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DS/CFT AND SPACETIME TOPOLOGY

LARS ANDERSSON† AND GREGORY J. GALLOWAY?

1. Introduction

In the general Euclidean formulation of the AdS/CFT correspondence put
forth in [25], one considers Riemannian manifolds of the form Mn+1 × Y ,
where Mn+1 is conformally compactifiable with conformal boundary-at-
infinity Nn. It is then a problem of fundamental interest to determine,
for a given compact manifold N with a given conformal structure, the com-
plete Einstein manifolds of negative Ricci curvature having N as conformal
boundary. An early result of this type, predating AdS/CFT, was obtained
by Graham and Lee [16], who showed that for a conformal structure suffi-
ciently close to the standard one on Sn, there is a unique Einstein metric
with a prescribed curvature close to the standard hyperbolic metric on the
n+ 1 ball which induces the conformal boundary N .

More recently, motivated by certain issues in AdS/CFT, Witten and
Yau [28] obtained some general topological restrictions on M . They proved
in this context that if M is an Einstein manifold with negative Ricci curva-
ture, such that the conformal class of N admits a metric of positive scalar
curvature then the co-dimension one homology of M vanishes, Hn(M,Z) =
0. This implies, in particular, that N is connected. As discussed in [28, 26],
these results resolve certain “puzzles” concerning the AdS/CFT correspon-
dence. These, and related results, were extended by Cai and Galloway [7]
to the case of zero scalar curvature; see also [24] for further developments.
This, in a sense, covers all cases relevant to the AdS/CFT correspondence,
since, as argued in [28], CFT’s defined on conformal boundaries of negative
scalar curvature are unstable. Results of a related nature in the Lorentzian
context for asymptotically AdS spacetimes follow from results on topological
censorship [11, 12, 26].

In the present paper we study similar issues for spacetimes of de Sitter
type, i.e., spacetimes satisfying the Einstein equation with cosmological con-
stant Λ > 0, which admit a regular conformal (Penrose) compactification.
More specifically, we study the influence of the curvature and topology of
the conformal boundary (at past or future infinity) on the bulk spacetime,
for spacetimes of de Sitter type. Our motivation for this study comes from
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recent proposals for a de Sitter analogue of the AdS/CFT correspondence
(see e.g., [22, 23]), and also from current developments in cosmology, in par-
ticular the supernova observations which have led cosmologists to include a
positive Λ among the cosmological parameters of the standard model of the
universe, see [5].

Consider a spacetime M of de Sitter type which admits a conformal com-
pletion to the past and future, such that the past conformal boundary I− and
future conformal boundary I+ are spacelike and compact. When M is glob-
ally hyperbolic, this implies that I− and I+ are each connected, and home-
omorphic, irrespective of any field equations. A spacetime M with these
properties is nonsingular, in the sense of being timelike and null geodesically
complete. Although conformal infinity still consists of two components, I±,
there are reasons to view this situation as analogous to a conformally com-
pactifiable Riemannian manifold M with connected conformal boundary N ,
as considered above. For example, in the dS/CFT proposal recently put
forward by Strominger [22], it is argued that I+ and I− become effectively
identified, and give rise to a single conformal field theory; see also [27]. At
the purely classical level, a recent result of Anderson [2] shows that the
boundary map from Riemannian AdS metrics on B4, restricted to the con-
nected component containing the hyperbolic metric, to the component of the
space C0 of conformal classes on S3 with positive scalar curvature, contain-
ing the round sphere, has degree one, and is hence surjective [2, Theorem C].
In the Lorentzian case, results by Friedrich [9, 10], suggest a similar relation
between C0 × C0 and the space of asymptotically de Sitter spacetimes on
S3 × [0, 1]. Roughly stated, there is an analogy between “filling in S3” in
the Riemannian AdS case, and “filling in two copies of S3” in the Lorentzian
de Sitter case.

Thus, for globally hyperbolic spacetimes of de Sitter type with compact
conformal boundaries I±, the notion of “connectedness of the boundary” is
in some sense built in. Our main results then imply that for such space-
times, which obey suitable energy conditions, the curvature and topology
of I+ and I− are quite restricted: Each must have finite fundamental group
and the associated conformal class of each must contain a metric of positive
scalar curvature. Thus, in analogy with the results of Witten and Yau [28]
pertaining to the AdS/CFT correspondence, we establish here, for asymp-
totically de Sitter spacetimes, some connections between the bulk spacetime
(e.g., its being nonsingular) and the topology of the conformal boundary.
Further discussion of the role of topology in the dS/CFT correspondence
may be found in [19].

In the following subsection we give a somewhat more detailed descrip-
tion of our main results. From a rather different point of view, our results
can be interpreted as statements about the topology and completeness of
inflationary cosmological models; see the comment at the end of the next
subsection.
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1.1. Overview of the paper. We consider spacetimes which are asymp-
totically de Sitter either to the future or the past. To fix the time orientation
for the present discussion, let M be a globally hyperbolic spacetime of de
Sitter type with regular past conformal boundary I−, see Section 2 for def-
initions, and assume I− is compact. Then the Cauchy surfaces of M are
compact, and in fact homeomorphic to I−, see Proposition 2.1. Subject to
appropriate energy conditions, our results show that, due to the develop-
ment of singularities, or other irregularities, M cannot be asymptotically de
Sitter to the future; i.e., cannot have a regular future conformal infinity I+,
unless the curvature and topology of I− is suitably restricted. We briefly
discuss here the various curvature and topology restrictions obtained.

