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SOME RIGIDITY RESULTS FOR COMPACT INITIAL
DATA SETS

GREGORY J. GALLOWAY AND ABRAÃO MENDES

Abstract. In this paper, we prove several rigidity results for compact initial
data sets, in both the boundary and no boundary cases. In particular, un-
der natural energy, boundary, and topological conditions, we obtain a global
version of the main result by Galloway and Mendes [Comm. Anal. Geom. 26
(2018), pp. 63–83]. We also obtain some extensions of results by Eichmair,
Galloway, and Mendes [Comm. Math. Phys. 386 (2021), pp. 253–268]. A num-
ber of examples are given in order to illustrate some of the results presented
in this paper.
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1. Introduction

The theory of marginally outer trapped surfaces has played an important role
in several areas of mathematical general relativity, for example, in proofs of the
spacetime positive mass theorem (e.g. [13, 20]) and in results on the topology of
black holes (e.g. [14,16]). In [14], a local MOTS rigidity result was obtained, which
implies that an outermost MOTS (e.g. the surface of a black hole) in an initial
data set satisfying the dominant energy condition (μ ≥ |J |) is positive Yamabe,
i.e. admits a metric of positive scalar curvature. This in turn leads to well-known
restrictions on the topology of 3-dimensional outermost MOTS. Such results extend
to the spacetime setting well-known results concerning Riemannian manifolds of
nonnegative scalar curvature.

In [12], the authors, together with M. Eichmair, obtained, among other results,
a global version of the local MOTS rigidity result in [14], which, in particular,
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does not require a weakly outermost condition; see [12, Theorem 1.2]. This result
was motivated in part by J. Lohkamp’s approach to the spacetime positive mass
theorem in [21]. It implies, in dimensions 3 ≤ n ≤ 7, Lohkamp’s result on the
nonexistence of ‘μ − |J | > 0 islands’, [21, Theorem 2]. Theorem 1.2 in [12] has
also been applied to obtain a positive mass theorem for asymptotically hyperbolic
manifolds with boundary; see [9]. This theorem will be a useful tool in the present
work as well.

In this paper, we present some further initial data rigidity results for compact
initial data sets, in both the boundary and no boundary cases. In [15], the authors
considered 3-dimensional initial data sets containing spherical MOTS. It was shown,
roughly speaking, that in a matter-filled spacetime, perhaps with positive cosmo-
logical constant, a stable marginally outer trapped 2-sphere must satisfy a certain
area inequality; namely, its area must be bounded above by 4π/c, where c > 0 is
a lower bound on a natural energy-momentum term. We then established rigidity
results for stable, or weakly outermost, marginally outer trapped 2-spheres when
this bound is achieved. In particular, we prove a local splitting result, [15, Theo-
rem 3.2], that extends to the spacetime setting a result of H. Bray, S. Brendle, and
A. Neves [8] concerning area minimizing 2-spheres in Riemannian 3-manifolds with
positive scalar curvature. These spacetime results have interesting connections to
the Vaidya and Nariai spacetimes [15].

One of the main aims of the present work is to obtain a global version of [15,
Theorem 3.2]; see Theorem 3.1 in Subsection 3.1 for a statement. The proof makes
use of certain techniques introduced in [12]. In this work, we have also been led
to consider certain variations of [12, Theorem 5.2]; see Theorems 4.1 and 4.2 in
Subsection 4.1. Here, it becomes useful to consider the so-called ‘brane action’, as
well as the area functional. These results are then used to examine the question of
the existence of MOTS in closed (compact without boundary) initial data sets in
Subsections 3.2 and 4.2. The relationship to known spacetimes is also discussed.

The paper is organized as follows: in Section 2, we review some background
material on MOTS; in Section 3, we state and prove several global rigidity results
for compact initial data sets admitting a spherical MOTS, in both the boundary
and the no boundary cases; and, in Section 4, we state and prove such global
rigidity results for initial data sets with non-spherical MOTS or, more generally,
MOTS that do not admit a metric of positive scalar curvature. We also give various
examples in order to illustrate some of the results presented in this paper.

2. Preliminaries

All manifolds in this paper are assumed to be connected and orientable except
otherwise stated.

An initial data set (M, g,K) consists of a Riemannian manifold (M, g) with
boundary ∂M (possibly ∂M = ∅) and a symmetric (0, 2)-tensor K on M .

Let (M, g,K) be an initial data set.
The local energy density μ and the local current density J of (M, g,K) are given

by

μ = 1
2
(S − |K|2 + (trK)2) and J = div(K − (trK)g),
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where S is the scalar curvature of (M, g). We say that (M, g,K) satisfies the
dominant energy condition (DEC for short) if

μ ≥ |J | on M.

Consider a closed embedded hypersurface Σ ⊂ M . Since, by assumption, Σ and
M are orientable, we can choose a unit normal field ν on Σ. If Σ separates M , by
convention, we say that ν points to the outside of Σ.

The null second fundamental forms χ+, χ− of Σ in (M, g,K) with respect to ν
are given by

χ+ = K|Σ + A and χ− = K|Σ −A,

where A is the second fundamental form of Σ in (M, g) with respect to ν. More
precisely,

A(X,Y ) = g(∇Xν, Y ) for X,Y ∈ X(Σ),

where ∇ is the Levi-Civita connection of (M, g).
The null expansion scalars θ+, θ− of Σ in (M, g,K) with respect to ν are given

by

θ+ = trΣ(K) + H and θ− = trΣ(K) −H,(2.1)

where H = trA is the mean curvature of Σ in (M, g) with respect to ν. Observe
that θ± = trχ±.

