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a b s t r a c t

We consider spacetimes consisting of a manifold with Lorentzian metric and a weight
function or scalar field. These spacetimes admit a Bakry–Émery–Ricci tensor which is
a natural generalization of the Ricci tensor. We impose an energy condition on the
Bakry–Émery–Ricci tensor and obtain singularity theorems of a cosmological type, both for
zero and for positive cosmological constant. That is, we find conditions under which every
timelike geodesic is incomplete. These conditions are given by ‘‘open’’ inequalities, so we
examine the borderline (equality) cases and show that certain singularities are avoided in
these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a pos-
itive cosmological constant, a warped product, and the weight function is constant along
the time direction. Then the product case is future timelike geodesically complete while, in
the warped product case, worldlines of certain conformally static observers are complete.
Our results answer a question posed by J Case. We then apply our results to the cosmology
of scalar–tensor gravitation theories. We focus on the Brans–Dicke family of theories in 4
spacetime dimensions, where we obtain ‘‘Jordan frame’’ singularity theorems for big bang
singularities.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The singularity theorems of general relativity (see, e.g., [1]) are arguably some of the deepest statements in modern
science. They imply that the universe has a finite history, beginning in what has come to be called a big bang singularity,
provided that we assume that we can reliably extrapolate certain features of the known laws of physics back to early times
and high energy scales.

Current theories of high energy physics, such as string theoretic models and theories with Kaluza–Klein dimensional
reduction, postulate the presence of fundamental scalar fields such as the dilaton field, in addition to the spacetime metric.
Modern cosmological models also sometimes employ scalar fields for a number of reasons. There are a variety of ways
to couple scalar fields to general relativity. Scalar fields can be incorporated into the matter stress–energy tensor, as is
commonly done to produce models of inflationary cosmology, or they can couple in more intricate ways, as happens with
dilaton scalar fields and, more generally, in scalar–tensor gravitation theories. The prototypical examples of scalar–tensor
gravitation theories are the members of the Brans–Dicke family of theories [2,3].

There is a straightforward way to obtain singularity theorems in scalar–tensor gravitation theories. The metric of such a
theory can be expressed using a conformal choice that makes the equation governing the metric closely resemble the Ein-
stein equation of general relativity. This is called the Einstein frame formulation. The singularity theorems of general relativity
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can be applied quite directly in this formulation. However, this raises interpretive issues. For example, the constants of non-
gravitational physics are not constant in inertial frames of thismetric [3]. One can transformback to ametric inwhose inertial
frames the constants of physics are constant – this is called the Jordan frame formulation – but the power of the theorem can
be diminished in the process. A more satisfactory approach would be to develop Jordan frame singularity theorems directly.

This has now become possible, thanks to recent developments in the comparison theory of the Bakry–Émery–Ricci
curvature tensor (or simply Bakry–Émery tensor) (see, e.g., [4,5]). This tensor is defined in terms of the familiar Ricci tensor
of a metric g and an additional weight function f by

Ricf := Ric + Hessf . (1.1)

Our particular interest is the case where the metric g is Lorentzian. This was studied in [6].
Motivated by thework of [6] aswell as by the cosmology of scalar–tensor gravitation theories,we consider two singularity

theorems for Lorentzian metrics with Bakry–Émery–Ricci tensor obeying a positivity condition of a form commonly called
an energy condition, andwithweight function f bounded above. The extrinsic geometry of hypersurfaces has a Bakry–Émery
generalization; see Section 2 and in particular Eq. (2.4) for the definition of Bakry–Émery mean curvature Hf . Then we have
the following theorems.

Theorem 1.1. Let M be a spacetime satisfying Ricf (X, X) ≥ 0 for all timelike vectors X, and suppose that f ≤ k.1 Let S be a
smooth compact spacelike Cauchy surface for M with strictly negative f -mean curvature Hf (S) < 0. Then every timelike geodesic
is future incomplete.

Theorem 1.2. Let M be a spacetime satisfying Ricf (X, X) ≥ −(n−1) for all unit timelike vectors X, and having smooth compact
spacelike Cauchy surface S. Suppose that either

(i) f ≤ k and the f -mean curvature of S satisfies

Hf (S) < −(n − 1)e
2(k−N)
(n−1) , (1.2)

where N = infp∈S f (p), or
(ii) ∇f is future causal and the f -mean curvature of S satisfies Hf (S) < −(n − 1).

Then every timelike geodesic is future incomplete.

Inequalities appear in the assumptions of these singularity theorems. The inequalities for Hf are open conditions. It is
then natural to ask what happens in the borderline cases. The answers are contained in the following rigidity theorems.

Theorem 1.3. Let (M, g) be a spacetime satisfying Ricf (X, X) ≥ 0 for all timelike vectors X, and suppose that f ≤ k. Let S
be a smooth compact spacelike Cauchy surface for M having f -mean curvature Hf (S) ≤ 0. If M is future timelike geodesically
complete the future of S splits; i.e., (J+(S), g) is isometric to ([0,∞)× S,−dt2 ⊕ h), where h is the induced metric on S, and f
is independent of t.

Corollary 1.4. Let M be a spacetime satisfying Ricf (X, X) ≥ 0 for all timelike vectors X, and suppose that |f | ≤ k. Suppose
further that M admits a constant f -mean curvature spacelike Cauchy hypersurface S. If (M, g) is timelike geodesically complete
thenM splits along S, i.e., (M, g) is isometric to ((−∞,∞)×S,−dt2⊕h), where h is the inducedmetric on S, and f is independent
of t.

