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Abstract

We consider the application of stable marginally outer e surfaces to
problems concerning the size of material bodies and theafrblack holes.
The results presented extend to general initial data @étg, K) previous
results assuming either maximét, K = 0) or time-symmetric(K = 0)
initial data.

PACS number: See endnote 1

1. Introduction

Let = be a co-dimension two spacelike submanifold of a spacetndJnder suitable
orientation assumptions, there exist two families of fatdirected null geodesics issuing
orthogonally fromX. If one of the families has vanishing expansion al@GhthenX is called

a marginally outer trapped surface (or an apparent horiziim} notion of a marginally outer
trapped surface (MOTS) was introduced early in the devetyof the theory of black holes,
and plays a fundamental role in quasi-local descriptiondadtk holes; see e.g7J. MOTSs
arose in a more purely mathematical context in the work ob8ohand YauZ3] concerning
the existence of solutions to the Jang equation, in cormeetith their proof of positivity of
mass.

Mathematically, MOTSs may be viewed as spacetime analogfueénimal surfaces in
Riemannian manifolds. Despite the absence of a variatdmaiacterization for MOTSs like
that for minimal surfaces, MOTSs have recently been showatisfy a number of analogous
properties; see for example-6, 12, 16]. Of importance to many of these developments is
the fact, first discussed i2], that MOTSs admit a notion of stability analogous, in thalgtic
sense, to that of minimal surfaces (cf, sect®)n

In this paper we consider applications of stable MOTSs to pnablems in general
relativity. In section3 we address the issue of how the size of a material body tends to
be restricted by the amount of matter contained within it. rdlspecifically, we consider
an extension of a result of Schoen and Yad][concerning the size of material bodies to
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nonmaximal initial data sets. In sectidnwe discuss a higher dimensional version of the
lower area (entropy) bounds obtained by Gibbohg and Woolgar p5] for ‘topological
black holes’ which can arise in spacetimes with negativenobdsgical constant. This extends

a result in [L1] to the general non-time-symmetric setting. We defer ferttliscussion of
these problems until sectioBsand4. In the next section we present some basic background
material on MOTSs relevant to our needs.

2. Marginally outer trapped surfaces

We recall here some basic definitions and facts about mdkgimater trapped surfaces. We
refer the reader ta3] 4, 15, 16] for further details.

Let V be a spacelike hypersurface inrahl dimensionaly > 3, spacetiméM, g,,). Let
g = {, ) andK denote the induced metric and second fundamental forvh oéspectively. To
set sign conventions, for vectoks Y € T, V, K is defined aX (X, Y) = (Vxu, Y), whereV
is the Levi-Civita connection d1 andu is the future directed timelike unit vector field ta
Note that we are using the ‘Wald’, rather than the ‘ADMTW’, convention for the extrinsic
curvature, i.e., positive & implies expansion.

Let ¥ be a smooth compact hypersurfacé/inperhaps with boundayx, and assume
¥ is two-sided inV. ThenX admits a smooth unit normal fieldin V, unique up to sign. By
convention, refer to such a choice as outward pointing. Thenu + v is a future directed
outward pointing null normal vector field alork, unique up to positive scaling.

The null second fundamental form &f with respect td is, for eachp € Z, the bilinear
form defined by

x:T,= xT,= — R, x(X,Y) = gu(Vyl, Y). (2.1)

The null expansiof of X with respect td is obtained by tracing the null second fundamental
form, 8 = tr, x = h48x45 = divsl, whereh is the induced metric oX. In terms of the
initial data(V, g, K), 0 = tr, K + H, whereH is the mean curvature & within V. Itis well
known that the sign of is invariant under positive scaling of the null vector fiéld

If 6 vanishes therx is called a marginally outer trapped surface (MOTS). As riogied
in the introduction, MOTSs may be viewed as spacetime anal®g@f minimal surfaces in
Riemannian geometry. In fact in the time-symmetric caése= 0) a MOTS X is simply a
minimal surface inV. Of particular relevance for us is the fact that MOTSs admmibtion of
stability analogous to that of minimal surfaces, as we n@guls.

