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Abstract
We consider the application of stable marginally outer trapped surfaces to
problems concerning the size of material bodies and the areaof black holes.
The results presented extend to general initial data sets(V , g,K) previous
results assuming either maximal(trg K = 0) or time-symmetric(K = 0)
initial data.

PACS number: See endnote 1

1. Introduction

Let 6 be a co-dimension two spacelike submanifold of a spacetimeM. Under suitable
orientation assumptions, there exist two families of future-directed null geodesics issuing
orthogonally from6. If one of the families has vanishing expansion along6 then6 is called
a marginally outer trapped surface (or an apparent horizon). The notion of a marginally outer
trapped surface (MOTS) was introduced early in the development of the theory of black holes,
and plays a fundamental role in quasi-local descriptions ofblack holes; see e.g. [7]. MOTSs
arose in a more purely mathematical context in the work of Schoen and Yau [23] concerning
the existence of solutions to the Jang equation, in connection with their proof of positivity of
mass.

Mathematically, MOTSs may be viewed as spacetime analoguesof minimal surfaces in
Riemannian manifolds. Despite the absence of a variationalcharacterization for MOTSs like
that for minimal surfaces, MOTSs have recently been shown tosatisfy a number of analogous
properties; see for example, [2–6, 12, 16]. Of importance to many of these developments is
the fact, first discussed in [2], that MOTSs admit a notion of stability analogous, in the analytic
sense, to that of minimal surfaces (cf, section2).

In this paper we consider applications of stable MOTSs to twoproblems in general
relativity. In section3 we address the issue of how the size of a material body tends to
be restricted by the amount of matter contained within it. More specifically, we consider
an extension of a result of Schoen and Yau [24] concerning the size of material bodies to
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nonmaximal initial data sets. In section4 we discuss a higher dimensional version of the
lower area (entropy) bounds obtained by Gibbons [17] and Woolgar [25] for ‘topological
black holes’ which can arise in spacetimes with negative cosmological constant. This extends
a result in [11] to the general non-time-symmetric setting. We defer further discussion of
these problems until sections3 and4. In the next section we present some basic background
material on MOTSs relevant to our needs.

2. Marginally outer trapped surfaces

We recall here some basic definitions and facts about marginally outer trapped surfaces. We
refer the reader to [3, 4, 15, 16] for further details.

LetV be a spacelike hypersurface in ann+1 dimensional,n > 3, spacetime(M, gM). Let
g = 〈, 〉 andK denote the induced metric and second fundamental form ofV , respectively. To
set sign conventions, for vectorsX, Y ∈ TpV,K is defined asK(X, Y ) = 〈∇Xu, Y 〉, where∇
is the Levi-Civita connection ofM andu is the future directed timelike unit vector field toV .
Note that we are using the ‘Wald’, rather than the ‘ADM/MTW’, convention for the extrinsic
curvature, i.e., positive trK implies expansion.

Let6 be a smooth compact hypersurface inV , perhaps with boundary∂6, and assume
6 is two-sided inV . Then6 admits a smooth unit normal fieldν in V , unique up to sign. By
convention, refer to such a choice as outward pointing. Thenl = u + ν is a future directed
outward pointing null normal vector field along6, unique up to positive scaling.

The null second fundamental form of6 with respect tol is, for eachp ∈ 6, the bilinear
form defined by

χ : Tp6 × Tp6 → R, χ(X, Y ) = gM(∇Xl, Y ). (2.1)

The null expansionθ of6 with respect tol is obtained by tracing the null second fundamental
form, θ = trh χ = hABχAB = div6 l, whereh is the induced metric on6. In terms of the
initial data(V , g,K), θ = trhK +H , whereH is the mean curvature of6 within V . It is well
known that the sign ofθ is invariant under positive scaling of the null vector fieldl.

If θ vanishes then6 is called a marginally outer trapped surface (MOTS). As mentioned
in the introduction, MOTSs may be viewed as spacetime analogues of minimal surfaces in
Riemannian geometry. In fact in the time-symmetric case(K = 0) a MOTS6 is simply a
minimal surface inV . Of particular relevance for us is the fact that MOTSs admit anotion of
stability analogous to that of minimal surfaces, as we now discuss.