Corollary 1.4 follows immediately from Theorems 1.1 and 1.3. Indeed, one must have Hf (S) = 0, otherwise M is
incomplete by Theorem1.1 and its time-dual. The conclusion then follows fromTheorem1.3 and its time-dual. This corollary
answers a question raised by Case [6, see Conjecture 7.2 thereof and the paragraph following it].

Theorem 1.5. Let M be a spacetime satisfying Ricf (X, X) ≥ −(n − 1) for all timelike vectors X, and suppose that ∇f is future
causal. Let S be a smooth compact spacelike Cauchy surface for M with f -mean curvature Hf (S) ≤ −(n − 1). If the timelike
geodesics orthogonal to S are future complete, (J+(S), g) is isometric to the warped product ([0,∞)× S,−dt2 ⊕ e−2th), where
h is the induced metric on S, and f is independent of t.

Section 2.1 contains a discussion of the underlying Bakry–Émery modified Raychaudhuri equation. The necessary esti-
mates for this equation are proved in Section 2.2. The singularity theorems, Theorems 1.1 and 1.2, are proved in Section 2.3.

Section 3 contains the proofs of the rigidity theorems, Theorems 1.3 and 1.5. The method of proof involves the use of a
local mean curvature flow, modified by a shift of the fixed point in the case of Theorem 1.5, to show that if the geometry is
not sufficiently rigid then the flowwill produce a hypersurface towhich the singularity theorems apply. Themean curvature
flow is briefly discussed in Section 3.1. The proofs of the rigidity theorems are given in Section 3.2.

1 This is necessary, for consider the Einstein static universe−dt2 + g(Sn−1, can)with f = et . Then a simple calculation yields Ricf (X, X) ≥ et > 0, while
Hf = −et < 0 for any constant-t hypersurface, yet this spacetime is geodesically complete.
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While these results are general theorems of Lorentzian geometry, we have already observed that they have application
in physics, and this is discussed in Section 4. Since initial (big bang) singularities are of primary interest, we begin by giving
Theorems 4.1 and 4.2, which are simply time-reversed versions of the singularity theorems of the introductory section.
These two theorems can be applied generally to quite arbitrary scalar–tensor gravitation theories, butwe restrict subsequent
attention to the Brans–Dicke family in n = 4 spacetime dimensions with a possible potential function for the scalar field.
Theorem 4.6 gives conditions under which the Jordan frame metric of a Brans–Dicke theory will have a big bang type
singularity in the past, while 4.7 deals with the case of positive cosmological constant. We then compare these theorems
with singularity theorems obtained by a conformal transformation (‘‘Einstein frame’’) argument.

Except in Section 4, we have no restriction on the spacetime dimension n ≥ 2.

2. Riccati estimates

2.1. The Raychaudhuri equation

We will need certain simple estimates governing the behavior of solutions of the Raychaudhuri equation, the scalar
Riccati equation used to study the focusing behavior of timelike geodesic congruences issuing orthogonally from a spacelike
hypersurfaceΣ . We recall the basic set-up. Let γ belong to such a congruence C and let it be parametrized by proper time
t , so the geodesics are ‘‘unit speed’’. Thus, g(γ ′, γ ′) = −1 where γ ′

=
d
dt . At Σ we have γ ′

|Σ = ν where ν is the future
directed unit normal vector field for Σ . The congruence C is surface-forming, so for a curve γ ∈ C, we obtain a foliated
neighborhood N in spacetime near γ : [0, T ) → M by moving a parameter distance t < T along the congruence from Σ ,
provided that γ has no focal point toΣ in N . These leaves are also spacelike hypersurfaces. The extrinsic curvature or second
fundamental form of the hypersurfaceΣt can be defined as

K(t)(X, Y ) = −νt · (∇XY ) , X, Y ∈ Tγ (t)Σt , (2.1)

where νt is the future directed unit normal forΣt . The expansion scalar ormean curvature of the congruence is

H(t) := trhK(t), (2.2)

where h := g+ν⊗ν is the inducedmetric on the leaf.We often suppress the argument t . Then the Raychaudhuri equation is

∂H
∂t

= −Ric(ν, ν)− |K |
2

= −Ric(ν, ν)− |σ |
2
−

H2

(n − 1)
, (2.3)

where |K |
2

:= hijhklKikKjl, σij := Kij −
H

(n−1)hij is the shear (i.e., the tracefree part of Kij), and n is the spacetime dimension.
We deal with the Bakry–Émery modified versions, also simply called the modified versions or f -versions of curvature

quantities. The f -mean curvature is defined along our unit speed timelike geodesic congruence to which γ belongs by

Hf := H − ∇ν f ≡ H − f ′, (2.4)

where we abbreviate f ◦ γ by simply writing f , so that df
dt := f ′(t) := (f ◦ γ )′(t). The Raychaudhuri equation (2.3) then

yields the inequality

Hf
′
≤ −Ricf (γ ′, γ ′)−

H2

n − 1

≤ −Ricf (γ ′, γ ′)−
H2

f

n − 1
−

2Hf f ′

n − 1
. (2.5)

It is convenient to normalize Hf using

x := Hf /(n − 1). (2.6)

Then x is the normalized f -mean curvature of the leaves of the foliation by t = const hypersurfaces. The last inequality is
then

x′
≤ −

1
(n − 1)

Ricf (γ ′, γ ′)− x2 −
2xf ′

(n − 1)
. (2.7)