Let £ be a MOTS inV with outward unit normab. We consider variations — %,
of & = %o, —€ < t < €, with variation vector field) = 2 o =9V, ¢ € C3°(T), where
C5°(%2) denotes the space of smooth functionsXrthat vanish on the boundary af, if
there is one. Lef(r) denote the null expansion &f, with respect td, = u + v,, whereu is
the future directed timelike unit normal @ andv, is the outer unit normal t&, in V. A
computation shows

B L
o 2
whereL : C(X) — C§ () is the operator,
L(@) = —Ap+ (X, V) + (35 — (u+ (J,v) — x| +divX — |X|?) ¢. (2.2)

In the abovesSis the scalar curvature &, u = G(u, u), whereG = Ricy; — %RMgM is the

Einstein tensor of spacetiméjs the vector field oV dual to the onéorm G (u, ), andXisthe See endnote 2
vector field onx defined by taking the tangential partgfu alongX. In terms of initial data,

the Gauss—Codazzi equations imply= 1(Sy + (tr K)? — |K |?) andJ = (= K)* — V(tr K).
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In the time-symmetric casé,becomes the mean curvatiethe vector fieldX vanishes
andL reduces to the classical stability operator of minimal ateftheory. In analogy with
the minimal surface case, we refer ltoin (2.2) as the stability operator associated with
variations in the null expansiof.. Although in general is not self-adjoint, its principal
eigenvalué (eigenvalue with smallest real pam)(L) is real. Moreover there exists an
associated eigenfunctiop which is positive onX\dX. Continuing the analogy with the
minimal surface case, we say that a MOTS is stable providdd > 0. (In the minimal
surface case this is equivalent to the second variationeaf being nonnegative.) Note that if
¢ is positive, we are moving ‘outwards’ from the MOTS and if there are no outer trapped
surfaces outside af, then there shall exist no positigefor which L(¢) < 0. It follows in
this case thak is stable B, 4, 15].

As it turns out, stable MOTSs share a number of propertie®mngon with minimal
surfaces. This sometimes depends on the following factsidenthe ‘symmetrized’ operator
Lo: CF(T) — CP(D),

Lo(¢) = —=A¢ + (35 — (u+ (J, ) — 51x1%) ¢ (2.3)
formally obtained by settingg = 0 in (2.2). Then arguments irljp] show the following (see

also [3, 19)).
Proposition 2.1.13(Lo) > I1(L).

We will say that a MOTS is symmetric stablelif(Lo) > 0; hence ‘stable’ implies
‘symmetric stable’.

3. On the size of material bodies

In this section we restrict attention to four-dimensionphcetimesM, and hence three-
dimensional initial data setd/, g, K), dimV = 3.

It is a long held view in general relativity that the size of atarial body is limited by
the amount of matter contained within it. There are severatipe results in the literature
supporting this point of view. Inl[4], it was shown, roughly, that the size of a stationary fluid
body is bound by the reciprocal of the difference of the dgrend rotation of the fluid. In
this case ‘size’ refers to the radius of the largest distdnatiecontained in the body.

More closely related to the considerations of the presgmipia the result of Schoen and
Yau [24] which asserts that for a maximér K = 0) initial data set(V, g, K), the size of
a bodyQ ¢ V is bound by the reciprocal of the square root of the minimurthefenergy
densityu on Q2. In this case ‘size’ refers to the radius of the largest tabnkighborhood i
of aloop contractible ilf2 but not contractible in the tubular neighborhood. As wasulised
in [21], this notion of size can be replaced by a notion based onitleeof the largest stable
minimal surface contained f.* As argued there, this in general gives a larger measure of the
size of a body, but must still satisfy the same Schoen—Yaudbotihe aim of this section is to
observe that a similar result holds without the maximal#tguamption if one replaces minimal
surfaces with MOTS.

Let V be athree-dimensional spacelike hypersurface, whiclsgise to the initial data set
(V, g, K),asinsectio. Consider dodyin V by which we mean a connected open@et V
with smooth boundary 2. We describe a precise measure of the siz2 of terms of MOTSs

3 If ¥ has nonempty boundary, we mean the principal Dirichlet eiglerv

4 This is formulated most simply whe® is bounded andnean convexmeaning that the boundary &f has mean
curvatureH > 0. Then geometric measure theory guarantees the existencengfamaoth least area surfaces
contained irg.
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contained withir2. Let X be a compact connected surface with boundatycontained irt2.
Letx be a point inZ furthest fromd X in €2, i.e., x satisfiesdq (x, IX) = sup.sda(y, IX),
whered, is distance measured withid. Then the (ambient) radius &f, R(X), is defined as
R(Z) = dgo(x,d%).