The Riemannian metric h̃αβ induced by g̃αβ on I− changes by a conformal
factor with a change in the defining function Ω, and thus I− is endowed
with a natural conformal structure [h̃αβ]. By the Yamabe theorem, the

conformal class [h̃αβ] contains a metric of constant scalar curvature −1, 0,
or +1, exclusively, in which case we will simply say that I− has negative,
zero, or positive scalar curvature, respectively.

In Section 3, we show that, with the setting as above, if I− has negative
scalar curvature then all the timelike geodesics of M are future incomplete.
We further show that if I− has zero scalar curvature, M can contain a
future complete timelike geodesic only under special circumstances: M must
split as a warped product. As discussed in Section 3, these results can be
expressed in terms of the Yamabe type of I−, and hence the Yamabe type
of the Cauchy surfaces of M . The upshot is, in order for M to be timelike
geodesically complete, I− must be of positive Yamabe type. Hence, in 3 + 1
dimensions, I− cannot have any K(π, 1) factors in its prime decomposition.
Thus, modulo the Poincaré conjecture, I− must be covered by a 3-sphere,
be diffeomorphic to S1 × S2, or be a connected sum of such manifolds.

Some results of a related nature are obtained in Section 4. Corollary 4.2
shows that with the setting as above, M cannot admit a regular future con-
formal boundary I+, compact or otherwise, unless I− has finite fundamental
group. Perhaps somewhat surprisingly, this rules out, in particular, a sce-
nario in which a black hole forms from a regular past (with compact I−),
such that M , with Cauchy surface topology S1×S2, is future asymptotically
similar to Schwarzschild-de Sitter spacetime. In a somewhat related vein, it
is shown in Theorem 4.3 that Mn+1, n ≤ 7, must be future null geodesically
incomplete, unless Hn−1(I−,Z) vanishes, or, equivalently, by Poincaré du-
ality, etc., unless H1(I−,Z) is pure torsion and finite. In 3 + 1 dimensions,
Corollary 4.2 implies that in order for M to have a conformal structure sim-
ilar to that of de Sitter space, I− must be covered by a homotopy 3-sphere;
see also Theorem 4.1. With regard to energy conditions (see Section 2), the
results of Section 4 only require the null energy condition.

Finally, we remark that Theorems 3.1, 3.2, and 4.3, discussed here in a
time dual manner, can be interpreted as singularity results, which establish,
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as a consequence of certain curvature or topology assumptions, the occurence
of past singularities in inflationary cosmological models.

2. Preliminaries

Let (M, gαβ) be an n + 1 dimensional 1 space–time, n ≥ 2, with covari-
ant derivative Dα, Ricci tensor Rαβ and scalar curvature R. The Einstein
equation with cosmological constant Λ is

Rαβ −
1

2
Rgαβ + Λgαβ = Sαβ, (2.1)

where Sαβ is the stress energy tensor. Let S = gαβSαβ. The stress energy
tensor satisfies the weak, dominant and strong energy conditions respec-
tively, if for any causal vector field V α, it holds that

(W.E.C.) SαβV
αV β ≥ 0 (2.2a)

(D.E.C.) SαβV
αV β ≥ 0, and SαβVβ is causal (2.2b)

(S.E.C.) (Sαβ −
1

n − 1
Sgαβ)V αV β ≥ 0 (2.2c)

We will consider the case Λ > 0. After a rescaling, we may assume that
Λ = n(n−1)/2. With this normalization, the strong energy condition (2.2c)
is equivalent to

RαβV
αV β ≥ ngαβV αV β (2.3)

for any causal vector field V α. Both the weak and the strong energy condi-
tions imply the null energy condition

RαβX
αXβ ≥ 0, (2.4)

for any null vector Xα.
Our proofs occasionally make use of notions from causal theory. We briefly

recall here some basic notation, terminology and results; for further details,
see e.g. [17, 20]. For a subset A of a spacetime M , the timelike future of
A, denoted I+(A), consists of all points in M that can be reached from A
by future directed timelike curves. (Sometimes this is written as I+(A,M)
to emphasize the particular spacetime involved.) Similarly the causal future
of A, denoted J+(A), consists of the points of A together with the points
in M that can reached from A by future directed causal curves. Sets of
the form ∂I+(A) are called achronal boundaries, and, when nonempty, are
achronal (meaning that no two points can be joined by a timelike curve)
C0 hypersurfaces. For a closed achronal set S ⊂ M , the future domain of
dependence of S, denoted D+(S), consists of all points p ∈M such that each
past inextendible causal curve from p meets S. The future Cauchy horizon
of S, denoted H+(S), is the future boundary of D+(S); one has ∂D+(S) =
H+(S)∪S. The sets I−(A), J−(A), D−(S),H−(S) are defined in a time dual

1Greek indices α,β, . . . run over 0, . . . , n while lower case latin indices a, b, c, . . . run
over 1, 2, . . . n.
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manner. S is a Cauchy surface if and only if D(S) := D+(S)∪D−(S) = M ,
or equivalently, H(S) := H+(S)∪H−(S) = ∅. If M is globally hyperbolic,
i.e., if M has a Cauchy surface S then M has topology R× S.