2.2. The focusing estimates

Here we obtain estimates for functions x that obey (2.7). To obtain the first estimate, note that when Ricf (γ ′, γ ′) ≥ 0,
Eq. (2.7) becomes

x′
≤ −x2 −

2xf ′

(n − 1)
. (2.8)
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As discussed above,we are concernedwith the congruenceC of future timelike, unit speed geodesics issuing orthogonally
from a smooth spacelike hypersurface Σ . For γ ∈ C with p = γ (0) ∈ Σ , we will write xp(t) := x ◦ γ (t), so xp(t)
is the normalized f -mean curvature of the leaf Σt at a point reached by traversing γ for a proper time t starting from
γ (0) = p ∈ Σ . We similarly write fp := f ◦ γ . Then (2.8) becomes an ordinary differential inequality for xp, and we have
the following result:

Lemma 2.1. Suppose that
(i) xp obeys the inequality (2.8),
(ii) there is a δp > 0 such that xp(0) ≤ −δp, and
(iii) f (q) ≤ k for some k ∈ R and all q ∈ M.
Then there exists a tp > 0 such that xp(t) → −∞ at or before tp, and tp depends only on n, k, δp, and fp(0).

Proof. The proof is a straightforward modification of the proof of [7, Lemma 3.1]. (One could also modify the proof of [6,
Proposition 3.3].) Fix p ∈ Σ and let [0, T ) be the largest such interval on which xp(t) is defined (possibly T = ∞). If xp has
a zero, let T0 ∈ (0, T ) be the first zero; otherwise, T0 = T . On [0, T0), we can divide (2.8) by −x2p and obtain e−

2fp
(n−1)

xp

′

≥ e−
2fp
(n−1) . (2.9)

Integrating on [0, t], t < T0, we obtain

e−
2fp(t)
(n−1)

xp(t)
−

e−
2fp(0)
(n−1)

xp(0)
≥

 t

0
e−

2fp(s)
(n−1) ds ≥ te−

2k
(n−1) . (2.10)

Solving for xp(t) and using that 1/δp > −1/xp(0), this yields

xp(t) ≤ −
e

2(k−fp(t))
(n−1)

1
δp
e

2(k−fp(0))
(n−2) − t

. (2.11)

We first observe that the denominator of the quotient on the right-hand side is positive at t = 0 and decreases linearly, so
the denominator cannot diverge to ∞. Since the numerator cannot have a zero, then T0 = T . Moreover, the denominator is
positive for as long as xp(t) is defined, and so we can write

xp(t) ≤ −
e

2(k−fp(t))
(n−1)

1
δp
e

2(k−fp(0))
(n−1) − t

 ≤ −
1

1
δp
e

2(k−fp(0))
(n−1) − t

 ≤ −
1

tp − t
 , (2.12)

where

tp :=
1
δp

e
2(k−fp(0))
(n−1) . (2.13)

Clearly, T ≤ tp. �

We now consider the case where Ricf (X, X) ≥ −(n − 1) for all future timelike unit vectors X . In this case, Eq. (2.7)
becomes

x′
≤ 1 − x2 −

2xf ′

(n − 1)
. (2.14)

Lemma 2.2. As before, let γ ∈ C belong to the unit speed timelike geodesic congruence issuing from Σ orthogonally, with
γ (0) = p. Let xp := x ◦ γ and let fp := f ◦ γ . Suppose that
(i) xp obeys the inequality (2.14),
(ii) fp ≤ kp for some kp ∈ R, and

(iii) xp(0) ≤ −(1 + δp)e
2(kp−fp(0))
(n−1) for some δp > 0.

Then there exists a tp = tp(δp) > 0 such that xp(t) → −∞ at or before tp.

Proof. Along γ Eq. (2.14) can be written as
e

2(fp(t)−kp)
(n−1) xp(t)

′

≤ e
2(fp(t)−kp)
(n−1)


1 − x2p(t)


, (2.15)
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or

y′

p(t) ≤ e
2(fp(t)−kp)
(n−1) − e−

2(fp−kp)
(n−1) y2p(t), (2.16)

yp(t) := e
2(fp(t)−kp)
(n−1) xp(t). (2.17)

Since fp(t) ≤ kp, then (2.16) yields

y′

p ≤ 1 − y2p. (2.18)

Similarly to the previous proof, let [0, T ) be the largest interval on which yp is defined (possibly T = ∞) and let T0 be the
first point at which yp = −1; if there is no such point, then let T0 = T . By assumption (iii) we have yp(0) ≤ −(1+δp) < −1,
so 1 − y2p < 0 on [0, T0). Then on [0, T0) Eq. (2.18) yields

y′
p

y2p − 1
≤ −1, (2.19)

so

yp(t) ≤ −coth (tp − t), (2.20)

tp := arctanh
1

1 + δp
. (2.21)

Thus T0 = T and (2.17) and (2.20) imply that

xp(t) ≤ −e
2(kp−fp(t))
(n−1) coth(tp − t). (2.22)

Therefore xp(t) → −∞ as t ↗ T for some 0 < T ≤ tp. �

The time tp = tp(δp) depends on kp only indirectly, in that kp determines δp in condition (iii) of the theorem. When kp is
realized at p, condition (iii) simplifies, as occurs in the following result:

Corollary 2.3. Let γ be as in Lemma 2.2. Say that
(i) xp obeys the inequality (2.14),
(ii) ∇f is future causal, and
(iii) xp(0) ≤ −(1 + δp) for some δp > 0.

Then there is a tp = tp(δp) > 0 such that xp(t) → −∞ at or before tp.

