X». The achronality of{ shows that
y is a generator oH passing througlp, hencey = I andg = qpo.

Now suppose thaf (¢)(qo) # 0. By the construction of the sét, there existg; €
C2(V), approximatingg, such thats;, the graph of;, is aC? hypersurface ins, which,
in a well-defined sense, makes second-order contactithx; atgo. (More preciselyg ;
and f, as well as their first derivatives, agreezgt and the second derivative gf agrees
with the so-called second Alexandrov derivativefolitgo.) Sinces; is tangent ta{ N X»
at qo, the null geodesid™ is normal toS; atqo. Let¢; : S; — S be theC* map which
moves the points af; along the family of null geodesics normal $¢ which includesr”.
Then we have (¢;(q0)) = J(¢)(qo) # O, cf. [4, Eq. (6.40)]. Defing; . € C?(V) by

gj.e(x) = gj(x) +elx — x0/%, (2.3)

and letS; . be the graph of; .; fore > 0, S;, C J*(H) andS; . \ {go} C I (#). Note
that asS; . is tangent taS; atqo, I’ is normal toS; . atqo.

The fact that the Jacobian ¢f is non-zero atjg implies thatp is not a focal point tc;
alongl”. Moreover, there can be no focal pointstoalong the segment df to the future
of p, cf. [4, Lemma 4.15]. It follows that by taking small enough and” short enough,
there will be no focal points tg; . alongI". This implies by normal exponentiation that
there exists an embeddéd null hypersurfacé\/; . which containg” and, by shrinking it if
necessary; ., as well, cf. [4, Proposition A3]. Moreover, there exists a neighborli@oé
Fin which/\/j,s isachronal: indeed, since space—time istime orientab,{e,is atwo-sided
connected embedded hypersurfacé4nAs suchV; . admits a connected neighborhood
O which is separated by/; . (Nj . C O, andO \ N; . consists of two components). Then
afuture directed time-like curve joining points.&f; . would be a time-like curve from the
future side of\; . to the past side aV; ., which is impossible if the curve remains(h
We conclude that; , is achronal inO.

Consider now the time-like curves C J~(#) constructed earlier in the proof; since
the 7,'s converge tol” there existsig such that all they,’s are entirely contained i®
for n > ng. Moreover, by takingig larger if necessary, it is clear that each syighwill



6 P.T. Chrisciel et al. / Journal of Geometry and Physics 41 (2002) 1-12

meet the hypersurfadein M obtained by pushing; . to the past along the integral curves
of —(3/9t). One can then construct a time-like curve frgmto S; . contained inO by
following y, from p, to P, and then an integral curve 69t to S; .. This contradicts the
achronality of\; . in O, and establishes Proposition 4. O

3. Proof of Theorem 3

We start by showing tha has no worse regularity than being the boundary of a convex
set.

Proposition 5. For any pointp € H there is a coordinate systent, . .., x"*1 defined on
anopenset/ C M, sothat{ NU is given by the graph™*! = a(x1, ..., x") of a convex
function h

Proof. Itis shownin[4, Theorem 2.2] th&t is locally the graph of a semi-convex function.
Thatis, there is a coordinate system . . ., y"+1, so that/ N is given by a graph"*1 =

u(yl_, YD+ h(x, ..., x™), whereu is C*® andh is convex. Define new coordinates
byxi =yifori =1,...,nandx"! = y»+t1 —y(x1, ... x™). In these coordinateX is
given byx"t1 = p(x1, ..., x™). O

Recall that a convex body in a finite dimensional vector space has a well-defined normal
cone at each of its boundary pointsOne definition of this tangent cone is the set of linear
functionals on the vector space such that their restrictions to the body attain a maximum
at the pointp. The following is an adaptation of this definition to manifolds which allows
us to define the tangent cones Naf ™ (#)) to J* (%) at pointsp € H = aJ+(H) in an
invariant manner:

Nor,,(J*(H)) ={df(p): f e C*M,R)andf|;+, hasalocal maximum gt}.

The following is a special case of a main result (see footnote 2) in the paper of Alberti [1,
Theorem 3, p. 18] adapted to our notation.