Let 6 be a MOTS inV with outward unit normalν. We consider variationst → 6t
of 6 = 60,−ǫ < t < ǫ, with variation vector fieldV = ∂

∂t

∣

∣

t=0
= φν, φ ∈ C∞

0 (6), where
C∞

0 (6) denotes the space of smooth functions on6 that vanish on the boundary of6, if
there is one. Letθ(t) denote the null expansion of6t with respect tolt = u + νt , whereu is
the future directed timelike unit normal toV andνt is the outer unit normal to6t in V . A
computation shows

∂θ

∂t

∣

∣

∣

∣

t=0

= L(φ),

whereL : C∞
0 (6) → C∞

0 (6) is the operator,

L(φ) = −△φ + 〈X,∇φ〉 +
(

1
2S − (µ + 〈J, ν〉)− 1

2|χ |2 + divX − |X|2
)

φ. (2.2)

In the above,S is the scalar curvature of6,µ = G(u, u), whereG = RicM − 1
2RMgM is the

Einstein tensor of spacetime,J is the vector field onV dual to the oneformG(u, ·), andX is the See endnote 2

vector field on6 defined by taking the tangential part of∇νu along6. In terms of initial data,
the Gauss–Codazzi equations implyµ = 1

2(SV + (trK)2 − |K|2) andJ = (÷K)♯ − ∇(trK).
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In the time-symmetric case,θ becomes the mean curvatureH, the vector fieldX vanishes
andL reduces to the classical stability operator of minimal surface theory. In analogy with
the minimal surface case, we refer toL in (2.2) as the stability operator associated with
variations in the null expansionθ . Although in generalL is not self-adjoint, its principal
eigenvalue3 (eigenvalue with smallest real part)l1(L) is real. Moreover there exists an
associated eigenfunctionφ which is positive on6\∂6. Continuing the analogy with the
minimal surface case, we say that a MOTS is stable providedl1(L) > 0. (In the minimal
surface case this is equivalent to the second variation of area being nonnegative.) Note that if
φ is positive, we are moving ‘outwards’ from the MOTS6, and if there are no outer trapped
surfaces outside of6, then there shall exist no positiveφ for whichL(φ) < 0. It follows in
this case that6 is stable [3, 4, 15].

As it turns out, stable MOTSs share a number of properties in common with minimal
surfaces. This sometimes depends on the following fact. Consider the ‘symmetrized’ operator
L0 : C∞

0 (6) → C∞
0 (6),

L0(φ) = −△φ +
(

1
2S − (µ + 〈J, ν〉)− 1

2|χ |2
)

φ (2.3)

formally obtained by settingX = 0 in (2.2). Then arguments in [16] show the following (see
also [3, 15]).

Proposition 2.1. l1(L0) > l1(L).

We will say that a MOTS is symmetric stable ifl1(L0) > 0; hence ‘stable’ implies
‘symmetric stable’.

3. On the size of material bodies

In this section we restrict attention to four-dimensional spacetimesM, and hence three-
dimensional initial data sets(V , g,K),dimV = 3.

It is a long held view in general relativity that the size of a material body is limited by
the amount of matter contained within it. There are several precise results in the literature
supporting this point of view. In [14], it was shown, roughly, that the size of a stationary fluid
body is bound by the reciprocal of the difference of the density and rotation of the fluid. In
this case ‘size’ refers to the radius of the largest distanceball contained in the body.

More closely related to the considerations of the present paper is the result of Schoen and
Yau [24] which asserts that for a maximal(trK = 0) initial data set(V , g,K), the size of
a body� ⊂ V is bound by the reciprocal of the square root of the minimum ofthe energy
densityµ on�. In this case ‘size’ refers to the radius of the largest tubular neighborhood in�
of a loop contractible in� but not contractible in the tubular neighborhood. As was discussed
in [21], this notion of size can be replaced by a notion based on the size of the largest stable
minimal surface contained in�.4 As argued there, this in general gives a larger measure of the
size of a body, but must still satisfy the same Schoen–Yau bound. The aim of this section is to
observe that a similar result holds without the maximality assumption if one replaces minimal
surfaces with MOTS.

LetV be a three-dimensional spacelike hypersurface, which gives rise to the initial data set
(V , g,K), as in section2. Consider abodyinV by which we mean a connected open set� ⊂ V

with smooth boundary∂�. We describe a precise measure of the size of� in terms of MOTSs

3 If 6 has nonempty boundary, we mean the principal Dirichlet eigenvalue.
4 This is formulated most simply when� is bounded andmean convex, meaning that the boundary of� has mean
curvatureH > 0. Then geometric measure theory guarantees the existence of many smooth least area surfaces
contained in�.
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contained within�. Let6 be a compact connected surface with boundary∂6 contained in�.
Let x be a point in6 furthest from∂6 in �, i.e.,x satisfiesd�(x, ∂6) = supy∈6d�(y, ∂6),
whered� is distance measured within�. Then the (ambient) radius of6,R(6), is defined as
R(6) = d�(x, ∂6).