2.1. Spacetimes of de Sitter type. We use Penrose’s notion of conformal
infinity to to make precise what it means for a spacetime to be asymptotically
de Sitter. We will say that M has a regular future conformal completion
provided there is a spacetime-with-boundary M̃ with C2 metric g̃αβ such
that,

1. M is the interior of M̃ , and hence M̃ = M ∪ I, where I = ∂M̃ ,
2. I is spacelike, and I ⊂ I+(M, M̃), i.e., I is the future conformal bound-

ary of M , and
3. gαβ and g̃αβ are related by, g̃αβ = Ω2gαβ, where Ω ∈ C2(M̃) satisfies:

(i) Ω > 0 on M and (ii) Ω = 0 and dΩ 6= 0 along I. (Then, since I is

spacelike D̃γΩ must be timelike along I, D̃γΩD̃γΩ
∣∣
I
< 0.)

Similarly, we say that a spacetime M has a regular past and future confor-
mal completion if the above definition holds, but with condition 2 modified
as follows:

2′. I is spacelike, and decomposes into disjoint nonempty sets, I = I+ ∪
I−, where I+ ⊂ I+(M, M̃) and I− ⊂ I−(M, M̃), i.e., I+ and I− are,
respectively, the future and past conformal boundaries of M .

A spacetime admitting a regular future, or regular past and future, con-
formal completion, as described above, will be said to be of de Sitter type.
In general, as a matter of notation, geometric quantities associated with g̃αβ
will be decorated with a tilde ∼, for example the covariant derivative D̃α

and Ricci tensor R̃αβ.

2.2. Asymptotically simple spacetimes of de Sitter type. Let (M, gαβ)
be a spacetime of de Sitter type with regular future conformal infinity, I+. M
is said to be future asymptotically simple provided every future inextendible
null geodesic in M has a future end point on I+. Future asymptotic sim-
plicity is a global assumption which rules out the presence of singularities,
black holes, etc. Past asymptotic simplicity is defined time-dually.

The following proposition relates asymptotic simplicity to the causal struc-
ture of M .

Proposition 2.1. Let (M, gαβ) be a spacetime of de Sitter type with regular
future conformal infinity I+.

1. If M is globally hyperbolic and I+ is compact then M is future asymp-
totically simple.

2. If M is future asymptotically simple then M is globally hyperbolic.

In either case, the Cauchy surfaces of M are homeomorphic to I+.

Proof. By extending M ∪ I+ a little beyond I+, one can obtain a spacetime
without boundary Q such that I+ separates Q, and Q = M ∪ D+(I+, Q).
Suppose M is globally hyperbolic and I+ is compact. Since any Cauchy
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surface for M is clearly a Cauchy surface for Q, Q is globally hyperbolic.
Since I+ is compact, it is necessarily a Cauchy surface for Q ([6, 14]). It
follows that the Cauchy surfaces for M are homeomorphic to I+. Let γ be
a null geodesic in M . Since I+ is a Cauchy surface for Q, the extension of γ
to the future in Q must meet I+. It follows that M is future asymptotically
simple. This proves point 1.

Now assume M is future asymptotically simple. We claim that I+ is a
Cauchy surface for Q. Since, by construction, H+(I+, Q) = ∅, we need
only show H−(I+, Q) = ∅. If H−(I+, Q) 6= ∅, consider a future directed null
geodesic generator γ of H−(I+, Q). By future asymptotic simplicity, γ meets
I+. But a generator of H−(I+, Q) can meet I+ only at an edge point of I+,
yet I+, being closed in Q, is edgeless. So we must have H−(I+, Q) = ∅.

Thus, I+ is a Cauchy surface for Q, and Q is globally hyperbolic. It
follows that M can be foliated by Cauchy surfaces for Q. These Cauchy
surfaces for Q are also Cauchy surfaces for M , and we conclude that M is
globally hyperbolic, with Cauchy surfaces homeomorphic to I+. This proves
point 2.

3. Past incomplete spacetimes of de Sitter type

This section is devoted to the proof of the following two theorems, which
deal with spacetimes of de Sitter type with compact future conformal infinity
of nonpositive scalar curvature. The first theorem deals with the case when
I+ has negative scalar curvature.

Theorem 3.1. Let (M, gαβ) be a globally hyperbolic spacetime satisfying the
Einstein equations (2.1) with cosmological constant Λ = n(n−1)/2. Assume

1. M is of de Sitter type with future conformal completion (M̃, g̃αβ, D̃α,Ω),
with future conformal boundary I+, which is compact.

2. The stress energy tensor Sαβ of (M, gαβ) satisfies the strong energy
condition (2.2c) and the fall-off condition,

lim
p→I

[SαβD̃
αΩD̃βΩ](p) = 0. (3.1)

Then if I+ has negative scalar curvature, every timelike geodesic in (M, gαβ)
is past incomplete.