Proposition 6. Let B be convex body in a@m + 1)-dimensional vector space. For each
k=1,2,...,n4+1,letdB[k] be the set of pointg € 9B, so thatdim Nor,(B) > k. Then
dB[k] is aC? rectifiable set of dimension+ 1 — k. Therefore the Hausdorff dimension of
dB[k] is less than or equal to + 1 — k.

Remark 7. The top and bottom dimensional cases of this are worth remarking on. When
k = n + 1 this implies thad B[n + 1] is aC? rectifiable set of dimension 0. But then [1,
Theorem 3 and Definition 1.13,B[n + 1] is a countable union of sets of finitd measure.
However, the zero-dimensional measbfds just the counting measure [9, p. 171], so that
60(A) is just the number of points ia. Therefored B[ + 1] is countable as it is a countable
union of finite sets. Consider, neXt,= 1; as dim Noy, (/" (H)) > 1 forall p € 9B, we
haved B = d B[1] and therefor@ B is aC? rectifiable set of dimension Becausé B is also
locally the graph of a Lipschitz function, it has the further property tHak N9 B) < oo
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for all compact setX . The corresponding fact is not true feB[k] when2< k <n —1
(cf. [1, Theorem 2, p. 18]).

Theorem 3 follows immediately from this, Proposition 5, and the following lemma.

Lemma 8. For eachp € # the normal conéor,(J* (%)) is given by

Nor,(J*(H)) = {{(v, ") 1 v € Cp}.

Proof. We choose a coordinate systarh ..., x"*1 on an open sel/ containingp as in
Proposition 5 so thal N U is given byx"+1 = h(x1, ..., x"), whereh is convex. We may
assume that the point has coordinated), . .., 0). We also assume thét is of the form

V x (a, b) for V an open convex set iR" and thatk takes values in the intervad, b).
Thenh is locally Lipschitz and thus the Clarke differenttdl (0) exists and is a compact
convex set of linear functionals AR’ [7, pp. 27—-28]. Ag: is convexdh(0) is just the set

of sub-differentials ta: at O in the sense of convex analysis [7, Proposition 2.2.7, p. 36]. It
follows that forg € H N U if we write ¢ = (x, h(x)) with x € V that

Nor, (JT(H)) = {(A(a — dx") 14 > 0,a € dh(x)}.

There is another useful descriptiondif(0). Let £2, be the set of points in V, where the
classical derivative il(x) exists. Ash is locally Lipschitz$2;, has full measure irv. Let
Lo be the set

Lo = { lim dh(xe) : x¢ € 24, x¢ — 0, and lim dhi(x,) exists}, (3.1)
£—>00 £—>00

of limit points of sequence&dh(x,)} of sequencesx,} C £2, with x, — 0. Then [7,
Theorem 2.5.1, p. 63]

dh(0) = convex hull ofLg. (3.2)

Letting, as in Section 1Hqir be the set of points wher# is differentiable, ifx € V
andg = (x,h(x)) € H, thenx € 2, if and only if ¢ € Hgjf. By the theorem of
Beem and Krélak [2] this is the case if and onlyifis on exactly one generator @f. If
q = (x, h(x)) € Hqirr then lety, e N;’ be the unique semi-tangenttpatq. Then aty
the tangent plane t& can be defined either in terms of @r in terms ofy, to be the set
of vectorsX e T,(M) so that(dh — dx"t1)(g)(X) = 0 or (vg, X) = 0. Thus there is a
positive scalan, so that(dh — dx"t1)(q) = Xvyg, -). Therefore the normal cone atis
one-dimensional and

Nor, (J T (H)) = (A {vg, ) : & > O} = {a(dh — dx"*1) : ) > 0}.

It follows from this that if{x,} C £, andg, = (x¢, h(x¢)) thenx, — O if and only if
qe — p and di(x;) — « ifand only if v, — v, where(v, -) = «. Unraveling all this and
using (3.1) and (3.2) gives that in order to complete the proof it is enough to show

N; = { lim vy, : q¢ € Hdiff. g¢ — p, and lim v, exists}. (3.3)
L— o0 ’ L— o0
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Denote the right side of this equation #y. Then [4, Lemma 6.4], the set of semi-tangents
N is a closed subset df (M) and therefore7, < J\/';. If v e J\fp+ then there is a
generatok : [0, 00) — M with ¢(0) = p, ¢/(0) = v and parameterized so that it is unit
speed with respect to the auxiliary Riemannian metriEor each positive integér c(1/¢)

is an interior point of the generatorand thusc(1/¢) € Hgiff. Thenvey e = ¢'(1/¢) and
|img_>oo Ve(1/6) = |img_>ooc/(1/€) S C/(O) =v. Thusv € 'TP which )/I(Elds‘/\/’p+ - 7;, This
shows (3.3) holds and completes the proof of the lemma and therefore of Theorelm 3.