Proof. Condition (i) is the same as condition (i) of Lemma 2.2. Since ∇f is future causal and γ ∈ C is future timelike, then
∇γ ′ f ≤ 0. Therefore, fp is (at least weakly) decreasing along γ , so fp(t) ≤ fp(0) =: kp in the terminology of Lemma 2.2. Then
condition (ii) of Lemma 2.2 holds for p, and condition (iii) of that lemma reduces to condition (iii) of this corollary. �

2.3. Proofs of singularity theorems

We are now in a position to prove Theorems 1.1 and 1.2 from the Introduction. Each theorem rests on the following
standard result.

Lemma 2.4. Suppose that S is a spacelike Cauchy surface and σ is a future complete timelike geodesic. Then there is an arbitrarily
long future timelike geodesic γ leaving S orthogonally and having no focal point to S.

Proof. Let q along σ lie at Lorentzian distance d(S, q) = tq from S. Since σ is future complete, we can choose q so that tq is
arbitrarily large. Let γ : [0, tq] → M be a unit speed maximal timelike geodesic segment from S to q. Then γ must leave S
orthogonally. The length of (that is, the proper time along) γ is L(γ ) = d(S, q) = tq, where d(·, ·) denotes the Lorentzian
distance. Since the length of γ realizes the distance from S to q, it cannot have a focal point to S before q. �

Proof of Theorem 1.1. Since Ricf (X, X) ≥ 0 for all timelike vectors X , the inequality (2.8) governs x. By compactness of S,
the restriction of f to S has a lower bound N , so fp(0) ≥ N in Lemma 2.1. Also by compactness, and since Hf < 0 with S and
f smooth, there exists δ > 0 such that Hf (S) ≤ −(n − 1)δ and so x(0) ≤ −δ; i.e., xp(0) ≤ −δ for all p ∈ S, so we can take
δp = δ independent of p ∈ S in Lemma 2.1. By assumption, f ≤ k everywhere, so all conditions for Lemma 2.1 are satisfied,
with S ≡ Σ . Furthermore, they are satisfied for every p ∈ S with the same δp = δ. Then Lemma 2.1 implies that every future
timelike geodesic leaving S orthogonally must have a focal point for t ≤ tp ≤ t0, where t0 := supp∈S tp(0). But if there were
a future complete timelike geodesic, this would contradict Lemma 2.4. �

Proof of Theorem 1.2 part (i). Since Ricf (X, X) ≥ −(n − 1) for all timelike vectors X , the inequality (2.14) now governs x.
From compactness of S, we have infp∈S f (p) = N ∈ R.
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From Eq. (1.2) we have for p ∈ Σ that

xp(0) < −e
2(k−N)
(n−1)

⇒ xp(0) < −e
2(kp−fp(0))
(n−1)

⇒ xp(0) ≤ −(1 + δ)e
2(kp−fp(0))
(n−1)

(2.23)

for some δ > 0, where in the last step we invoke the compactness of S. Then by Lemma 2.2 we have that xp(t) → −∞ at or
before t = tp(δ) = arctanh 1

1+δ =: t0(δ). That is, tp is uniformly bounded above by t0 = t0(δ). Again, if there were a future
complete timelike geodesic, this would contradict Lemma 2.4. �

Proof of Theorem 1.2 part (ii). Again the inequality (2.14) governs x. Since Hf (S) < −(n − 1)with S compact and f and S
smooth, then Hf (S) ≤ −(n − 1)δ for some δ > 0, and so xp(0) ≤ −(1 + δ) uniformly for any p ∈ S. Then the conditions of
Corollary 2.3 are fulfilled with S ≡ Σ , and so there is a uniform bound t0 = t0(δ) > 0 such that, for any p ∈ S, xp(t) → −∞

for some t ≤ t0(δ). And again, if there were a future complete timelike geodesic, this would contradict Lemma 2.4. �

Finally, we note that a weakening of the causality assumptions used in the above theoremswill not necessarily eliminate
the problem of geodesic incompleteness, or at least not entirely. The following result dispenses with the assumption of
global hyperbolicity, but shows that there will still exist future incomplete timelike geodesics, though in this case we can
no longer establish that all timelike geodesics are future incomplete (cf. [1, Theorem 4, p. 272]).

Theorem 2.5. Let M be a spacetime satisfying Ricf (X, X) ≥ 0 for all timelike vectors X, and suppose that f ≤ k. Let S be a smooth
compact acausal spacelike hypersurface with strictly negative f -mean curvature, Hf (S) < 0. Then there exists an inextendible
future incomplete timelike geodesic in M.
Proof. If S is a spacelike future Cauchy surface, i.e., if its future Cauchy horizon H+(S) = ∅, then the proof of Theorem 1.1
goes through verbatim. So suppose H+(S) ≠ ∅. In this case one can apply for example [8, Main Lemma] to obtain an
inextendible future timelike geodesic in D+(S) with initial endpoint p ∈ S (and initial direction orthogonal to S) which
maximizes distance from each of its points to S. By Lemma 2.1, this geodesic cannot maximize distance beyond length tp,
and so must be incomplete. �

Remark 2.6. Likewise, if the global hyperbolicity assumption in Theorem1.2 is replacedby the assumption that S is a smooth
compact acausal spacelike hypersurface, then we may similarly conclude in that case that some (but not necessarily every)
timelike geodesic is future incomplete.