Theorem 3.1 may be viewed as a Lorentzian analogue of the main result
of Witten-Yau [28]. The next theorem deals with the case when I+ has zero
scalar curvature. This case is more subtle than the negative scalar curvature
case. Here we need to assume that both the strong and dominant energy
conditions hold, and in addition we require that M is maximal.

Theorem 3.2. Let (M, gαβ) be a globally hyperbolic spacetime satisfying the
Einstein equations (2.1) with cosmological constant Λ = n(n−1)/2. Assume
that in addition to conditions 1 and 2 of Theorem 3.1, the following holds.

3. (M, gαβ) satisfies the dominant energy condition.
4. (M, gαβ) is maximal among all spacetimes satisfying conditions 1–3.
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Then, if I+ has zero scalar curvature, either (M, gαβ) contains no past com-
plete timelike geodesic, or else (M, gαβ) is isometric to the warped product
with line element

ds2 = −dτ2 + e2τhabdx
adxb (3.2)

with hab a Ricci flat metric on I+. In particular, (M, gαβ) satisfies the
vacuum Einstein equations with cosmological constant Λ = n(n− 1)/2.

Remark 3.1. The condition (3.1) may be weakened to

lim
p→I

[Ω2SαβD̃
αΩD̃βΩ](p) = 0

lim inf
p→I

[SαβD̃
αΩD̃βΩ](p) ≥ 0

Remark 3.2. It follows from Proposition 2.1 that the Cauchy surfaces of M
are homeomorphic to I+, and in particular are compact.

Remark 3.3. Let Nn be a smooth compact manifold of dimension n ≥ 3.
By definition, N is of Yamabe type −1, if N admits a metric of constant
negative scalar curvature, but not of zero or constant positive curvature; N
is of Yamabe type 0 if N admits a metric of zero scalar curvature, but not
constant positive scalar curvature; N is of Yamabe type +1 if N admits
a metric of constant positive curvature. The definition of Yamabe type
partitions the class of all compact n-manifolds into these three sub-classes.
Thus, according to Theorem 3.1, if I+ is of Yamabe type −1 then all timelike
geodesics in M are past incomplete. Or, to change the viewpoint slightly,
if M contains a past complete timelike geodesic, then the Yamabe type of
I+ must be 0 or +1, and is 0, only if M splits as a warped product, as
described.

Theorems 3.1 and 3.2 shall be obtained as consequences of the following
basic singularity theorem, and a rigid version of it, for spacetimes obeying
the energy condition (2.2c).

Proposition 3.3. Let Mn+1 be a spacetime satisfying the energy condition,

Ric (V, V ) = RαβV
αV β ≥ −n

for all unit timelike vectors V α. Suppose that M has a smooth compact
Cauchy surface N with mean curvature H satisfying H > n. Then every
timelike geodesic in M is past incomplete.

Remark 3.4. By our sign conventions, H = divN T = DaT
a, where T is the

future pointing unit normal along N . Proposition 3.3 is an extension of an
old singularity theorem of Hawking to the case of negative Ricci curvature.
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Proof. Fix δ > 0 so that the mean curvature of N satisfies H ≥ n(1 + δ).
Let ρ : I−(N)→ R be the Lorentzian distance function to N ,

ρ(x) = d(x,N) = sup
y∈N

d(x, y) ; (3.3)

ρ is continuous and smooth outside the past focal cut locus of N . We will
show that ρ is bounded from above,

ρ(x) ≤ coth−1(1 + δ) for all x ∈ I−(N) . (3.4)

This implies that every past inextendible timelike curve with future end
point on N has length ≤ coth−1(1 + δ).

Suppose to the contrary, there is a point q ∈ I−(N) such that d(q,N) =
` > coth−1(1 + δ). Let γ : [0, `] → M , t → γ(t), be a past directed unit
speed timelike geodesic from p ∈ N to q that realizes the distance from q
to N . γ meets N orthogonally, and, because it maximizes distance to N ,
ρ is smooth on an open set U containing γ \ {q}. For 0 ≤ t < `, the slice
ρ = t is smooth near γ(t); let H(t) be the mean curvature, with respect to
the future pointing normal Dαρ, at γ(t) of the slice ρ = t.
H = H(t) obeys the traced Riccati (Raychaudhuri’s) equation,

H ′ = Ric(γ ′, γ ′) + |K|2 , (3.5)

where ′ = d/dt and |K|2 = KabK
ab is the square of the second fundametal

form Kab of N . Equation (3.5), together with the inequalities |K|2 ≥
(trK)2/n = H2/n, Ric(γ ′, γ ′) ≥ −n and H(0) ≥ n(1 + δ), implies that
H(t) := H(t)/n satisfies,

H′ ≥ H2 − 1, H(0) ≥ 1 + δ . (3.6)

By an elementary comparison with the unique solution to: h′ = h2 − 1,
h(0) = 1 + δ, we obtain H(t) ≥ coth(a − t), where a = coth−1(1 + δ) < `,
which implies that H = H(t) is unbounded on [0, a), contradicting the fact
that H is smooth on [0, `).

Proposition 3.3 admits the following rigid generalization.