R. Penrose introduced the now famous notion of a trapped surface, when both
θ+ and θ− are negative. Restricting to one side, we say that Σ is outer trapped if
θ+ < 0, weakly outer trapped if θ+ ≤ 0, and marginally outer trapped if θ+ = 0.
In the latter case, we refer to Σ as a marginally outer trapped surface (MOTS for
short).

Assume now that Σ is a MOTS in (M, g,K), with respect to a unit normal ν,
that is a boundary in M . More precisely, assume that ν points towards a top-
dimensional submanifold M+ ⊂ M such that ∂M+ = Σ � S, where S (possibly
S = ∅) is a union of components of ∂M (in particular, if Σ separates M). We
think of M+ as the region outside of Σ. Then we say that Σ is outermost (resp.
weakly outermost) if there is no closed embedded hypersurface in M+ with θ+ ≤ 0
(resp. θ+ < 0) that is homologous to and different from Σ. The notions of locally
outermost and locally weakly outermost MOTS can be given in an analogous way.

Remark 2.1. It is important to mention that initial data sets arise naturally in
general relativity. In fact, let M be a spacelike hypersurface in a spacetime, i.e. a
time-oriented Lorentzian manifold, (N̄ , h̄). Let g be the Riemannian metric on M
induced from h̄ and K be the second fundamental form of M in (N̄ , h̄) with respect
to the future-pointing timelike unit normal u on M . Then (M, g,K) is an initial
data set. As before, let Σ be a closed embedded hypersurface in M . In this setting,
χ+ and χ− are the null second fundamental forms of Σ in (N̄ , h̄) with respect to
the null normal fields

�+ = u|Σ + ν and �− = u|Σ − ν,

respectively. Observe that θ± = divΣ �±. Physically, θ+ (resp. θ−) measures the
divergence of the outward pointing (resp. inward pointing) light rays emanating
from Σ.
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An initial data set (M, g,K) is said to be time-symmetric or Riemannian if
K = 0. In this case, a MOTS in (M, g,K) is nothing but a minimal hypersurface
in (M, g). Moreover, the energy condition μ− |J | ≥ c, for some constant c, reduces
to the requirement on the scalar curvature S ≥ 2c. Quite generally, marginally
outer trapped surfaces share many properties with minimal hypersurfaces, which
they generalize; see e.g. the survey article [1].

As in the minimal hypersurfaces case, an important notion for the theory of
MOTS is the notion of stability introduced, in the context of MOTS, by L. Ander-
sson, M. Mars, and W. Simon [2, 3], which we now recall.

Let Σ be a MOTS in (M, g,K) with respect to ν. Consider a normal variation of
Σ in M , i.e. a variation t → Σt of Σ = Σ0 with variation vector field ∂

∂t |t=0 = φ ν,
φ ∈ C∞(Σ). Let θ±(t) denote the null expansion scalars of Σt with respect to νt,
ν = νt|t=0. Computations as in [2, p. 2] or [3, p. 861] give,

∂θ+

∂t

∣∣∣
t=0

= Lφ,(2.2)

where

Lφ = −Δφ + 2〈X,∇φ〉 + (Q + divX − |X|2)φ
and

Q = 1
2
SΣ − (μ + J(ν)) − 1

2
|χ+|2.

Here, Δ is the negative semi-definite Laplace-Beltrami operator, ∇ the gradient,
div the divergence, and SΣ the scalar curvature of Σ with respect to the induced
metric 〈 · , · 〉. Moreover, X is the tangent vector field on Σ that is dual to the
1-form K(ν, · )|Σ.

It is possible to prove (see [3, Lemma 4.1]) that L has a real eigenvalue λ1 =
λ1(L), called the principal eigenvalue of L, such that Reλ ≥ λ1 for any other
complex eigenvalue λ. Furthermore, the corresponding eigenfunction φ1, Lφ1 =
λ1φ1, is unique up to a multiplicative constant and can be chosen to be real and
everywhere positive.

Then a MOTS Σ is said to be stable if λ1(L) ≥ 0. This is equivalent to the
existence of a positive function φ ∈ C∞(Σ) such that Lφ ≥ 0. It follows directly
from (2.2) with φ = φ1 that every locally weakly outermost (in particular, locally
outermost) MOTS is stable.

Observe that in the Riemannian case, L reduces to the classical stability operator,
also known as the Jacobi operator, for minimal hypersurfaces. As such, in the
literature, L is known as the MOTS stability operator or the stability operator for
MOTS.

The study of rigidity results for minimal surfaces in Riemannian manifolds with
a lower scalar curvature bound has been, and continues to be, an active area of
research. From the point of view of initial data sets, these are time-symmetric
results, as noted above. It has been of interest to extend some of these results to
general initial data sets. In the context of general relativity, black hole horizons
within initial data sets are often modeled by MOTS and, in particular, by minimal
surfaces in the time-symmetric case. These rigidity results often shed light on
properties of spacetimes with black holes, as noted in the introduction.