3. Rigidity

3.1. Extrinsic curvature flows

The proofs of the rigidity theorems below use a modified version of the mean curvature flow of a hypersurface to
construct a small pointwise deformation of the hypersurface. We therefore first recall some standard facts about extrinsic
curvature flows for hypersurfaces in a Lorentzian manifold. For a detailed treatment, see [9, Chapter 2]. Consider a family
of embeddings F : [0, ε) × Σ → M : s → F(s, ·). For each s, this embeds Σ (which we identify with Σ0) as a spacelike
hypersurfaceΣs in (M, g) such that

∂F
∂s

= φν,

F(0, ·) = id,
(3.1)

where φ depends on the mean curvature of F(s, ·) inM and ν is the corresponding timelike unit normal field. When φ = H ,
a solution of (3.1) is called a mean curvature flow. However, we are interested here in the case of

φ = Hf − c = H − ∇ν f − c, (3.2)
where c is a constant. Then we call such a solution a (c, f )-mean curvature flow. Thus fixed points of the flow are
hypersurfaces of constant f -mean curvature Hf = c. Under this flow, φ evolves as2

∂φ

∂s
= ∆Σsφ − DΣs f · DΣsφ −


|K |

2
hs + Ricf (ν, ν)


φ (3.3)

where ∆Σsφ := DΣs · DΣsφ is the Laplacian (the trace of the Hessian formed from the Levi-Civita connection DΣs of the
induced metric hij(s)) of φ onΣs := (Σ, hij(s)) and DΣs f · DΣsφ = h(s)(DΣs f ,DΣsφ), but Ricf is the Bakry–Émery tensor of
the ambient spacetime.

2 For the derivation, see [9, Lemma 2.3.4]. In the notation of [9], set σ = −1 andΦ = id. As well, F as used in [9] is ourH, f as used in [9] is our−c−∇ν f ,
and Fij as used in [9] is our hij (the induced metric onΣs). It is then necessary to re-write a ∇ν∇ν f term using that ∇νν = ∇ logφ in our case.
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Lemma 3.1. Let (Σ, h0
ij) ↩→ (M, g) be a closed spacelike hypersurface such that φ := Hf − c ≤ 0 for all p ∈ Σ . There is an

ε > 0 such that the (c, f )-mean curvature flow F : [0, ε)× Σ → (M, g) obeying (3.1) and (3.2) exists. Furthermore, ε can be
chosen so that either φ(t, q) < 0 for all t ∈ (0, ε) and all q ∈ Σ or φ ≡ 0 for all t ∈ [0, ε) and all q ∈ Σ . In particular, if in
addition φ(0, p) < 0 for some p ∈ Σ , then φ(t, q) < 0 for all t ∈ (0, ε) and all q ∈ Σ .

Proof. For Σ a closed spacelike hypersurface, [9, Theorem 2.5.19] guarantees a smooth solution of (3.1) and (3.2) on
[0, ε)×Σ for some ε > 0. If φ(t, q) < 0 for all (t, q) ∈ (0, ϵ)×Σ , we are done, so say φ(δ, q) ≥ 0 for some δ ∈ (0, ϵ) and
some q ∈ Σ . Since φ(0, ·) ≤ 0, this implies that themaximumM of φ on [0, δ]×Σ is achieved for some t > 0. By the strong
maximum principle [10, Theorem 2.7], this can only happen if φ ≡ 0 on [0, δ]×Σ , which can only occur if φ(0, ·) ≡ 0. �

3.2. Proofs of the rigidity theorems

Proof of Theorem 1.3. Introduce Gaussian normal coordinates in a neighborhood U of S in J+(S),

g = −dt2 + hijdxidxj, t ∈ [0, ϵ). (3.4)

Let H = H(t) be the mean curvature of the slice St = {t} × S, with Hf (t) = H(t)− f ′(t) and x(t) = Hf (t)/(n − 1) as usual.
Because Ric(X, X) ≥ 0 for all timelike vectors X, x obeys (2.8), with x(0) ≤ 0 by assumption. Therefore x(t) obeys

x′
+

2f ′

(n − 1)
x ≤ −x2, x(0) ≤ 0. (3.5)

Multiplying by e2f /(n−1) and integrating to the future along the t-geodesics yields

e
2f (t)
(n−1) x(t)− e

2f (0)
(n−1) x(0) = −

 t

0
e

2f (u)
(n−1) x2(u)du ≤ 0. (3.6)

Using x(0) ≤ 0, we obtain that x(t) ≤ 0 and thus Hf (t) ≤ 0 for all t ≥ 0 in the coordinate domain.
Suppose for some t0,Hf (t0) is strictly less than zero at some point. If Hf (t0) < 0 everywhere, then by Theorem 1.1 every

timelike geodesic will be future incomplete, contrary to assumption. If, however, there are both points where Hf (t0) = 0
and points where Hf (t0) < 0, then let the hypersurface and its induced metric be initial data for a (c, f )-mean curvature
flow (3.1) and (3.2) on an interval s ∈ [0, ε) with c = 0. Then φ(0) ≤ 0 with φ(0) = 0 at some points and φ(0) < 0 at
others. By Lemma 3.1, such a flow always exists for ε > 0 small enough, and for s > 0, φ will be strictly less than zero.
Then by (3.2) with c = 0, the f -mean curvature of the deformed hypersurfaces will be strictly less than zero. Furthermore,
the deformed hypersurfaces are spacelike Cauchy surfaces. Using any of these hypersurfaces as the hypersurface S in the
assumptions of Theorem 1.1, then that theorem implies that every timelike geodesic will be future incomplete, contrary to
assumption.

Thus, we have Hf (t) = 0 for all t ∈ [0, ϵ). Inequality (2.5) then implies that H = 0 and, therefore by (2.4), ∂ f
∂t = 0 on U .