Proposition 3.4. Let Mn+1 be a spacetime satisfying the energy condition,

Ric (V, V ) = RαβV
αV β ≥ −n (3.7)

for all unit timelike vectors V α, and suppose M has a smooth compact
Cauchy surface N with mean curvature H satisfying H ≥ n. If there ex-
ists at least one past complete timelike geodesic in M , then a neighborhood
of N in J−(N) is isometric to (−ε, 0] × N , with warped product metric
ds2 = −dτ2 + e2τhabdx

adxb, where hab is the induced metric on N . If the
timelike geodesics orthogonal to N are all past complete, then this warped
product splitting extends to all of J−(N).

Proof. The proof method we employ is standard. Let hab be the induced
metric on N , and let Kab be the second fundamental form of N , Kab =
−DaTb, where T is the past pointing unit normal along N .
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Let t → Nt be a variation of N0 = N , with variation vector field φT ,
where φ is a smooth function on N . Let H = Ht be the mean curvature
function of Nt. A standard computation gives

∂H

∂t

∣∣
t=0

= −4φ + (RTT +
H2

0

n
+ σabσ

ab)φ , (3.8)

where RTT = Ric(T, T ), and σab is the trace free part of Kab, σab = Kab −
H0
n hab. In view of the energy condition and the fact that H0 ≥ n, the

quantity RTT +
H2

0
n +σabσ

ab is nonnegative. If it were positive at some point
then, by standard results, there would exist a function φ for which the right
hand side of (3.8) were strictly positive. Since H0 ≥ n, this would imply
that for small t > 0, Ht > n. Proposition 3.3 would then imply that all
timelike geodesics are past incomplete, contrary to assumption. Thus, σab
must vanish along N , and hence N is totally umbilic, Kab = hab and H = n.

Now introduce Gaussian normal coordinates in a neighborhood U of N
in J−(N),

U = [0, ε)×N, ds2 = −du2 + hab(u)dxadxb . (3.9)

Let Kab = Kab(u) and H = Hu be the second fundamental form and mean
curvature, respectively, of the u-slice Nu. H = Hu obeys the traced Riccati
equation,

∂H

∂u
= Ruu + |K|2 , (3.10)

where Ruu is the Ricci tensor contracted with the coordinate vector ∂u.
Since Ruu ≥ −n, |K|2 ≥ H2/n, and H0 = n, it follows that H := H/n
satisfies,

∂H

∂u
≥ H2 − 1, H(0) = 1 , (3.11)

which by an elementary comparison, implies H ≥ 1 on U . Hence, H |Nu ≥ n
for all u ∈ [0, ε). But the argument above then implies that each Nu is

totally umbilic, Kab(u) = hab(u) for each u. Since Kab = −1
2
∂hab
∂u , we obtain

the warped product splitting of U ,

ds2 = −du2 + e−2uhab(0)dxadxb , (3.12)

which, upon the substitution τ = −u, yields the local warped product split-
ting asserted in the proposition. If the normal geodesics to N are all past
complete then this splitting can be extended indefinitely to the past.

We now proceed to the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. We will begin by proving that (3.1) implies D̃γΩD̃γΩ
∣∣
I

= −1. To see this, note that D̃αΩ
∣∣
I

is perpendicular to I+, and is past ori-

ented. Introduce a coordinate system (xα) = (s, xa) near I+ so that ∂s
∣∣
I
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agrees with D̃αΩ∂xα
∣∣
I
. Then Y α = Ω(∂s)

α = ΩD̃αΩ + O(Ω2). The Ricci

tensor Rαβ of (M, gαβ) and the Ricci tensor R̃αβ of (M, g̃αβ) are related by

Rαβ = R̃αβ + Ω−1[(n− 1)D̃αD̃βΩ + D̃γD̃
γΩg̃αβ]− nΩ−2D̃γΩD̃γΩg̃αβ

(3.13)

A computation shows that

SαβY
αY β =

[
n(n− 1)

2
D̃γΩD̃γΩ + Λ

]
gαβY

αY β +O(Ω)

and hence (3.1) implies

D̃γD̃
γΩ
∣∣
I

= −1. (3.14)

Let h̃0
ab be the metric on I+ induced from g̃αβ. By the Yamabe theorem,

there is a positive function θ on I+ such that the scalar curvature r̄0 of
θ−2h̃0

ab equals −1, 0, or 1 on I+. Further, there is a neighborhood U of
I+, and a conformal gauge transformation Θ with Θ

∣∣
I

= θ, such that after

replacing Ω by Ω̄ = ΩΘ−1, and g̃αβ by ḡ = Θ−2g̃αβ, we have

Ω(p) = dḡ(p, I
+)

on U where dḡ denotes the Lorentz distance to I+. This is achieved, following
[4, §5] by solving the equation

−1 = ḡαβDαΩ̄DβΩ̄ (3.15)

By (3.14) the function a = Ω−1(1 + g̃αβDαΩDβΩ) is in C1(M̃). A compu-
tation shows that (3.15) is equivalent to the system