4. Application to distance functionsand cut loci in Riemannian manifolds

Let (S, h) be a connected Riemannian manifold which we do not assume to be complete.
Let C C S be a closed set. Then define tistance functiom¢ : S — [0, oo) by

oc(p) ;= infimum of lengths of smooth curvesfhconnectingy to C.

This will be Lipschitz with Lipschitz constant ongoc (p) — pc(q)| < d(p, q), where
d(p, ¢q) is the Riemannian distance betweeandg.

We will see that regularity properties p§ and the cut locus of in S are closely related
to the regularity properties of horizons, by looking at the grappcofcf. Proposition 10).
In this setting it is natural to consider the problem even wigrk) is not complete. For
example, whers is the interior of a manifold? with boundary therpc agrees with the
distance fronC defined by the infimum of the length of curves frgnto C in P so that the
results apply to that case as well. Also in the setting of Lorentzian geometry one can use
the graphs of functiong¢ to construct examples of horizons regardless of completeness of
(S, h).

Let/ c R be aninterval (which may be open, closed, or half open). Th@manimizing
segmenbn / is a unit speed geodesjc: I — §, so that

pc(y(s)) =s forall sel.

We emphasize that we do not assume thebntains 0. The Riemannian equivalent of the
fact that horizons are null-geodesically ruled is contained in the following proposition.

Proposition 9. Everyp € S\ C is on at least one C-minimizing segment

Proof. LetU be a convex normal neighborhoodpilisjoint fromC. Forr > 0 sufficiently
small the distance sphefe(p) = {x € M : d(p,x) = r} is contained inJ, is compact,
and agrees with the geodesic sphere of radicentered ap. Then,p¢ restricted tas, (p)
achieves a minimum at some pointsay. Lety be the unique minimizing geodesic fram

to p. From the choice of on S, (p), and simple distance function considerations, one has
for eachx ony,

d(C.,q) +d(q,x) =d(C,x), 4.1)

whered(C, x) = pc(x). Sincey is minimizing on each segment, Eq. (4.1) implies that
when suitably parameterized, igaminimizing segment. O
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EachC-minimizing segmeny : I — S is contained in a maximal (with respect to the
size of the interval of definition)-minimizing segment and from now on we assume that all
C-minimizing segments are defined on their maximal domain. We say thahaimizing
segmenty : I — S has acut pointiff its interval of definition is of the form ¢, 5] or
(a, bl with b < 0o, in which casep = y (b) is defined to be the cut point. &-minimizing
segment can fail to have a cut point either because its domain is unbounded, i.e. of the form
[a, 00) or (a, 00), or because the domain is bounded, &ayb) but the limit lim;4 y ()
does not exist its. The later condition cannot arise wh&is complete. Whel§ is complete
the domains o -minimizing segments are all of the form,[g] or [0, co).

The collection of all cut points is theut locusof C in S and denoted by Cyt The
cut locus Cut is a subset of \ C, and the definition here of Cgtagrees with the usual
definition whensS is complete. Forany € S\ C, let N¢ (p) be the number of -minimizing
segments on which lies. Then for allp € S\ C, we haveN¢(p) > 1 and it is known that
if Nc(p) > 2thenp € Cute. Forp € S\ C, let

M, == {—y'(pc(p)) : y isaC-minimizing segmentand’ (oc (p)) = p}

be the set of the unit vectors atwhich are tangent t@-minimizing segments and which
point towardC. Then the number of vectors i, is just Nc (p).

Let M = S x (—o0, 0) and givenM the Lorentzian metrig = h — dr2. Let 4 be the
graph of—pc in M, that is

H:={(x,—pckx)):x e S\C}.
We leave the proof of the following to the reader.