The next proposition and theorem extend to the general non-time-symmetric
setting some results of Bray, Brendle, and Neves [8].
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Proposition 2.2 (Infinitesimal rigidity, [15]). Let Σ be a stable MOTS in a 3-
dimensional initial data set (M, g,K) with respect to a unit normal field ν. Sup-
pose there exists a constant c > 0 such that μ + J(ν) ≥ c on Σ. Then the area of
Σ satisfies,

A(Σ) ≤ 4π
c
.

Moreover, if A(Σ) = 4π/c, then the following hold:
(a) Σ is a round 2-sphere with Gaussian curvature κΣ = c,
(b) the second fundamental form χ+ of Σ with respect to ν vanishes, and
(c) μ + J(ν) = c on Σ.

The proposition above is used in the proof of the following local splitting theorem.
But, before stating the next result, which is also used in the proof of Theorem 3.1,
let us remember the notion of an area minimizing surface.

With respect to a fixed Riemannian metric g on a 3-dimensional manifold M , a
closed embedded surface Σ ⊂ M is said to be area minimizing if Σ is of least area
in its homology class in M , that is, A(Σ) ≤ A(Σ′) for any closed embedded surface
Σ′ that is homologous to Σ in M . In this case, we also say that Σ minimizes area.
Similarly, Σ is said to be locally area minimizing if A(Σ) ≤ A(Σ′) for any such Σ′

in a neighborhood of Σ in M .

Theorem 2.3 (Local splitting, [15]). Let (M, g,K) be a 3-dimensional initial data
set with boundary. Suppose that (M, g,K) satisfies the energy condition μ−|J | ≥ c
for some constant c > 0. Let Σ0 be a closed connected component of ∂M such
that the following conditions hold:

(1) Σ0 is a MOTS with respect to the normal that points into M and
(2) Σ0 is locally weakly outermost and locally area minimizing.

Then Σ0 is topologically S2 and its area satisfies,

A(Σ0) ≤
4π
c
.

Furthermore, if A(Σ0) = 4π/c, then a collar neighborhood U of Σ in M is such
that:

(a) (U, g) is isometric to ([0, δ)×Σ0, dt
2 + g0) for some δ > 0, where g0 - the

induced metric on Σ0 - has constant Gaussian curvature κΣ0 = c,
(b) K = a dt2 on U , where a ∈ C∞(U) depends only on t ∈ [0, δ), and
(c) μ = c and J = 0 on U .

This theorem extends to the general non-time-symmetric setting the local rigidity
statements in [8]. The local rigidity obtained in [8] is then used to obtain a global
rigidity result; see [8, Proposition 11]. In Theorem 3.1 in the next section, we obtain
a global version of Theorem 2.3. A key improvement in this global rigidity result
is that it does not require the ‘weakly outermost’ assumption, and hence parallels
somewhat more closely the global result in [8].

Now, we recall two topological concepts that are important for our purposes; see
also [12].

We say that M satisfies the homotopy condition with respect to Σ ⊂ M provided
there exists a continuous map ρ : M → Σ such that ρ ◦ i : Σ → Σ is homotopic
to idΣ, where i : Σ ↪→ M is the inclusion map (for example, if Σ is a retract of M).
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On the other hand, a closed not necessarily connected manifold N of dimension m
is said to satisfy the cohomology condition if there are m classes ω1, . . . , ωm in the
first cohomology group H1(N), with integer coefficients, whose cup product

ω1 � · · · � ωm ∈ Hm(N)

is nontrivial. For example, the m-torus Tm = S1×· · ·×S1 satisfies the cohomology
condition. More generally, the connected sums Tm #Q satisfy the cohomology
condition for any closed m-manifolds Q. A version of this condition is considered
in [23, Theorem 5.2]. Here, we are using the form of the condition as it appears
in [19, Theorem 2.28]. A manifold N satisfying this cohomology condition has
a component that does not carry a metric of positive scalar curvature; see the
discussion in [19].

We will make use of Theorem 2.4 (mentioned in the introduction) in several
situations.

Theorem 2.4 ([12, Theorem 1.2]). Let (M, g,K) be an n-dimensional, 3 ≤ n ≤
7, compact-with-boundary initial data set. Suppose that (M, g,K) satisfies the
dominant energy condition, μ ≥ |J |. Suppose also that the boundary can be
expressed as a disjoint union ∂M = Σ0 ∪ S of nonempty unions of components
such that the following conditions hold:

(1) θ+ ≤ 0 on Σ0 with respect to the normal that points into M ,
(2) θ+ ≥ 0 on S with respect to the normal that points out of M ,
(3) M satisfies the homotopy condition with respect to Σ0, and
(4) Σ0 satisfies the cohomology condition.

Then the following hold:
(a) M ∼= [0, �] × Σ0 for some � > 0.

Let Σt
∼= {t} × Σ0 with unit normal νt in direction of the foliation.

(b) χ+ = 0 on Σt for every t ∈ [0, �].
(c) Σt is a flat (n − 1)-torus with respect to the induced metric for every

t ∈ [0, �].
(d) μ + J(νt) = 0 on Σt for every t ∈ [0, �]. In particular, μ = |J | on M .

By imposing a convexity condition on K, we are able to prove (using Theo-
rem 2.4) the following stronger rigidity result. Note that the boundary conditions
are different from those of Theorem 2.4.