We then define the radius &, R(2) as follows:

R(Q) = SUPR(Z), (3.1)
X

where the sup is taken over all compact connected symmatide MOTSs with boundary
contained in2. Now this can only be a reasonable measure of the siZe iffthere are
a plentiful number of large symmetric-stable MOTSs corgdiin 2. But in fact a recent
result of Eichmair 12] guarantees the existence of such MOTS, subject to a nainmaexity
condition on the body2. We say that2 is anull mean convex bodyrovided its boundary
92 has positive outward null expansian, > 0, and negative inward null expansieh, < 0.
The following is an immediate consequence of theorem 5.12h [

Theorem 3.1.Let<2 be a relatively compact null mean convex body, with condmendary,
inthe three-dimensionalinitial data s@t, g, K). Leto be aclosed curve ait2 that separates
92 into two connected components. Then there exists a smaoiinetyic-stable MOTS
contained in©2 with boundaryo .

The fact thatX is symmetric stable follows from a straightforward modifica of
arguments in23, p 254]; see also the discussion at the end of section[12]. In fact,
a variation of the arguments iB,[sectiond], may well imply that the MOTS constructed
in Eichmair’'s theorem is actually stable. If that were theezahenr (©2) could be defined in
terms of stable, rather than symmetric-stable, MOTS, whielbelieve would be conceptually
preferable.

We now state our basic result about the size of bodies.

Theorem 3.2.LetQ2 be a body in the initial data s&V, g, K), and suppose there exists- 0
such thatu — |J| > conQ. Then,

2r 1
R(Q < —  —. 3.2
()<J§JE (3.2)

Proof. The proof is similar to the proof of theorem 1 i24]. The latter follows essentially as
a special case of the more general proposition 24 [For the convenience of the reader we
present here a simple direct proof of theor@1® which involves a variation of the arguments
in [24].

Let ¥ be a symmetric-stable MOTS with bound&¥ in ; hencel; = 11(Lo) > 0.
Choose an associated eigenfunctipisuch thaty > 0 onX\dX. In fact, by perturbing the
boundaryd X ever so slightly intoz, we may assume without loss of generality thiat- 0
on . Substitutingp = v into equation 2.3), we obtain

Ay = —(u+ (1) + 3P+ L= ), (33)
wherex = %S is the Gaussian curvature Bfin the induced metrib.

Now considerX in the conformally related metrie = yh. The Gaussian curvature of
(X, h) is related to the Gaussian curvaturg &f, 1) by

R=vy "2k -y 2ay +ytyln (3.4)
Combining 8.3) and @.4) we obtain
R=y"2Q+y ?Vy]d), (3.5)
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where
Q= pu+(Jv)+3x>+1. (3.6)

Now letx be a ppint inx furthest fromdX in 2, asin the dejinition oR(X). Lety bea
shortest curve ifX, #) fromxto dX. Theny is a geodesic itix, i), and by Synge’s formula
[22] for the second variation of arc length, we have algng

7 2
/ (d_f) —RfPE >0, (37)
0 ds

for all smooth functionsf defined on [07] that vanish at the end points, whetds the
h-length ofy ands is theh-arc length along’. By making the change of variabie= s(5),
wheresis theh-arc length along/, and using equatior8(5), we arrive at

V4
/0 v 2= (Q+ Y AVy Dyt f2ds > 0, (3.8)

for all smooth functiong” defined on [0¢] that vanish at the endpoints, wheres theh-length
ofy,and' = .
Settingk = ¥ ~Y2f in (3.8), we obtain after a small manipulation,

¢
/ (k)2 — Qk? + 9~y 'kk — ?{w-wszkz ds >0, (3.9)
0

wherev’ is shorthand foKy o y)’, etc. Completing the square on the last two terms of the
integrand,

2
%w—Z(w/)ZkZ _ w_lw/kk/ _ (%éw_lw/k _ \/igk/) _ %(k/)Z’

we see that3.9) implies

¢
4
f é(k’)z — Qk%*ds > 0. (3.10)
0
Since, from 8.6), we have tha > u — |J| > ¢, (3.10) implies
4 4 4
—/ (kH%ds > c/ k? dis. (3.11)
3Jo 0
Settingk = sinZ? in (3.11) then gives
2r 1
< — —. 3.12
NG (312
SinceR(X) < ¢, the result follows. O