2Θg̃αβDαΘDβΩ− Ωg̃αβDαΘDβΘ = Θ2a

This equation with initial data Θ = θ on I+, has a unique solution in a
neighborhood of I+ [21, pp. 39-40]. In a sufficiently small neighborhood U
of I+, the solution is positive, and we continue this to a positive function
Θ on all of M for which ḡαβDαΩ̄DβΩ̄ = −1 on U . This implies that the
gradient curves of Ω̄ on U are unit-speed timelike geodesics with respect to
ḡ and since Ω̄ = 0 on I+, we have Ω̄(p) = dḡ(p, I

+). Finally, we rename

ḡαβ, Ω̄ to g̃αβ,Ω. By construction, the metric h̃0
ab induced on I+ by g̃αβ has

scalar curvature r̃0 = r̄0.
Letting t = Ω, so that t increases to the past near I+, the foliation of

level sets Nt of t is the Gaussian foliation with respect to I+ on U . Let
hab, r,Kab, H be the induced metric on Nt, its scalar curvature function,
the second fundamental form of Nt and the mean curvature H = habKab,
respectively. Here Kab = −DaTb is the second fundamental form of Nt

defined with respect to the past directed timelike normal T to Nt, so that
Kab = −1

2LT gab. Similarly, h̃ab, r̃, K̃ab, H̃ are the metric, scalar curvature,
second fundamental form, and mean curvature of Nt, defined with respect
to the conformally rescaled metric g̃αβ.
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By the above, we may without loss of generality assume that on U , gαβ
is of the form

gαβdx
αdxβ =

1

t2
(−dt2 + h̃abdx

adxb) (3.16)

where h̃ab = h̃ab(t, x), h̃ab(0, x) = h̃0
ab(x) and the scalar curvature r̃0 of h̃0

ab is
constant = −1, 0,+1. With this form for gαβ and g̃αβ, we have T = t∂t. We
will use an index T to denote contraction with T , for example uT = uαT

α,
and an index 0 for contraction with ∂t, for example u0 = uα(∂t)

α.
To prove Theorem 3.1, it is sufficient to show, assuming r̃0 = −1, that

H |Nt > n for some t > 0, for then Proposition 3.3 applies. The mean

curvature functions H and H̃ are related by

H = tH̃ + n . (3.17)

In particular, H
∣∣
Nt
> 0 for t sufficiently small. The Gauss equation (in the

physical metric gαβ) applied to each Nt, together with the Einstein equation,
yields the constraint,

H2 = 2STT + 2Λ + |K|2 − r
= 2t2S00 + n(n − 1) + |K|2 − t2r̃ , (3.18)

which, since |K|2 ≥ H2/n, implies,

H2 ≥ n2 +
n

n− 1
t2(S00 − r̃) . (3.19)

Using r̃0 = −1 and the energy condition (3.1), the above inequality implies
H |Nt > n for all t > 0 sufficiently small.

Finally, we give the proof of Theorem 3.2.

Proof of Theorem 3.2. Let the notation be as in the proof of Theorem 3.1.
We will show, by adapting an argument in [1] to the Lorentzian setting, that
H |Nt ≥ n for each t > 0, so that Propsition 3.4 may be applied. To this

end, we first show that the quantity t−1H̃ is nondecreasing along the flow
lines of ∂t.

The conformal transformation rule for the Ricci tensor, shows that on U ,

R00 = R̃00 − t−1H̃ − t−2n (3.20a)

R = n(n+ 1) + 2ntH̃ + t2R̃ (3.20b)

The traced Riccati (Raychaudhuri) equation in the conformally rescaled
metric g̃αβ is

∂tH̃ = |K̃|2 + R̃00. (3.21)

Using (3.20a), (3.21) gives,

∂t(t
−1H̃) = t−1[|K̃|2 + t−2(RTT + n)] (3.22)

≥ 0 , (3.23)
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since, by the energy condition (2.3), RTT + n ≥ 0. Integrating from ε to t
along each flow line of ∂t, and letting ε→ 0, gives,

t−1H̃(t) ≥ lim inf
ε→0

ε−1H̃(ε) . (3.24)

The contracted Gauss equation (in the unphysical metric g̃αβ) states

r̃ + H̃2 − |K̃|2 = 2R̃00 + R̃ .

Using (3.20) we find after some manipulations, that on U ,

2R̃00 + R̃ = 2t−2STT − 2(n− 1)t−1H̃

The previous two equations imply,

2(n− 1)t−1H̃

(
1 +

tH̃

2(n− 1)

)
= |K̃|2 − r̃ + 2t−2STT .

Setting t = ε in the above, and letting ε → 0, while making use of the
asymptotic form of the weak energy condition (3.1), and the fact that H̃ is
bounded, shows that the right hand side of Equation (3.24) is greater than
or equal to −r̃0/2(n − 1). Since we are now considering the case r̃0 = 0,

we conclude that there exists c > 0 sufficiently small so that H̃|Nt ≥ 0 for
t ∈ (0, c]. Equation (3.17) then implies H |Nt ≥ n for each t ∈ (0, c]. Let
Mc = {p ∈M, t(p) ∈ (0, c]}.