Theorem 2.5 ([12, Theorem 1.3]). Let (M, g,K) be an n-dimensional, 3 ≤ n ≤
7, compact-with-boundary initial data set. Suppose that (M, g,K) satisfies the
dominant energy condition, μ ≥ |J |. Suppose also that the boundary can be
expressed as a disjoint union ∂M = Σ0 ∪ S of nonempty unions of components
such that the following conditions hold:

(1) θ+ ≤ 0 on Σ0 with respect to the normal that points into M ,
(2) θ− ≤ −2 (n − 1) ε on S with respect to the normal that points out of M ,

where ε = 0 or ε = 1,
(3) M satisfies the homotopy condition with respect to Σ0,
(4) Σ0 satisfies the cohomology condition, and
(5) K + ε g is (n− 1)-convex.

Then the following hold:
(i) (Σ0, g0) is a flat torus, where g0 is the induced metric on Σ0.
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(ii) (M, g) is isometric to ([0, �] × Σ0, dt
2 + e2 ε t g0) for some � > 0.

(iii) K = (1− ε) a dt2− ε g on M , where a ∈ C∞(M) depends only on t ∈ [0, �].
(iv) μ = 0 and J = 0 on M .

The definition of the (n− 1)-convexity is recalled in Subsection 4.1.
The following is the basic existence result for MOTS due to L. Andersson and

J. Metzger in 3-dimensions, and M. Eichmair in dimensions 3 ≤ n ≤ 7. It is used in
the proof of Theorem 3.1, and is the source of the dimension restriction appearing
in various results discussed herein.

Theorem 2.6 (Existence of MOTS, [4,10,11]). Let (M, g,K) be an n-dimensional,
3 ≤ n ≤ 7, compact-with-boundary initial data set. Suppose that the boundary
can be expressed as a disjoint union ∂M = Σin ∪ Σout, where Σin and Σout are
nonempty unions of components of ∂M with θ+ ≤ 0 on Σin with respect to the
normal pointing into M and θ+ > 0 on Σout with respect to the normal pointing
out of M . Then there is an outermost MOTS in (M, g,K) that is homologous to
Σout.

3. The spherical MOTS case

In this section, we consider compact initial data sets admitting a spherical MOTS
in both the boundary and the no boundary cases.

3.1. The compact-with-boundary case. In this subsection, we obtain a global
version of Theorem 2.3; see the comments above, after the statement of Theo-
rem 2.3. This result, in turn, will be applied in the next subsection to the case that
the initial data manifold is closed.

Theorem 3.1. Let (M, g,K) be a 3-dimensional compact-with-boundary initial
data set. Suppose that (M, g,K) satisfies the energy condition μ − |J | ≥ c for
some constant c > 0. Suppose also that the boundary can be expressed as a
disjoint union ∂M = Σ0 ∪ S of nonempty unions of components such that the
following conditions hold:

(1) θ+ ≤ 0 on Σ0 with respect to the normal that points into M ,
(2) θ+ ≥ 0 on S with respect to the normal that points out of M ,
(3) M satisfies the homotopy condition with respect to Σ0,
(4) the relative homology group H2(M,Σ0) vanishes, and
(5) Σ0 minimizes area.

Then Σ0 is topologically S2 and its area satisfies,

A(Σ0) ≤
4π
c
.

Moreover, if A(Σ0) = 4π/c, then the following hold:
(a) (M, g) is isometric to ([0, �] × Σ0, dt

2 + g0) for some � > 0, where g0 —
the induced metric on Σ0 — has constant Gaussian curvature κΣ0 = c,

(b) K = a dt2 on M , where a ∈ C∞(M) depends only on t ∈ [0, �], and
(c) μ = c and J = 0 on M .

Remark 3.2. Note that (a) and (b) imply (c). Moreover, the hypotheses (1)–(5)
are sharp in the sense that if an initial data set satisfies the conclusions (a) and (b)
it must satisfy (1)–(5). Similar comments apply to Theorem 3.3.
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Proof. First, observe that Σ0 is connected, since M is connected and satisfies the
homotopy condition with respect to Σ0.

If Σ0 is not homeomorphic to S2 then, by the standard classification of surfaces,
Σ0 is homeomorphic to a torus or a connected sum of tori. In particular, Σ0 satisfies
the cohomology condition and so Theorem 2.4 applies to (M, g,K). Therefore,
0 = μ− |J | ≥ c on M , which is a contradiction. Then Σ0 is topologically S2.

Claim. Σ0 is a weakly outermost MOTS in (M, g,K) of area A(Σ0) = 4π/c unless
A(Σ0) < 4π/c.

Assume that A(Σ0) ≥ 4π/c.
If θ+

K ≤ 0 is not identically zero on Σ0, it follows from [4, Lemma 5.2] that
there is a surface Σ ⊂ M — obtained by a small perturbation of Σ0 into M —
such that θ+

K < 0 on Σ with respect to the normal pointing away from Σ0. Let
W be the connected compact region bounded by Σ and S in M . Observe that
θ+
−K ≤ 0 on S with respect to the normal that points into W and θ+

−K > 0 on Σ
with respect to the normal that points out of W . Applying the MOTS existence
theorem (Theorem 2.6), we obtain an outermost MOTS Σ′ in (W, g,−K) that is
homologous to and disjoint from Σ. Clearly, Σ′ is homologous to Σ0 in M .