4. On the area of black holes in asymptotically anti-de Sittespacetimes

A basic step in the classical black hole uniqueness theoreiAawking’s theorem on the
topology of black holes]9] which asserts that cross sections of the event horiz@8 i#n1)-
dimensional asymptotically flat stationary black hole simees obeying the dominant energy
condition are topologically 2-spheres. As shown by HawKitf§j, this conclusion also holds
for outermost MOTSs in spacetimes that are not necesséaiipsary. In [L5, 16] a natural
generalization of these results to higher dimensional efpaes was obtained by showing
that cross sections of the event horizon (in the stationasg)and outermost MOTSs (in the
general case) are of positive Yamabe type, i.e., admit osadfipositive scalar curvature. This

5
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implies many well-known restrictions on the topology, andansistent with recent examples
of five-dimensional stationary black hole spacetimes wittizon topologyS? x S* [13].

These results on black hole topology depend crucially omtiminant energy condition.
Indeed, there is a well-known class(8f+1)-dimensional static locally anti-de Sitter black hole
spacetimes which are solutions to the vacuum Einstein Egsatvith negative cosmological
constantA having horizon topology of arbitrary geng$10, 20]. Higher dimensional versions
of these topological black holes have been considered B0]. However, as Gibbons pointed
out in [17], although Hawking’s theorem does not hold in the asympadiff locally anti-de
Sitter setting, his basic argument still leads to an intergonclusion. Gibbons showed that
for three-dimensional time-symmetric initial data setstthive rise to spacetimes satisfying
the Einstein equations with < 0, outermost MOTS& (which are stable minimal surfaces
in this case) must satisfy the area bound,

Area(X) > % (4.1)
whereg is the genus of2. Woolgar R5] obtained a similar bound in the general, nontime-
symmetric, case. Hence, at least for stationary black hblesk hole entropy has a lower
bound depending on a global topological invariant.

In[11] Cai and Galloway considered an extension of Gibbon's téshigher dimensional
spacetimes. There it was shown, for time-symmetric indtegth, that a bound similar to that
obtained by Gibbons still holds, but where the genus is oepldy the so-called-constant
(or Yamabe invariant). The-constant is a diffeomorphism invariant of smooth compact
manifolds that in dimension 2 reduces to a multiple of theeEgharacteristic; sed ] and
references therein for further details. The aim of thisisecis to observe that this result
extends to the general, nontime-symmetric case.

We begin by recalling the definition of the-constant. Let=" n > 3, be a smooth
compact (without boundary): — 1)-dimensional manifold. I is a Riemannian metric on
»"~1 let [¢] denote the conformal class gf The Yamabe constant with respect g, which
we denote by[g], is the number,

Vel = inf Lz
gelgl (fz dug)n—l

where S; and du; are respectively the scalar curvature and volume measu®"of in
the metricg. The expression involving integrals is just the volumermalized total scalar
curvature of(Z, g). The solution to the Yamabe problem, due to Yamabe, Trudi#gein
and Schoen, guarantees that the infimumdi)(is achieved by a metric of constant scalar
curvature.

Theo-constant of: is defined by taking the supremum of the Yamabe constantsativer
conformal classes,

o(X) = s[u]py[g]- (4.3)
8

(4.2)

As observed by Aubin, the supremum is finite, and in fact bedndbove in terms of the
volume of the standard uniz — 1)-spheres”~! c R". Theo-constant divides the family
of compact manifolds into three classes according tar(®)) > 0, (2)o(X) = 0, and (3)
o(X) <0.

Inthe case dint = 2, the Gauss—Bonnettheoremimpbe&X) = 4 x (X) = 87 (1—g).
Note that the inequality4(1) only gives information wherny (X) < 0. Correspondingly, in
higher dimensions, we shall only be interested in the caswiliX) < 0. It follows from
the resolution of the Yamabe problem tha®) < 0 if and only if = does not carry a metric

6
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of positive scalar curvature. In this case, and with dire= 3, Anderson I] has shown, as an
application of Perlman’s work on the geometrization conjes, thato (¥) is determined by
the volume of the ‘hyperbolic part’ o, which when present implies(Z) < 0. In particular,
all closed hyperbolic 3-manifolds have negatieonstant.