By applying Proposition 3.4 to Nt ⊂ M for t ∈ (0, c], we conclude
that the line element on Mc is of the form (3.2) and hence is conformal

to −dt2 + h̃abdx
adxb. Taking into account the assumption that I+ is a regu-

lar conformal boundary, it follows that h̃ab = h̃0
ab, the metric on I+. Hence,

for t ∈ (0, c], Nt with induced metric hab has zero scalar curvature and
the second fundamental form of Nt satisfies Kab = hab. The Hamiltonian
constraint

r + (trK)2 − |K|2 = 2Λ + STT

then implies

STT = 0

By assumption the dominant energy condition holds, and hence by the con-
servation theorem [17, §4.3], Sαβ = 0 in the domain of dependence of Nc.
By construction, Nc is a Cauchy surface in M , so we find that Sαβ = 0 in
M . A calculation shows that a warped product line element of the form
(3.2) satisfies the vacuum Einstein equations with cosmological constant

Λ = n(n− 1)/2 only if Ric[h̃0
ab] = 0.

Summarizing our conclusions so far, we have that (M, gαβ) satisfies the
vacuum Einstein equations with cosmological constant Λ and we have a
Cauchy surface Nc in M with induced data equivalent to that of a hypersur-
face in the warped product spacetime with line element given by (3.2). By
assumption (M, gαβ) is maximal. The global splitting asserted in Theorem
3.2 is a consequence of uniqueness of the maximal Cauchy development for
the Einstein equations, see [8] for a discussion of the Λ = 0 case.
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4. Spacetimes of de Sitter type and the null energy condition

In this section we obtain restrictions on the topology of spacetimes of
de Sitter type which obey the null energy condition.

Theorem 4.1. Let (M, gαβ) be a spacetime of de Sitter type with regular
past and future conformal boundaries I±. Assume that (M, gαβ) is future
or past asymptotically simple and satisfies the null energy condition (2.4).
Then (M, gαβ) is globally hyperbolic, and the Cauchy surfaces of M are
compact with finite fundamental group.

Remark 4.1. Put another way, given a globally hyperbolic spacetime M of
de Sitter type with regular I±, which obeys the null energy condition, if
the fundamental group of the Cauchy surfaces of M is infinite then M can
be neither past nor future asymptotically simple. This is illustrated by the
spatially closed version of Schwarzschild-de Sitter spacetime, whose Cauchy
surfaces have topology S1 × S2. Asymptotic simplicity fails in this model
due to the presence of a black hole and a white hole.

Proof. For definiteness, assume M is future asymptotically simple. By
Proposition 2.1, M is globally hyperbolic, with Cauchy surfaces homeomor-
phic to I+. Then M̃ can be extended a little beyond I± to obtain a spacetime
(without boundary) P , with M̃ ⊂ P , such that the Cauchy surfaces for M
are also Cauchy surfaces for P , so that P is globally hyperbolic.

Consider the achronal boundary ∂I+(p, P ), which is an achronal C0 hy-
persurface in P . We claim that ∂I+(p, P ) is compact. Suppose not. By the
global hyperbolicity of P , ∂I+(p, P ) = J+(p, P ) \ I+(p, P ), and hence the
null geodesic generators of ∂I+(p, P ) extend back to the point p. Using the
noncompactness of ∂I+(p, P ), one easily constructs a future directed null
geodesic γ ⊂ ∂I+(p, P ) starting at p, which is future inextendible in P . In
particular, γ meets I+ at a point q, say, and enters the interior of D+(I+, P ).

Let η be the portion of γ from p to q, excluding these end points. Then
η is a null line, i.e., a complete achronal null geodesic in (M, gαβ). Observe
that I+(η,M) = I+(p, P ) ∩ M , from which it follows that ∂I+(η,M) =
∂I+(p, P ) ∩ M (where ∂I+(A,X) refers to the boundary in X). It fol-
lows that the generators of the achronal boundary ∂I+(η,M) extend back
to p and hence are past complete in (M, gαβ). By the time-dual of these
arguments, we have that ∂I−(η,M) = ∂I−(q, P ) ∩ M , and that the null
generators of ∂I−(η,M) are future complete in (M, gαβ). Then, since the
null energy condition holds, we may apply the null splitting theorem [15]
to conclude that ∂I+(η,M) and ∂I−(η,M) agree, and, in fact, form a
smooth achronal edgeless totally geodesic null hypersurface in M . Hence,
∂I+(p, P )∩M = ∂I−(q, P )∩M , from which it follows that the null genera-
tors of ∂I+(p, P ) reconverge, and, by the achronality of ∂I+(p, P ), terminate
at q. But this contradicts the fact that the generator γ enters the interior
of D+(I+, P ).
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Thus, ∂I+(p, P ) is compact, and, by standard results [6, 14], is a Cauchy
surface for P . So the Cauchy surfaces of P , and hence, the Cauchy surfaces
of M are compact. Now let M∗ denote the universal covering spacetime of
M . M∗ will be globally hyperbolic; in fact if S is a Cauchy surface for M ,
so that M ≈ R × S, then M∗ ≈ R × S∗, where S∗ is the universal cover of
S and each slice {t} × S∗ is a Cauchy surface for M∗. It is easily seen that
the assumptions on M in the theorem lift to M∗. Then from the above, we
conclude that the Cauchy surfaces of M∗, and hence S∗, are compact. It
follows that S∗ is a finite cover of S, and hence S has a finite fundamental
group.