Without loss of generality, we may assume that each connected component of Σ′

is homologically nontrivial in M . Also, because H2(M,Σ0) = 0, Σ′ is connected.
Since we are assuming that Σ0 minimizes area in its homology class, we have

4π
c

≤ A(Σ0) ≤ A(Σ′).

On the other hand, because Σ′ is an outermost MOTS in (W, g,−K), in par-
ticular stable, the infinitesimal rigidity (Proposition 2.2) gives that A(Σ′) = 4π/c.
Therefore, Σ′ is an area minimizing outermost MOTS in (W, g,−K) of area A(Σ′) =
4π/c and then the local splitting theorem (Theorem 2.3) applies so that an outer
neighborhood of Σ′ in W is foliated by MOTS, which is a contradiction.

This proves that Σ0 is a MOTS in (M, g,K).
Now, we claim that Σ0 is weakly outermost in (M, g,K). If not, there is a surface

Σ that is homologous to Σ0 in M and such that θ+
K < 0 on it. Perturbing Σ a bit,

we may assume that Σ∩Σ0 = ∅. Also, by the strong maximum principle as in e.g.
[4, Proposition 2.4] or [5, Proposition 3.1], Σ ∩ S = ∅.

As before, without loss of generality, we may assume that each connected com-
ponent of Σ is homologically nontrivial in M and, in particular, Σ is connected. Let
W be the region in M bounded by Σ and S. Arguing with (W, g,−K) as above,
we have a contradiction. Thus Σ0 is weakly outermost.

We have then proved that, if A(Σ0) ≥ 4π/c, then Σ0 is a weakly outermost
MOTS in (M, g,K). In this case, by the infinitesimal rigidity, A(Σ0) = 4π/c.

This finishes the proof of the Claim.
We have then obtained that Σ0 is homeomorphic to S2 and its area satisfies

A(Σ0) ≤ 4π/c. Furthermore, if A(Σ0) = 4π/c, then Σ0 is an area minimizing
weakly outermost MOTS in (M, g,K). In this case, by the local splitting theorem,
there is a collar neighborhood U ∼= [0, δ) × Σ0 of Σ0 in M such that conclusions
(a), (b), and (c) of the theorem hold on U . Clearly, Σt

∼= {t} × Σ0 converges to a
closed embedded MOTS Σδ of area 4π/c as t ↗ δ. If Σδ ∩ S �= ∅, by the strong
maximum principle, Σδ = S. If Σδ ∩ S = ∅, we can replace Σ0 by Σδ and M
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by the complement of U and run the process again. The result then follows by a
continuity argument. �

3.2. The closed case. In this subsection, we wish to apply the result of the pre-
vious subsection to initial data manifolds that are closed (compact without bound-
ary). This result naturally relates to cosmological (i.e. spatially closed) spacetimes
(see also Subsection 4.2).

Let M be an n-dimensional closed manifold. Suppose the (n − 1)-th homology
group Hn−1(M) is nontrivial. Any nontrivial element of Hn−1(M) gives rise to
a smooth closed embedded non-separating orientable hypersurface Σ ⊂ M . In
particular, Σ is two-sided in M , i.e. there is an embedding F : [−1, 1]×Σ → M such
that F (0, p) = p for each p ∈ Σ. Let U denote the open set F ((−1, 1)×Σ) ⊂ M . We
say that M is retractable with respect to Σ if M \U retracts onto some component
of ∂U . If we consider a Riemannian metric g on M , given a unit normal field ν on
Σ with respect to g, we say that M is retractable with respect to Σ towards ν if
M \ U retracts onto the component of ∂U towards which ν points.

An obvious situation where this occurs is when M is of the form M = S1 × Q,
with Q closed. Then M is retractable with respect to Σ = {x} × Q, x ∈ S1.
Another situation of interest is when M is of the form M = Tn #Q. View Tn as
an n-dimensional cube with opposite boundary faces identified. To obtain M , we
may assume the connected sum takes place in a bounded open set U inside the
cube. Let Σ be an (n − 1)-torus parallel to one of the faces away from the set U .
Then M is retractable with respect to Σ. More generally, if M is retractable with
respect to Σ, then so is M #Q, with Q closed, provided the connect sum takes
place away from Σ.

Theorem 3.3. Let (M, g,K) be a 3-dimensional closed initial data set satisfying
the energy condition μ− |J | ≥ c for some constant c > 0. Suppose that (M, g,K)
admits a MOTS Σ, with respect to a unit normal field ν, such that the following
conditions hold:

(I) M is retractable with respect to Σ towards ν,
(II) the homology group H2(M) is generated by the class of Σ, and

(III) Σ minimizes area.
Then Σ is topologically S2 and its area satisfies,

A(Σ) ≤ 4π
c
.(3.1)

Moreover, if A(Σ) = 4π/c, then the following hold:
(a’) (M, g) is isometric to [0, �] × Σ/∼ endowed with the induced metric from

the product ([0, �]×Σ, dt2 +h), where ‘∼’ means that {0}×Σ and {�}×Σ
are suitably identified and h — the induced metric on Σ — has constant
Gaussian curvature κΣ = c,

(b’) K = a dt2 on M , where a ∈ C∞(M) depends only on t, and
(c’) μ = c and J = 0 on M .