The Raychaudhuri equation (2.3) then implies that the second fundamental form K vanishes identically, so each St is totally
geodesic. Solving 0 = K :=

1
2
∂
∂t h gives hij(t) = hij(0) and we obtain the desired splitting on U . Since the normal geodesics

are future complete, this splitting can be continued indefinitely. �

Proof of Theorem 1.5. Introduce Gaussian normal coordinates in a neighborhood U of S in J+(S) and define the slices
St = {t} × S as above. The normalized f -mean curvature x(t) := Hf (t)/(n − 1) of St satisfies (2.14) with x(0) ≤ −1.
Observe that if we choose ϵ sufficiently small so that Hf (t) < 0 for all t ∈ [0, ϵ), then xf ′

≥ 0 for t ∈ [0, ϵ), since by
assumption f ′

≡ γ ′
· ∇f ≤ 0. Then (2.14) reduces to x′

≤ 1− x2 with x(0) ≤ −1. Elementary comparison with the solution
to y′

= 1− y2, y(0) = −1, implies that x(t) ≤ −1 for all t ∈ [0, ϵ). Hence, we have that Hf (t) ≤ −(n− 1) for all t ∈ [0, ϵ).
Suppose that, for some t0,Hf (t0) is strictly less than−(n−1) at some point. Then, as in the proof of Theorem 1.3, we can

employ a (c, f )-mean curvature flow (3.1) and (3.2), this time with c = −(n− 1), and invoke Lemma 3.1 to obtain a nearby
spacelike Cauchy surface with f -mean curvature Hf < −(n − 1) pointwise. Using this hypersurface as the hypersurface S
in the assumptions of Theorem 1.2, then that theorem again implies that every timelike geodesic will be future incomplete,
contrary to assumption.

Thus, we have Hf (t) = −(n − 1) for all t ∈ [0, ϵ). Inequality (2.5) then implies that ∂ f
∂t = 0 on U , and f -mean curvature

reduces to ordinary mean curvature. Hence, H(t) = −(n − 1), and the Raychaudhuri equation (2.3) implies that the shear
σ vanishes identically. It follows that each St is umbilic, with second fundamental form Kij = −

1
2
∂hij
∂t = hij. Solving for hij

gives hij(t) = e−2thij(0) and we obtain the desired warped product splitting on U . Since the normal geodesics are future
complete, this splitting can be continued indefinitely. �

4. Application: scalar–tensor cosmology

In cosmology, so-called big bang singularities are often of primary interest. In a spacetimewith a big bang, every timelike
geodesic is past-incomplete. Big bang singularities can be addressed using time-reversed versions of the theorems in the
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Introduction. In what follows, we continue to define the f -mean curvature of a spacelike hypersurface with respect to the
future direction.

Theorem 4.1. Let M be a spacetime satisfying Ricf (X, X) ≥ 0 for all timelike vectors X, and suppose that f ≤ k. Let S be a
smooth compact spacelike Cauchy surface for M with strictly positive f -mean curvature, Hf (S) > 0. Then every timelike geodesic
is past incomplete.

Theorem 4.2. Let M be a spacetime satisfying Ricf (X, X) ≥ −(n−1) for all unit timelike vectors X, and having smooth compact
spacelike Cauchy surface S. Suppose that either

(i) f ≤ k and the f -mean curvature of S satisfies

Hf (S) > (n − 1)e
2(k−N)
(n−1) , (4.1)

where N = infp∈S f (p), or
(ii) ∇f is past causal and the f -mean curvature of S satisfies Hf (S) > (n − 1).

Then every timelike geodesic is past incomplete.

Remark 4.3. The proofs of these theorems are obvious. Theorems 1.3, 1.5 and 2.5 and Remark 2.6 also have obvious time-
reversed versions.

Scalar fields are routinely invoked in modern cosmology. Scalar fields arise in the cosmological inflation scenario, string
cosmology, and models that attempt to explain the observed accelerating expansion of the present universe. Cosmological
inflation is usually described by scalar fields coupled to Einstein gravity, but string models use a Brans–Dicke type dilaton
coupling, while models of the observed acceleration in the cosmological expansion rely on a variety of scenarios including
scalar–tensor gravitation.

The primary examples of scalar–tensor gravitation theories are the Brans–Dicke family of theories. In n = 4 spacetime
dimensions, this family is parametrized by a number ω ∈


−

3
2 ,∞


. In addition to the spacetime metric, the theory also

contains a scalar field ϕ > 0. In the conformal gauge usually called the Jordan frame, the equations of Brans–Dicke theory
are given by the system [3, p. 9]

Ric −
1
2
Rg +

1
2ϕ

V (ϕ)g =
1
ϕ
(Hessϕ − g�ϕ)+

8π
ϕ

T +
ω

ϕ2


∇ϕ ⊗ ∇ϕ −

1
2
g|∇ϕ|

2

, (4.2)

�ϕ =
1

3 + 2ω


8π trgT + ϕV ′(ϕ)− 2V (ϕ)


. (4.3)

Here � := ∇
i
∇i is the d’Alembert operator (or spacetime scalar Laplacian), R := trgRic is the scalar curvature, and T is the

stress–energy–momentum tensor of nongravitational matter, and does not depend on ϕ (this is called minimal coupling).
Note that the notation |dϕ|

2 is shorthand for the Lorentzian norm, so |dϕ|
2 < 0 when dϕ is timelike.