Proposition 10. The setH is a future horizon in M. The null generators #f are (up to
reparameterizationthe curves — (¥ (s), —pc(y (s))), wherey is C-minimizing segment
of SandN (p, —pc(p)) = Nc(p)- The setHegngcoincides with the sétp, —pc(p)) : p €
Cutc}.

The theorem of Beem and Krélak [2] that a pojnbf a horizon is differentiable if and
only if N(p) = 1 implies the following Riemannian result.

Proposition 11. With notation as above, the poipte S\ C is a differentiable point of the
distance function¢ if and only if N¢ (p) = 1.

Remark 12. While to best of our knowledge this result has not appeared in the literature on
the regularity of Riemannian distance functions, it would be surprising if it were not known,
at least in the case of complete manifolds, to experts. It can also be deduced from general
facts about the Clarke differential in non-smooth analysis. Explicitly, it follows from Clarke

[6, Theorem 2.1(4), p. 251], a result about the generalized gradients of functions that are
pointwise minimums of families of smooth functions with appropriate Hessian bounds, that
the Clarke differential opc atx € N\ C is

dpc (x) = convex hull of{—{(u, ) : u € My}.
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(WhensS is Euclidean space this is [10, Lemma 4.2, pp. 1037-1038]. The extension to com-
plete Riemannian manifolds is not hard.) The funcisgris semi-convex and a semi-convex
function is differentiable at if and only its Clarke differential at is a singleton® There-

fore p¢ is differentiable atx if and only if No(x) = 1. It is also possible to carry out a
proof of the Beem and Krolak result along these lines.

In [5] horizons in Lorentzian manifolds are constructed that are non-differentiable on a
dense set. Another family of such examples, possessing genericity properties, is given in
[3]. When translated into Riemannian terms the examples of&eleliand Galloway [5]
imply the following proposition.

Proposition 13. There exists a closed Lipschitz cu@e- R? such that ts distance function
pc is non-differentiable on a dense subset of thepgek 1 of the unbounded component
of R?\ C.

In both [3,5] it is shown how to obtain higher dimensional examples. Theorem 1 implies
the following proposition.

Proposition 14. If C is a closed set in an n-dimensional Riemannian manif§id:), then
by (Cute) = 0.

WhenC is a smooth submanifold &f (for example wher is a point) and the manifold
(S, h) is complete then a recent result of Itoh and Tanaka [14, Theorem B, p. 22] implies
that Cut has Hausdorff dimension at most- 1. (WhensS is two-dimensional and’ is a
point this had been done earlier by Hebda [11] and Itoh [13].) However, for arbitrary closed
sets the question of the Hausdorff dimension ofCigtopen. In particular, it is not known
if there is a closed subset of the Euclidean plan&?2, with its usual metric, so that the
Hausdorff dimension of Cutis 2. (Proposition 14 implie§?(Cutc) = 0, but this does not
rule out the possibility that the Hausdorff dimension is 2.)

If M = S x (—o0, 0) is given as its auxiliary Riemannian mettic= / + dr2, then the
set of semi-tangents & at p = (x, —pc (x)) IS N,F = {((27V2u, 27Y20/01) 1 u € M,}.
Set

Cutc[k] :={x € S\ C : dim Spari(u, 3/9t) : u € My} > k}.

As in Section i{x € S\ C : Nc(p) > k} € Cutc[k] and equality holds if 1< k < 3.

Note fork > 2 that Cug[k] C Cutc, while fork = 1, we have Cut[1] = S\ C. The set

{x e N\ C: Nc(x) = 2} = Cutc[2] is thestrict cut locusand for some special choices of

C, for example a point or a submanifold, its structure has been studied by several authors
(cf. [11,14] and the references therein). Using that the epigraph of a distance function has
locally positive reach, it follows from results of Federer [8, Remark 4.15(3), p. 447] that
each set Cut[k] is countable rectifiable of dimension+ 1 — k. Theorem 3 allows us to
refine this toC? rectifiablity.

8 The general semi-convex case reduces to the case of convex functions. For a convex function the Clarke
differential is the sub-differential in the sense of convex analysis [7, Proposition 2.2.7, p. 36] and a convex
function is differentiable at the point if and only if its sub-differential is a singleton.