Proof. First, observe that, by making a ‘cut’ along Σ, we obtain a 3-dimensional
compact manifold M ′ with two boundary components, say Σ0 and S. Also, the
initial data (g,K) on M gives rise to data (g′,K ′) on M ′ in the natural way.
The boundary components Σ0 and S are both isometric to Σ with respect to the
corresponding induced metrics.
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Now, consider the initial data set (M ′, g′,K ′). Observe that the boundary com-
ponents Σ0 and S of M ′ can be chosen in such a way that conditions (1)–(5) of
Theorem 3.1 are satisfied. In fact,

(1) Σ0 is a MOTS with respect to the normal that points into M ′,
(2) S is a MOTS with respect to the normal that points out of M ′,
(3) M ′ satisfies the homotopy condition with respect to Σ0, since M is re-

tractable with respect to Σ towards ν,
(4) the relative homology group H2(M ′,Σ0) vanishes, since H2(M) is generated

by the class of Σ, and
(5) Σ0 minimizes area in (M ′, g′) as Σ minimizes area in (M, g).

Conditions (1) and (2) above follow from the fact of Σ being a MOTS in (M, g,K)
with respect to ν and the choice of Σ0 and S. Therefore, by Theorem 3.1, Σ0 is
topologically S2 and its area satisfies A(Σ0) ≤ 4π/c. The same conclusions hold
for Σ. Moreover, if A(Σ) = 4π/c, that is, A(Σ0) = 4π/c, then conclusions (a)–(c)
of Theorem 3.1 hold for (M ′, g′,K ′) and thus (M, g,K) satisfies (a’)–(c’). �

Remark 3.4. Initial data sets satisfying the assumptions of Theorem 3.3 arise nat-
urally in the Nariai spacetime. The Nariai spacetime is a solution to the vacuum
Einstein equations with positive cosmological constant, Λ > 0. It is a metric prod-
uct of 2-dimensional de Sitter space dS2 and S2,

N̄ = (R× S1) × S2, h̄ = −dt2 + a2 cosh2(t/a) dχ2 + a2dΩ2,

where a = 1√
Λ

. As described in [6, 7], the Nariai spacetime is an interesting limit
of Schwarzschild-de Sitter space, as the size of the black hole increases and its area
approaches the upper bound in (3.1), with c = Λ.

Under the transformation, cosh(t/a) = sec τ , the metric h̄ becomes,

h̄ = a2

cos2(τ )
(
−dτ2 + dχ2) + a2dΩ2,

where τ is in the range, −π
2 < τ < π

2 . With this change of time coordinate, we
see that dS2 is locally conformal to the Minkowski plane. A Penrose type diagram
for (N̄ , h̄) is depicted in Figure 1. Each point in the diagram represents a round
2-sphere of radius a. In the diagram, M = Γ × S2, where Γ is a smooth spacelike
graph over the circle: τ = 0, 0 ≤ χ ≤ 2π in dS2. Taking Σ to be the 2-sphere
intersection of M with the totally geodesic null hypersurface H, one easily verifies
that (M, g,K), where g is the induced metric and K is the second fundamental
form of M , respectively, satisfies the assumptions of Theorem 3.3, with equality in
(3.1). We note that there are initial data sets in (spatially closed) Schwarzschild-de
Sitter that satisfy all the assumptions of Theorem 3.3, except for equality in (3.1).

Remark 3.5. In [15, Section 4], the authors proved that, under the assumptions of
Theorem 2.3, a collar neighborhood U of Σ0 in (M, g,K) can be embedded as a
spacelike hypersurface into the Nariai spacetime. The same arguments show that
any initial data set satisfying the conclusions (a)–(c) of Theorem 3.1 or (a’)–(c’)
of Theorem 3.3 can be locally realized as a spacelike hypersurface into the Nariai
spacetime.
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χ = 0

Σ

τ = π/2:

τ = −π/2− :

M
H

χ = 2π

τ = 0

Figure 1. Nariai spacetime

4. The non-spherical MOTS case

In this section, we consider initial data sets with non-spherical MOTS or, more
generally, MOTS that do not admit a metric of positive scalar curvature.

4.1. The compact-with-boundary case. The next two theorems make use of the
notion of (n − 1)-convexity of a symmetric (0, 2)-tensor. Imposing such convexity
leads to stronger rigidity.

We say that a symmetric (0, 2)-tensor P on (M, g) is (n− 1)-convex if, at every
point p ∈ M , the sum of the smallest (n− 1) eigenvalues of P with respect to g is
nonnegative (in particular, if P is positive semi-definite). This is equivalent to the
trace of P with respect to any (n − 1)-dimensional linear subspace of TpM being
nonnegative, for every p ∈ M . In particular, if P is (n− 1)-convex, then trΣ P ≥ 0
for every hypersurface Σ ⊂ M . This convexity condition has been used by the
second-named author in [22] and by the authors, together with M. Eichmair, in
[12] in related contexts.

Let (M, g,K) be as in Theorem 2.4, and let Σ be a closed embedded hypersurface
homologous to Σ0. The next theorem makes use of the functional,

Bε(Σ) = A(Σ) − (n− 1) εV(Σ), ε = 0, 1,

where A(Σ) is the area of Σ and V(Σ) is the volume of the region bounded by Σ
and Σ0. In the case ε = 0, we are just talking about the area functional. In the case
ε = 1, we are talking about the functional associated with hypersurfaces of constant
mean curvature n−1, sometimes referred to as the brane action and denoted by B.