We now turn to the spacetime setting. In what follows, all M&3Tare compact without
boundary. The following theorem extends theorem 8Lifj fo the nontime-symmetric case.

Theorem 4.1.Let X"~ be a stable MOTS in the initial data sgt”, g, K), n > 4, such that
o(X) < 0. Suppose there exists> 0, such thatu + (J, v) > —c. Then thenr — 1)-volume
of ¥ satisfies

|U(E)|)2. (4.4)

vol(=" 1) >

( ) ( >
We make some comments about the assumptions. Suppisse spacelike hypersurface

in a spacetiméM, g,), satisfying the Einstein equation with cosmological term

G+Agy =T, (4.5)

where, as in sectiol, G = Ricy — %RMgM is the Einstein tensor, and is the energy—
momentum tensor. Thus, settidg= « + v, we have alon@ in V,

pwH(J,v) =G, 0) =T, 0+A
Z —|Al, (4.6)

providedA < 0 and7 (u, £) > 0. Hence, whem\ < 0 and the fields giving rise t& obey
the dominant energy condition, the energy condition in theod.1is satisfied withe = |A|.

We briefly comment on the stability assumption. As defined 8),[a MOTSX is weakly
outermostin V provided there are no strictly outer trapped surfacesdetsi, and homologous
to ¥ in V. Weakly outermost MOTSs are necessarily stable, as notsekiton2, and arise
naturally in a number of physical situations. For exampiepath compact cross sections
of the event horizon in stationary black hole spacetimeyiolgethe null energy condition,
are necessarily weakly outermost MOTSs. Moreover, resfilindersson and Metzged|
provide natural criteria for the existence of weakly outestfMOTSs in general black hole
spacetimes containing trapped regions.

Proof of theorem 4.1. The proof is a simple modification of the proof of theorem 51|
By the stability assumption and propositiari, we havei(Lg) > 0, whereLg is the operator
given in 2.3). The Rayleigh formula

[y #Lo(g)du
l1(Lo) = ‘;’gﬁ%M—sz

together with an integration by parts yields stability inequality
1 1
/(|V¢|2+(§S—(M+(J, V>)—§Ix|2> ¢?du >0, (4.7)
z

forall ¢ € C*(X2).
The Yamabe constapt[/], whereh is the induced metric o, can be expressed &,

= i 2GS Ve 597 du
¢eC>®(X),¢>0 (_/IE ¢2(nn:31) du)g .

(4.8)
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Noting that“(n"—:sz) > 2, the stability inequality implies

/—4(n_2)|V¢|2+S¢2)dM>/2(M+(J» v)$” du
s n—3 >

> —2c/ % du. (4.9)
by

By Holder’s inequality we have

/¢>2du< (/ ¢2‘4‘5’du)“ (/ 1du)”, (4.10)
> x )}

which, when combined with4(9), gives

Jz (21991 + $¢°) du

> —2c(vol(T)) 7. (4.12)
(Jpg™= du)
Making use of this inequality in4(8) givesY[h] > —2c(VO|(E))n%1, or, equivalently,
vol(z" 1) > <M> L (4.12)
2c
Sincelo ()| < |Y[A]], the result follows. O

Acknowledgments

This work was supported in part by NSF grant DMS-0708048 (&8 SFI grant O/RFP/
PHYF148 (NOM).

References

[1] Anderson M T 2006 Canonical metrics on 3-manifolds and 4-ifols Asian J. Math10127-63
[2] Andersson L, Mars M and Simon W 2005 Local existence of dyical and trapping horizorBhys. Rev. Lett.
95111102

[3] Andersson L, Mars M and Simon W 2007 Stability of marginadiyter trapped surfaces and existence of

marginally outer trapped tub&eprint 0704.2889

[4] Andersson L and Metzger J 2005 Curvature estimates fdslestenarginally trapped surfaceRreprint
gr-qc/0512106

[5] Andersson L and Metzger J 2007 The area of horizons anttappeed regiorPreprint 0708.4252

[6] Ashtekar A and Galloway G J 2005 Some uniqueness resulyftamical horizon#\dv. Theor. Math. Phys.
91-30

[7] AshtekarA and Krishnan B 2004 Isolated and dynamical horizons and #pgilicationd.iving Rev. Rel7

[8] Besse A L 1987 Einstein manifoldErgebnisse der Mathematik und ihrer Grenzgebiete (3) (Resn
Mathematics and Related Areas (8)l 10 (Berlin: Springer)