P.T. Chrisciel et al. / Journal of Geometry and Physics 41 (2002) 1-12 11

Proposition 15. For 1 < k < n + 1, the setCutc[k] is a C? rectifiable set of dimension
n + 1 — k. ThereforeCutc[k] has Hausdorff dimensiog n + 1 — k.

Remark 16. By atheorem of Rademacher the set of non-differentiable points of a Lipschitz
function on am-dimensional manifold hag® measure zero. In the case that the function is
a distance functiongc, this can be improved. By Proposition 11 the set 2} is exactly

the set of pointg € S\ C, where the distance functigi- is not differentiable. Thus, by
Proposition 15, the set of non-differentiable pointpefis aC? rectifiable set of dimension

n — 1 and therefore has Hausdorff dimension at nmost1.

For eachr > 0, lett,(C) :={p € S : pc(p) = r} be the tube of radius aboutC. In
general, these tubes can have singularities and need not be topological hypersufaces in
We now look at what the Riemannian versions of Gluial et al. [4, Section 5] have to say
about the regularity of, (C) andpc. By Proposition 5 the functiop¢ is semi-convex on
S\ C. Therefore by Alexandrov’s theorem for almost alle S \ C the functionpc has
second Alexandrov derivatives. This means that in local coordindtes. , x”* centered at
p the functionpc has a second order Taylor expansion

pc = pc(p) +dpc(p)x + 2D?pc (p)(x, x) + 0(1x|?),

wherex = (x1, ..., x"), dpc(p) is a covector ap and Fpc(p) : Tp(8) x T,(S) — R

is a symmetric bilinear form. Denote [$ the set of Alexandrov points gfc. At points

p € Sa the functionpc is differentiable and therefore the discussion above yields that
Nc(p) = landthatgc(p) = —(u, -), whereu € M,. If p € Sp andr = pc(p) thenthe
level setr, (C) has a well-defined tangent spag(t, (C)) := {X € T;,S : dpc(p)X = 0}

and a well-defined second fundamental fdrat p given by

I,(X,Y) = =D?pc(p)(X,Y) for X,Y € T, (z(C)).
LetA, : T,(z,(C)) — T, (7 (C)) be the corresponding Weingarten map defined by
(ApX,Y) :=1,(X,Y) for X,Y € T,(z,(C)).

That isA, is the tensor of typél, 1) corresponding to the tensbof type (0, 2) andA, is

a self-adjoint linear map. With the choice of signs here, wkea R"” andC is the origin
(so thatz,(C) is the sphere of radiug) for p € 1.(C), we haveA, = —(1/r)I. Let the
Riemannian connection afibe denoted by and letR be the curvature tensor 6fwith
signs chosen so th&(X,Y)Z = (VxVy — VyVx — Vix,y)Z. ForU e T,M define

a linear mapRy : T,S — T,S be RyX = R(X,U)U. The following summarizes the
Riemannian versions of Propositions 3.1 and 3.5 and Theorems 5.1 and 5.6 &€i€hru
et al. [4].

Theorem 17. Lety : I — S by a C-minimizing segment with(0) € C. If y(t19) € Sal
for somerg € I,theny (z) € Sa forall ¢t € Ip := {ro} U (I N [0, 00))° (WhereJ® is the
interior of J/ C R). The Weingarten maps,, ;) of the tubes,.(, (), (C) vary smoothly on
the intervallp and satisfy the usual Riccati equation for parallel hypersurfaces:

2
VaydiAyay = Ay + Ry
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Moreover, for allr € (0, o) the tuber, (C) has locally finitey” ~1-dimensional measure
and for almost all- € (0, o) there is a set? C 7,.(C) with h”"~1(P) = 0, so that every
C-minimizing segment : I — S which meets, (C) \ P will havey (z) € Sy fort € I°.

In the terminology of Chrsciel et al. [4] “Alexandrov points propagate to the past along
generators” of horizons. In the Riemannian setting Alexandrov points of a distance function
pc propagate away fror alongC-minimizing segments. The last sentence of Theorem
17 implies loosely that almost eve6-minimizing segment is aAlexandrov segmerir
the sense that all of its points other than its endpoints asgin
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