Theorem 4.1 extends in a couple of directions Theorem 5.2 in [12].

Theorem 4.1. Let (M, g,K) satisfy all the hypotheses of Theorem 2.4. Assume
that

(i) K + ε g is (n− 1)-convex, where ε = 0 or ε = 1, and
(ii) Σ0 and S are such that Bε(Σ0) ≤ Bε(S).

Then the following hold:
(a) Σ0 is a flat (n− 1)-torus with respect to the induced metric g0,
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(b) (M, g) is isometric to ([0, �] × Σ0, dt
2 + e2 ε tg0) for some � > 0,

(c) K = (1 − ε)a − ε g on M , where a ∈ C∞(M) depends only on t ∈ [0, �],
and

(d) μ = 0 and J = 0 on M .

The convexity assumption holds if, in particular, K satisfies, K ≥ −ε g. In the
case ε = 0, this would apply to cosmological models that are expanding to the
future (in all directions).

Proof. By Theorem 2.4,
- M ∼= [0, �] × Σ0 for some � > 0, and
- each leaf Σt

∼= {t} × Σ0 is a MOTS with respect to the unit normal νt in
direction of the foliation.

On the other hand, since K + ε g is (n− 1)-convex, we have
H(t) − (n− 1) ε ≤ H(t) + trΣt

K = 0,(4.1)
where H(t) = divΣt

νt is the mean curvature of Σt.
Now, the first variation of Bε gives that

d

dt
Bε(Σt) =

∫
Σt

φ (H(t) − (n− 1) ε) dΣt ≤ 0,(4.2)

where φ = 〈νt, ∂t〉 is the lapse function of the foliation. Therefore, Bε(t) = Bε(Σt)
is a nonincreasing function on [0, �] satisfying Bε(0) ≤ Bε(�). Thus Bε(t) = Bε(Σt)
is constant. Inequalities (4.1) and (4.2) give that H(t) = (n − 1) ε = − trΣt

K for
all t ∈ [0, �]. In particular, θ− = −2 (n − 1) ε on Σ� = S. The result then follows
directly from Theorem 2.5. �

In the next theorem we consider B = B1 under a modified convexity condition.

Theorem 4.2. Let (M, g,K) satisfy all the hypotheses of Theorem 2.4. Assume
that −(K+g) is (n−1)-convex. Then B(Σ0) ≤ B(S). Moreover, if equality holds,
we have the following:

(a) (M, g) is isometric to ([0, �]×Σ0, dt
2 + gt) for some � > 0, where gt is the

induced metric on Σt
∼= {t} × Σ0.

(b) Each Σt is a flat (n − 1)-torus with respect to gt and has constant mean
curvature H(t) = n− 1.

(c) The scalar curvature of (M, g) satisfies S ≤ −n(n− 1). If equality holds,
(M, g) is isometric to ([0, �] × Σ0, dt

2 + e2 tg0).
(d) For each t ∈ [0, �], μ + J(νt) = 0 on Σt. In particular, μ = |J | on M .
(e) trK ≤ −n on M . If equality holds, K = −g, S = −n(n− 1), μ = 0, and

J = 0 on M .

The convexity assumption holds if, in particular, K satisfies, K ≤ −g. If one
views K as being defined with respect to the past directed unit normal, this would
apply to cosmological models that are strongly contracting to the past, e.g. that
begin with a ‘big bang’.

Proof. By Theorem 2.4,
- M ∼= [0, �] × Σ0 with

g = φ2dt2 + gt,(4.3)
where gt is the induced metric on Σt

∼= {t} × Σ0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SOME RIGIDITY RESULTS FOR COMPACT INITIALDATA SETS 2001

- Each (Σt, gt) is a flat (n− 1)-torus.
- Every leaf Σt is a MOTS in (M, g,K). In fact,

0 = χ+(t) = A(t) + K|Σt
,

where A(t) is the second fundamental form of Σt computed with respect to
the unit normal νt in direction of the foliation.

- For each t ∈ [0, �], μ + J(νt) = 0 on Σt. In particular, μ = |J | on M .
Now, since −(K + g) is (n− 1)-convex, we have

H(t) − (n− 1) ≥ H(t) + trΣt
K = 0,(4.4)

where H(t) = trA(t) is the mean curvature of Σt. Then the first variation of B
gives that

d

dt
B(Σt) =

∫
Σt

φ (H(t) − (n− 1)) dΣt ≥ 0.(4.5)

Therefore, B(t) = B(Σt) is a nondecreasing function defined on [0, �]. In particular,
B(0) ≤ B(�), that is, B(Σ0) ≤ B(S).

If B(Σ0) = B(S), then B(t) = B(Σt) is constant. Therefore, inequalities (4.4)
and (4.5) imply that H(t) = n− 1 = − trΣt

K for all t ∈ [0, �].
Now, fix t ∈ [0, �], p ∈ Σt, and let {e1, . . . , en−1} be an orthonormal basis for

TpΣt. Define

η(s) = cos s · en−1 + sin s · νt, s ∈ R,

and let π(s) be the (n− 1)-dimensional linear subspace of TpM generated by

{e1, . . . , en−2, η(s)}.
Since −(K + g) is (n− 1)-convex and trΣt

K = −(n− 1), we have

f(s) := trπ(s) K ≤ −(n− 1) and f(0) = trΣt
K = −(n− 1).