The function V (ϕ)was not present in the original formulation [2], but is used in cosmological models. It is typically taken
to be a homogeneous function of ϕ, often a polynomial. Define

f := − logϕ, (4.4)

W (f ) := −
1
6
ef V


e−f  , (4.5)

Λ(f ) :=
6(1 + ω)W (f )− 3W ′(f )

(3 + 2ω)
= −

1
2(3 + 2ω)


V ′(ϕ)+ (1 + 2ω)

1
ϕ
V (ϕ)


. (4.6)

Then we can re-write the above equations in the form

Ricf +Λ(f )g = 8πef

T −


1 + ω

3 + 2ω


gtrgT


+ (1 + ω)df ⊗ df (4.7)

�f − |df |2 = −
2

3 + 2ω


3W ′(f )+ 3W (f )+ 4πef trgT


, (4.8)

using that ϕ =: e−f .
Consider the special case of V (ϕ) = −

 3+2ω
1+ω


λϕ for some constant λ. Then W =

 3+2ω
1+ω


λ
6 and Λ(f ) = λ. In other

words, a linear potential yields a cosmological constant. (From (4.3), we also see that a linear potential with λ
1+ω > 0 gives

ϕ a mass.)
The following two simple lemmata translate between inequalities expressed in a form natural to Brans–Dicke theory and

the Bakry–Émery form used in the assumptions of our theorems. Since the Brans–Dicke theory is posed in n = 4 dimensions
(though it can be formulated for n ≥ 3), we restrict consideration to n = 4 from here onward.
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Lemma 4.4. Let X be an arbitrary unit timelike vector g(X, X) = −1. Assume that ω ≥ −1 and that the ω-energy condition
(see, e.g., [11]) holds, so that

T (X, X)+


1 + ω

3 + 2ω

 
trgT


≥ 0. (4.9)

(a) If V ′(ϕ)+ (1 + 2ω) 1
ϕ
V (ϕ) ≤ 0 then Ricf (X, X) ≥ 0.

(b) If V ′(ϕ)+ (1 + 2ω) 1
ϕ
V (ϕ) ≤ 6(3 + 2ω) then Ricf (X, X) ≥ −3.

Proof. Consider (4.7) termwise, using g(X, X) = −1 and (4.6). �

Lemma 4.5.

Hf > 0 ⇐⇒ H > −
1
ϕ

∇νϕ, (4.10)

Hf (S) > 3e
2
3 (k−N)

⇐⇒ H > −
1
ϕ

∇νϕ + 3 (ϕ1/ϕ0)
2/3 , (4.11)

Hf (S) > 3 ⇐⇒ H > −
1
ϕ

∇νϕ + 3, (4.12)

where k := supJ−(S) f , ϕ0 := infJ−(S) ϕ, and ϕ1 := supS ϕ.

Proof. Use f = − logϕ. We note that the left-hand expression in (4.11) is Eq. (1.2) with n = 4 and with the sense of time
reversed. The right-hand expression is simply what one obtains by replacing k and N , which are defined in terms of f , by ϕ0
and ϕ1, which are defined in terms of ϕ. �

Then the following theorems give conditions under which Brans–Dicke theory must have a big bang singularity.

Theorem 4.6. Let (M, g, ϕ) be a spacetime governed by Eqs. (4.2), (4.3) for some fixed ω ≥ −1. Assume that
(a) T obeys the ω-energy condition (4.9) for all timelike vectors X,
(b) ϕ ≥ ϕ0 > 0 for some ϕ0 ∈ R+,
(c) V ′(ϕ)+ (1 + 2ω) 1

ϕ
V (ϕ) ≤ 0, and

(d) there is a smooth compact Cauchy surface S for M with mean curvature H obeying

H(S) > −
1
ϕ

∇νϕ. (4.13)

Then every timelike geodesic is past incomplete.

Proof. Using Lemmata 4.4 and 4.5 it is easily seen that our assumptions verify the assumptions of Theorem 4.1, which we
then invoke. �

Theorem 4.7. Let (M, g, ϕ) be a spacetime governed by Eqs. (4.2), (4.3) with ω ≥ −1. Assume that
(a) T obeys the ω-energy condition (4.9) for all timelike vectors X and
(b) V ′(ϕ)+ (1 + 2ω) 1

ϕ
V (ϕ) ≤ 6(3 + 2ω), and

Further assume that either
(c.i) there is a smooth compact Cauchy surface S for M with ϕ0 := infJ−(S) ϕ > 0 and
(d.i) mean curvature H of S obeys

H(S) > 3 (ϕ1/ϕ0)
2/3

−
1
ϕ

∇νϕ, (4.14)

where ϕ1 = supp∈S ϕ(p)
or
(c.ii) ∇ϕ is future causal and
(d.ii) there is a smooth compact Cauchy surface S for M with mean curvature H obeying

H(S) > 3 −
1
ϕ

∇νϕ. (4.15)

Then every timelike geodesic is past incomplete.

Proof. The proof consists in using Lemmata 4.4 and 4.5 to verify the assumptions of Theorem 4.2. We note that∇ϕ is future
causal iff ∇f is past causal. �
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Brans–Dicke theories admit a so-called Einstein frame formulation, meaning that solutions of the theory are described by
a metric g̃ related to the Jordan frame metric g by

g̃ = ϕg. (4.16)

Eq. (4.2) can then be written in the form

Ric =
8π
ϕ


T −

1
2
g̃trg̃T


+
(3 + 2ω)

2ϕ2
dϕ ⊗ dϕ +

1
2ϕ2

V (ϕ)g̃, (4.17)

where Ric is the Ricci tensor of g̃ . Except for the 1
ϕ
multiplying T , this equation has the form of Einstein’s equation for general

relativity with a scalar field logϕ.
Then it is reasonable to ask whether Theorems 4.6 and 4.7 follow from standard theorems applied to the Einstein

frame formulation, or whether they are genuinely distinct, new results. To address this question, we focus only on the
incompleteness statement in Theorem 4.6. Similar considerations will apply to the splitting result and to Theorem 4.7. We
have the following analogue of Theorem 4.6, whose proof follows immediately from standard results that make no use of
the Bakry–Émery tensor.