We then define the radius of�,R(�) as follows:

R(�) = sup
6

R(6), (3.1)

where the sup is taken over all compact connected symmetric-stable MOTSs with boundary
contained in�. Now this can only be a reasonable measure of the size of� if there are
a plentiful number of large symmetric-stable MOTSs contained in�. But in fact a recent
result of Eichmair [12] guarantees the existence of such MOTS, subject to a naturalconvexity
condition on the body�. We say that� is a null mean convex bodyprovided its boundary
∂� has positive outward null expansion,θ+ > 0, and negative inward null expansion,θ− < 0.
The following is an immediate consequence of theorem 5.1 in [12].

Theorem 3.1.Let� be a relatively compact null mean convex body, with connected boundary,
in the three-dimensional initial data set(V , g,K). Letσ be a closed curve on∂� that separates
∂� into two connected components. Then there exists a smooth symmetric-stable MOTS6
contained in� with boundaryσ .

The fact that6 is symmetric stable follows from a straightforward modification of
arguments in [23, p 254]; see also the discussion at the end of section4 in [12]. In fact,
a variation of the arguments in [5, section4], may well imply that the MOTS6 constructed
in Eichmair’s theorem is actually stable. If that were the case, thenR(�) could be defined in
terms of stable, rather than symmetric-stable, MOTS, whichwe believe would be conceptually
preferable.

We now state our basic result about the size of bodies.

Theorem 3.2.Let� be a body in the initial data set(V , g,K), and suppose there existsc > 0
such thatµ− |J | > c on�. Then,

R(�) 6
2π
√

3
·

1
√
c
. (3.2)

Proof. The proof is similar to the proof of theorem 1 in [24]. The latter follows essentially as
a special case of the more general proposition 1 in [24]. For the convenience of the reader we
present here a simple direct proof of theorem3.2, which involves a variation of the arguments
in [24].

Let 6 be a symmetric-stable MOTS with boundary∂6 in �; hencel1 = l1(L0) > 0.
Choose an associated eigenfunctionψ such thatψ > 0 on6\∂6. In fact, by perturbing the
boundary∂6 ever so slightly into6, we may assume without loss of generality thatψ > 0
on6. Substitutingφ = ψ into equation (2.3), we obtain

△ψ = −
(

µ + 〈J, ν〉 + 1
2|χ |2 + l1 − κ

)

ψ, (3.3)

whereκ = 1
2S is the Gaussian curvature of6 in the induced metrich.

Now consider6 in the conformally related metric̃h = ψh. The Gaussian curvature of
(6, h̃) is related to the Gaussian curvature of(6, h) by

κ̃ = ψ−2κ − ψ−3△ψ +ψ−4|ψ |2. (3.4)

Combining (3.3) and (3.4) we obtain

κ̃ = ψ−2(Q +ψ−2|∇ψ |2), (3.5)
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where

Q = µ + 〈J, ν〉 + 1
2|χ |2 + l1. (3.6)

Now letx be a point in6 furthest from∂6 in �, as in the definition ofR(6). Let γ be a
shortest curve in(6, h̃) from x to ∂6. Thenγ is a geodesic in(6, h̃), and by Synge’s formula
[22] for the second variation of arc length, we have alongγ ,

∫ ℓ̃

0

(

df

ds̃

)2

− κ̃f 2 ds̃ > 0, (3.7)

for all smooth functionsf defined on [0, ℓ̃] that vanish at the end points, whereℓ̃ is the
h̃-length ofγ ands̃ is theh̃-arc length alongγ . By making the change of variables = s(s̃),
wheres is theh-arc length alongγ , and using equation (3.5), we arrive at

∫ ℓ

0
ψ−1(f ′)2 − (Q +ψ−2|∇ψ |2)ψ−1f 2 ds > 0, (3.8)

for all smooth functionsf defined on [0, ℓ] that vanish at the endpoints, whereℓ is theh-length
of γ , and′ = d

ds .
Settingk = ψ−1/2f in (3.8), we obtain after a small manipulation,

∫ ℓ

0
(k′)2 −Qk2 +ψ−1ψ ′kk′ −

3

4
ψ−2(ψ ′)2k2 ds > 0, (3.9)

whereψ ′ is shorthand for(ψ ◦ γ )′, etc. Completing the square on the last two terms of the
integrand,