The following corollary to Theorem 4.1, is an immediate consequence of
Theorem 4.1, and Proposition 2.1. It replaces the assumption of asymptotic
simplicity with other natural assumptions.

Corollary 4.2. Let (M, gαβ) be a globally hyperbolic spacetime of de Sitter
type with regular past and future conformal boundaries I±. Assume that
(M, gαβ) obeys the null energy condition, and that I+ (or I−) is compact.
Then the Cauchy surfaces of M , which by Proposition 2.1 are homeomorphic
to I+ (or I−), have finite fundamental group.

We conclude with the following theorem.

Theorem 4.3. Let (Mn+1, gαβ), n ≤ 7, be a globally hyperbolic spacetime
of de Sitter type with regular future conformal boundary I+. Assume that
(Mn+1, gαβ) obeys the null energy condition, and that I+ is compact and
orientable. If M is past null geodesically complete then the Cauchy surfaces
of M , which by Proposition 2.1, are homeomorphic to I+, have vanishing
co-dimension one homology, i.e., Hn−1(N,Z) = 0, N a Cauchy surface for
M . In particular, there can be no worm holes in N .

Proof. The proof is an application of the Penrose singularity theorem [17, 20]
applied to a suitable covering spacetime of M .

As in the proof of Theorem 3.1, introduce coordinates so that the physical
metric gαβ takes the form of Equation (3.16). The second fundamental forms

Kab and K̃ab, of the t-slices Nt (notation as in the proof of Theorem 3.1) are
related by

Kab = t−1K̃ab + gab . (4.1)

Let X̃ be a g̃-unit vector field defined in a neighborhood U of a point p ∈ I+,
which is everywhere orthogonal to ∂t. Then X = t2X̃ is a g-unit vector field
defined on U \ I+, everywhere orthogonal to ∂t. From (4.1), we have

KabX
aXb = t K̃abX̃

aX̃b + 1 , (4.2)

which is positive for t sufficiently small. Hence, for t sufficiently small,
Kab = −DaTb is positive definite along Nt.

Thus, by fixing t0 sufficiently small, there exists a compact Cauchy sur-
face N = Nt0 for M which is strictly convex to the past, i.e. for which DaTb
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is negative definite along N , where T is the past pointing unit normal along
N . Suppose Hn−1(N,Z) 6= 0. By well known results of geometric measure
theory (see [18, p. 51], for discussion), every nontrivial class in Hn−1(N,Z)
has a least area representative which can be expressed as a linear combina-
tion of smooth, orientable, connected, compact, embedded minimal (mean
curvature zero) hypersurfaces in N . Let Σ be such a hypersurface; we may
assume Σ represents a nontrivial element of Hn−1(N,Z). Note Σ is spacelike
and has co-dimension two in M . As described in [13], since Σ is minimal
in N , and N is strictly convex to the past in M , Σ must be a past trapped
surface in M , i.e., the two families of past directed null geodesics issuing
orthogonally from Σ are converging in the mean along Σ.

The next step is to construct a certain covering spacetime M∗. Since N
is a Cauchy surface for M , so that M ≈ R ×N , each covering space N∗ of
N gives rise, in an essentially unique way, to a covering spacetime M∗ of M ,
such thatM∗ ≈ R×N∗, where the slices {t}×N∗ are Cauchy surfaces forM∗.
Since Σ is two-sided, loops in N have a well-defined oriented intersection
number with respect to Σ. The intersection number is a homotopy invariant,
and so gives rise to a well-defined subgroup G of Π1(N), corresponding to
the loops in N having zero intersection number with respect to Σ. N∗ is
defined to be the covering space of N associated with the subgroup G, i.e.,
satisfying π∗(Π1(N∗)) = G, where π : N∗ → N is the covering map. N∗

has a simple description in terms of cut-and-paste operations. Σ does not
separate N , for otherwise it would bound in N . By making a cut along
Σ, we obtain a compact manifold N ′ with two boundary components, each
isometric to Σ. Taking Z copies of N ′, and gluing these copies end-to-end
we obtain the covering space N∗ of N . The inverse image π−1(Σ) consists
of Z copies of Σ, each one separating N∗. Let Σ0 ⊂ N∗ denote one of these
copies.

As per the discussion above, there exists a covering spacetime M∗ ≈
R×N∗, with Cauchy surfaces homeomorphic to N∗. Since the covering map
is a local isometry, the assumptions that M obeys the null energy condition
and is past null geodesically complete lift to M∗. Moreover, Σ0 will be a past
trapped surface in M∗. Then, according to the Penrose singularity theorem
(cf., [17, Theorem 1] or [20, Theorem 61]), the achronal boundary ∂I−(Σ0)
is a compact Cauchy surface for M∗. This implies that N∗ is compact, and
hence, a finite covering of N , which is a contradiction. We conclude that
Hn−1(N,Z) = 0.

Acknowledgements: We thank Mike Anderson and Helmut Friedrich for
useful comments and discussion. Theorems 3.1 and 3.2 were proved inde-
pendently, with somewhat different proofs, by Mike Anderson [3].
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