Theorem 4.8. Let (M, g, ϕ) be a spacetime governed by Eq. (4.17) for any fixed ω > −3/2 and ϕ > 0. Assume that

(a) T obeys the strong energy condition T (X, X)−
1
2 g̃(X, X)trg̃T ≥ 0 for all timelike vectors X,

(b) V (ϕ) ≤ 0, and
(c) there is a smooth compact Cauchy surface S for M with mean curvature H obeying

H(S) > 0. (4.18)

Then every timelike g̃-geodesic is past incomplete. Furthermore, if ϕ ≥ ϕ0 > 0, then every past timelike geodesic in (M, g) is
incomplete.

Proof. Our assumptions imply that Ric(X, X) ≥ 0 for all timelike X . Now invoke Theorem 4.1with f = 0 to prove that every
past timelike g̃-geodesic is incomplete.

To prove that every past timelike g-geodesic is incomplete, consider the function ψ that maps each point q ∈ S to the
g̃-length of the past inextendible timelike g̃-geodesic that begins (in the past directed sense of course) at q ∈ S and meets
S orthogonally there. As none of these geodesics is g̃-complete, ψ is finite-valued for each p ∈ S. Indeed, Lemma 2.1 can be
applied here with f set to zero (thus kp = fp = 0 in the statement of that lemma), and shows that ψ(p) ≤ tp = 1/δp (see
(2.13)). Then because S is compact and smooth, δp ≥ δ > 0 on S so ψ ≤ 1/δ on S.

But assume by way of contradiction that there is a past complete g-geodesic γ : [0,∞) → M (we choose the parameter
to increase to the past). Clearly this curve has infinite length as measured by g-proper time. Then by (4.16) and assumption
(b), it has infinite length asmeasured by g̃ as well. Wemay assume that γ (0) ∈ S. Choose an unbounded sequence tk > tk−1,
so the points pk = γ (tk) recede into the past along γ . Consider the g̃-maximal timelike curves ζk joining the pk to S. Then
each ζk is a timelike g̃-geodesic which meets S orthogonally and, being g̃-maximal, has g̃-length greater than or equal to
the g̃-length of γ : [0, tk] → M . But we just established that the g̃-length of γ is unbounded, so the ζk form a sequence of
past timelike g̃-geodesics that begin on S, are orthogonal to S, and have unbounded g̃-length, which contradicts that ψ is
bounded. �

Then is it possible that the g-incompleteness statement in Theorem 4.6 is merely a consequence of Theorem 4.8? There
are in fact differences in the assumptions and applicability of the two theorems. The main distinction between these
theorems lies in the energy condition imposed on non-gravitational matter. Clearly

T (X, X)−
1
2
g̃(X, X)trg̃T = T (X, X)−

1
2
g(X, X)trgT , (4.19)

so the strong energy condition holds on (M, g̃) iff it holds on (M, g). However, Theorem 4.6 uses the ω-energy condition
(4.9), which only agrees with the strong energy condition when ω → ∞. For many matter models (e.g., dust with positive
energy density), trgT < 0. When this is true, then the ω-energy condition is, for any finite ω > −1, a strictly weaker
condition than the strong energy condition, and so in these circumstances Theorem 4.6 is stronger. We note as well that
while Theorem 4.8 applies for all ω > −3/2 (and for ω = −3/2 as well, but the Brans–Dicke scalar equation does not
permit ω = −3/2), Theorem 4.6 applies only when ω ≥ −1, so in this sense Theorem 4.6 is obviously weaker. Both the
distinction in the energy conditions and the distinction in applicableω values arise because the Brans–Dicke scalar equation
(4.3) is used to bring Eq. (4.2) into a form suitable for Theorem 4.1, while only a conformal transformation of Eq. (4.2) is used
to obtain Theorem 4.8.

Another distinction is that the positivity assumption (c) H > 0 on mean curvature in Theorem 4.8 transforms under
g̃ → g =

1
ϕ
g̃ to H > −

3
2φ∇νφ, which differs from Eq. (4.13) in assumption (d) of Theorem 4.6.

Finally, we note that the rigidity results contained in Theorems 1.3 and 1.5 can also be applied to Brans–Dicke theory. To
see this, note that Lemma 4.5 also holds if all the ‘‘>’’ signs in Eqs. (4.10)–(4.12) are replaced by ‘‘≥’’ signs. Then if the open



G.J. Galloway, E. Woolgar / Journal of Geometry and Physics 86 (2014) 359–369 369

inequality (4.13) is replacedwith the closed inequalityH ≥ −
1
ϕ
∇νϕ and if (M, g) is assumed to be past timelike geodesically

complete, the time-reversed version of Theorem 1.3 implies that the past of S splits as ((−∞, 0] × S,−dt2 ⊕ h) and ϕ is
independent of t on the past of S. Thus the past of S is static. Of course, nothing in these results forces ϕ to be constant on
S. Likewise, if the open inequality (4.15) is replaced by the closed inequality Hf (S) ≥ 3 −

1
ϕ
∇νϕ and if we assume that the

past timelike geodesics orthogonal to S are past complete, then the time-reversed version of Theorem 1.5 implies that the
past of S is conformally static, being isometric to the warped product ((−∞, 0] × S,−dt2 ⊕ e2th), and ϕ is independent of
t on the past of S.
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