3
4ψ

−2(ψ ′)2k2 − ψ−1ψ ′kk′ =
(√

3
2 ψ

−1ψ ′k − 1√
3
k′

)2
− 1

3(k
′)2,

we see that (3.9) implies
∫ ℓ

0

4

3
(k′)2 −Qk2 ds > 0. (3.10)

Since, from (3.6), we have thatQ > µ− |J | > c, (3.10) implies

4

3

∫ ℓ

0
(k′)2 ds > c

∫ ℓ

0
k2 ds. (3.11)

Settingk = sin πs
ℓ

in (3.11) then gives

ℓ 6
2π
√

3
·

1
√
c
. (3.12)

SinceR(6) 6 ℓ, the result follows. �

4. On the area of black holes in asymptotically anti-de Sitter spacetimes

A basic step in the classical black hole uniqueness theoremsis Hawking’s theorem on the
topology of black holes [19] which asserts that cross sections of the event horizon in(3 + 1)-
dimensional asymptotically flat stationary black hole spacetimes obeying the dominant energy
condition are topologically 2-spheres. As shown by Hawking[18], this conclusion also holds
for outermost MOTSs in spacetimes that are not necessarily stationary. In [15, 16] a natural
generalization of these results to higher dimensional spacetimes was obtained by showing
that cross sections of the event horizon (in the stationary case) and outermost MOTSs (in the
general case) are of positive Yamabe type, i.e., admit metrics of positive scalar curvature. This
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implies many well-known restrictions on the topology, and is consistent with recent examples
of five-dimensional stationary black hole spacetimes with horizon topologyS2 × S1 [13].

These results on black hole topology depend crucially on thedominant energy condition.
Indeed, there is a well-known class of(3+1)-dimensional static locally anti-de Sitter black hole
spacetimes which are solutions to the vacuum Einstein equations with negative cosmological
constant3 having horizon topology of arbitrary genusg [10, 20]. Higher dimensional versions
of these topological black holes have been considered in [9, 20]. However, as Gibbons pointed
out in [17], although Hawking’s theorem does not hold in the asymptotically locally anti-de
Sitter setting, his basic argument still leads to an interesting conclusion. Gibbons showed that
for three-dimensional time-symmetric initial data sets that give rise to spacetimes satisfying
the Einstein equations with3 < 0, outermost MOTSs6 (which are stable minimal surfaces
in this case) must satisfy the area bound,

Area(6) >
4π(g − 1)

|3|
, (4.1)

whereg is the genus of6. Woolgar [25] obtained a similar bound in the general, nontime-
symmetric, case. Hence, at least for stationary black holes, black hole entropy has a lower
bound depending on a global topological invariant.

In [11] Cai and Galloway considered an extension of Gibbon’s result to higher dimensional
spacetimes. There it was shown, for time-symmetric initialdata, that a bound similar to that
obtained by Gibbons still holds, but where the genus is replaced by the so-calledσ -constant
(or Yamabe invariant). Theσ -constant is a diffeomorphism invariant of smooth compact
manifolds that in dimension 2 reduces to a multiple of the Euler characteristic; see [11] and
references therein for further details. The aim of this section is to observe that this result
extends to the general, nontime-symmetric case.

We begin by recalling the definition of theσ -constant. Let6n−1, n > 3, be a smooth
compact (without boundary)(n − 1)-dimensional manifold. Ifg is a Riemannian metric on
6n−1, let [g] denote the conformal class ofg. The Yamabe constant with respect to [g], which
we denote byY[g], is the number,

Y[g] = inf
g̃∈[g]

∫

6
Sg̃ dµg̃

( ∫

6
dµg̃

)
n−3
n−1

, (4.2)

whereSg̃ and dµg̃ are respectively the scalar curvature and volume measure of6n−1 in
the metricg̃. The expression involving integrals is just the volume-normalized total scalar
curvature of(6, g̃). The solution to the Yamabe problem, due to Yamabe, Trudinger, Aubin
and Schoen, guarantees that the infimum in (4.2) is achieved by a metric of constant scalar
curvature.

Theσ -constant of6 is defined by taking the supremum of the Yamabe constants overall
conformal classes,

σ(6) = sup
[g]

Y[g]. (4.3)

As observed by Aubin, the supremum is finite, and in fact bounded above in terms of the
volume of the standard unit(n − 1)-sphereSn−1 ⊂ R

n. Theσ -constant divides the family
of compact manifolds into three classes according to (1)σ(6) > 0, (2) σ(6) = 0, and (3)
σ(6) < 0.