[9] Birmingham D 1999 Topological black holes in anti-de &itspaceClass. Quantum Grawd6 1197-205

[10] Brill D R, Louko J and Peldn P 1997 Thermodynamics @ + 1)-dimensional black holes with toroidal or

higher genus horizorBhys. RevD 56 3600-3610

[11] Cai M and Galloway G J 2001 On the topology and area of ériglimensional black holeSlass. Quantum
Grav.182707-18

[12] Eichmair M 2007 The plateau problem for apparent horid@reprint 0711.4139

[13] Emparan Roberto and Reall H S 2006 Black ri@tjass. Quantum Gra23 R169-97

[14] Frankel T and Galloway G J 1981 Energy density and spetievature in general relativity. Math. Phys.
22813-7

[15] Galloway G J 2006 Rigidity of marginally trapped surfacend the topology of black holeBreprint
gr-qc/0608118

See endnote 3


http://dx.doi.org/10.1103/PhysRevLett.95.111102
http://www.arxiv.org/abs/0704.2889
http://www.arxiv.org/abs/gr-qc/0512106
http://www.arxiv.org/abs/0708.4252
http://dx.doi.org/10.1088/0264-9381/16/4/009
http://dx.doi.org/10.1103/PhysRevD.56.3600
http://dx.doi.org/10.1088/0264-9381/18/14/308
http://www.arxiv.org/abs/0711.4139
http://dx.doi.org/10.1088/0264-9381/23/20/R01
http://dx.doi.org/10.1063/1.524961
http://www.arxiv.org/abs/gr-qc/0608118

Class. Quantum Grag5 (2008) 000000 G J Galloway and NO Murchadha

(16]
(17]

(18]
(19]

[20]
(21]
[22]

(23]
(24]

(25]

Galloway G J and Schoen Richard 2006 A generalizatiadaking’s black hole topology theorem to higher
dimension€Commun. Math. Phy266571-6

Gibbons G W 1999 Some comments on gravitational entropythednverse mean curvature flo@ass.
Quantum Gravl6 1677-87

Hawking S W 1993 The event horiz&lack Holesed C DeWitt and B DeWitt (New York: Gordon and Breach)

Hawking S W and Ellis G F R 19738he Large Scale Structure of Space-Time (Cambridge Mopbgran
Mathematical Physicro. 1) (London: Cambridge University Press)

Mann R B 1997 Topological black holes—outside lookingernal Structure of Black Holes and Spacetime
Singularities (Haifa, 1997) (Ann. Israel Phys. Saml 13) (Bristol: Institute of Physics Publishing)
pp 311-42

O’Murchadha N 1986 How large can a star H&f%ys. Rev. Let67 2466-9

O’Neill B 1983 Semi-Riemannian geometry with Applications to Relati{fftyre and Applied Mathematics
vol 103 (New York: Academic (Harcourt Brace Jovanovich Publishers)

Schoen R and Yau S T 1981 Proof of the positive mass thedtegdemmun. Math. Phy§9 231-60

Schoen R and Yau S T 1983 The existence of a black holeadcentdensation of matt€ommun. Math. Phys.
90575-9

Woolgar E 1999 Bounded area theorems for higher-geracktiiolesClass. Quantum Gra.6 3005-12


http://dx.doi.org/10.1007/s00220-006-0019-z
http://dx.doi.org/10.1088/0264-9381/16/6/302
http://dx.doi.org/10.1103/PhysRevLett.57.2466
http://dx.doi.org/10.1007/BF01942062
http://dx.doi.org/10.1007/BF01216187
http://dx.doi.org/10.1088/0264-9381/16/9/316

Endnotes

(1) Author: Please provide PACS numbers in full form.

(2) Author: Please check the word ‘form’. Do you mean ‘from’?

(3) Author: Please provide page range in [7].

(4) Author: Please update references to preprints witfidutihal publication details wherever
possible.

Reference linking to the original articles

References with a volume and page number in blue have a blekak to the original
article created from data deposited by its publisher at ke Any anomalously unlinked
references should be checked for accuracy. Pale purpledsfaslinks to e-prints at arXiv.



	1. Introduction
	2. Marginally outer trapped surfaces
	3. On the size of material bodies
	4. On the area of black holes in asymptotically anti-de Sitter spacetimes
	Acknowledgments
	References