In the case dim6 = 2, the Gauss–Bonnet theorem impliesσ(6) = 4πχ(6) = 8π(1−g).
Note that the inequality (4.1) only gives information whenχ(6) < 0. Correspondingly, in
higher dimensions, we shall only be interested in the case whenσ(6) < 0. It follows from
the resolution of the Yamabe problem thatσ(6) 6 0 if and only if6 does not carry a metric
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of positive scalar curvature. In this case, and with dim6 = 3, Anderson [1] has shown, as an
application of Perlman’s work on the geometrization conjecture, thatσ(6) is determined by
the volume of the ‘hyperbolic part’ of6, which when present impliesσ(6) < 0. In particular,
all closed hyperbolic 3-manifolds have negativeσ -constant.

We now turn to the spacetime setting. In what follows, all MOTSs are compact without
boundary. The following theorem extends theorem 5 in [11] to the nontime-symmetric case.

Theorem 4.1.Let6n−1 be a stable MOTS in the initial data set(V n, g,K), n > 4, such that
σ(6) < 0. Suppose there existsc > 0, such thatµ + 〈J, ν〉 > −c. Then the(n− 1)-volume
of6 satisfies

vol(6n−1) >

(

|σ(6)|
2c

)
n−1

2

. (4.4)

We make some comments about the assumptions. SupposeV is a spacelike hypersurface
in a spacetime(M, gM), satisfying the Einstein equation with cosmological term

G +3gM = T , (4.5)

where, as in section2, G = RicM − 1
2RMgM is the Einstein tensor, andT is the energy–

momentum tensor. Thus, settingℓ = u + ν, we have along6 in V ,

µ + 〈J, ν〉 = G(u, ℓ) = T (u, ℓ) +3

> −|3|, (4.6)

provided3 < 0 andT (u, ℓ) > 0. Hence, when3 < 0 and the fields giving rise toT obey
the dominant energy condition, the energy condition in theorem4.1 is satisfied withc = |3|.

We briefly comment on the stability assumption. As defined in [15], a MOTS6 is weakly
outermostinV provided there are no strictly outer trapped surfaces outside of, and homologous
to6 in V . Weakly outermost MOTSs are necessarily stable, as noted insection2, and arise
naturally in a number of physical situations. For example, smooth compact cross sections
of the event horizon in stationary black hole spacetimes obeying the null energy condition,
are necessarily weakly outermost MOTSs. Moreover, resultsof Andersson and Metzger [5]
provide natural criteria for the existence of weakly outermost MOTSs in general black hole
spacetimes containing trapped regions.

Proof of theorem 4.1. The proof is a simple modification of the proof of theorem 5 in [11].
By the stability assumption and proposition2.1, we havel1(L0) > 0, whereL0 is the operator
given in (2.3). The Rayleigh formula

l1(L0) = inf
φ 6=0

∫

6
φL0(φ)dµ
∫

6
φ2 dµ

together with an integration by parts yields thestability inequality
∫

6

(|∇φ|2 +

(

1

2
S − (µ + 〈J, ν〉)−

1

2
|χ |2

)

φ2 dµ > 0, (4.7)

for all φ ∈ C∞(6).
The Yamabe constantY[h], whereh is the induced metric on6, can be expressed as [8],

Y[h] = inf
φ∈C∞(6),φ>0

∫

6

( 4(n−2)
n−3 |∇φ|2 + Sφ2

)

dµ
( ∫

6
φ

2(n−1)
n−3 dµ

)
n−3
n−1

. (4.8)
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Noting that4(n−2)
n−3 > 2, the stability inequality implies

∫

6

4(n− 2)

n− 3
|∇φ|2 + Sφ2)dµ >

∫

6

2(µ + 〈J, ν〉)φ2 dµ

> −2c
∫

6

φ2 dµ. (4.9)

By Hölder’s inequality we have
∫

6

φ2 dµ 6

(∫

6

φ
2(n−1)
n−3 dµ

)
n−3
n−1

(∫

6

1 dµ

)
2
n−1

, (4.10)

which, when combined with (4.9), gives
∫

6

( 4(n−2)
n−3 |∇φ|2 + Ŝφ2

)

dµ
( ∫

6
φ

2(n−1)
n−3 dµ

)
n−3
n−1

> −2c(vol(6))
2
n−1 . (4.11)

Making use of this inequality in (4.8) givesY[h] > −2c(vol(6))
2
n−1 , or, equivalently,

vol(6n−1) >

(

|Y[h]|
2c

)
n−1

2

. (4.12)

Since|σ(6)| 6 |Y[h]|, the result follows. �
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