Therefore, s = 0 is a critical point of f(s). Observing that

f(s) =
n−2∑
i=1

K(ei, ei) + K(η(s), η(s)),

we obtain,

0 = f ′(0) = 2K(η′(0), η(0)) = 2K(νt, en−1).

Analogously, K(νt, ei) = 0 for i = 1, . . . , n−2. This gives that X� = K(νt, · )|Σt
= 0

for all t ∈ [0, �].
On the other hand, the first variation of θ+(t) = 0 reads as

∂θ+

∂t
= −Δφ + 2〈X,∇φ〉 + (Q + divX − |X|2)φ = −Δφ + Qφ,

where

Q = 1
2
SΣt

− (μ + J(νt)) −
1
2
|χ+(t)|2 = 0.

Thus Δφ = 0 on Σt and then φ = φ(t) is constant on Σt for each t ∈ [0, �]. Hence,
by a simple change of variable in (4.3), we have

g = dt2 + gt.(4.6)
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In particular, the t-lines are geodesics. Hence, along each leaf Σ = Σt, H = H(t)
satisfies the scalar Riccati equation,

∂H

∂t
= −Ric(∂t, ∂t) − |A|2,

which, since H(t) = n− 1, implies,

Ric(∂t, ∂t) + |A|2 = 0.

By the Gauss equation, we have the standard rewriting of the left-hand side in the
above equation,

Ric(∂t, ∂t) + |A|2 = 1
2
(S − SΣ + |A|2 + H2).

Hence, since SΣ = 0, we have,

S = −|A|2 −H2 ≤ − H2

n− 1
−H2 = −n(n− 1),(4.7)

which establishes the inequality part in (c). If equality holds, then |A(t)|2 = n− 1,
which, together with H(t) = n−1, implies that each Σt is umbilic; in fact, A(t) = gt.
Using this in (4.6) easily implies the isometry part in (c).

Since −(K + g) is (n − 1)-convex, it is not difficult to see that trK ≤ −n. In
fact, if {e1, . . . , en} is an orthonormal basis for TpM , p ∈ M , then

(n− 1) trK =
n∑

i=1

∑
j �=i

K(ej , ej) ≤ −
n∑

i=1
(n− 1) = −n(n− 1),(4.8)

that is, trK ≤ −n. If trK = −n, it follows from (4.8) that∑
j �=i

K(ej , ej) = −(n− 1) for each i = 1, . . . , n.

Therefore,

−n = trK = K(ei, ei) +
∑
j �=i

K(ej , ej) = K(ei, ei) − (n− 1),

that is, K(ei, ei) = −1 for each i = 1, . . . , n. Since {e1, . . . , en} is arbitrary, we
have K = −g. Thus, using that A(t) = −K|Σt

= g|Σt
in (4.7), we obtain

S = −|A(t)|2 − |H(t)|2 = −n(n− 1).

Finally,

μ = 1
2
(S − |K|2 + (trK)2) = 0 and J = div(K − (trK)g) = 0.

�

4.2. The closed case. We now consider applications of Theorems 2.4, 4.1 and
4.2 to closed initial data sets satisfying the DEC. As a consequence, we obtain
results concerning the existence and rigidity of MOTS with nontrivial (e.g. toroidal)
topology in the cosmological setting.

We first consider an example. Let (N̄ , h̄) be the FLRW spacetime,

N̄ = (0, a) ×M, h̄ = −dt2 + gt,
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where gt = G2(t) dΩ2 and (M,dΩ2) is the unit 3-sphere. For each t ∈ (0, a),
consider the initial data (Mt = {t}×M, gt,Kt), where Kt, the second fundamental
form, is given by

Kt = Ġ(t)
G(t)

gt.

In particular, either Kt or −Kt is 2-convex, depending on the sign of Ġ(t). One
easily verifies that the DEC holds (strictly) for any choice of scale factor G(t).

For each t ∈ (0, a), it is easy to see that (Mt, gt,Kt) contains a spherical MOTS.
Indeed, the latitudinal 2-spheres take on all mean curvature values between −∞
and +∞. Choose the latitudinal 2-sphere Σt such that its mean curvature satisfies

Ht = − trΣt
Kt = −2 Ġ(t)

G(t)
.(4.9)

Then, by (2.1), Σt is a MOTS, θ+
t = 0.

In fact, it is also the case that (Mt, gt,Kt) contains a toroidal MOTS. Here, we
rely on the one-parameter family of Clifford tori Tr in the unit 3-sphere S3. By
identifying S3 with the unit sphere centered at the origin in R

4, Tr, 0 < r < 1, is
defined as

Tr =
{
(x, y, u, v) ∈ S3 : x2 + y2 = r2, u2 + v2 = 1 − r2} .

The ‘standard’ Clifford torus is obtained by setting r = 1√
2 . An elementary com-

putation shows that each Tr has constant mean curvature (see [18]),

Hr = 1 − 2r2

r
√

1 − r2
.

In particular, the Clifford tori take on all mean curvature values between −∞
and +∞. Thus, arguing as above in the sphere case, there exists an embedded
torus Σt in (Mt, gt,Kt) satisfying (4.9), which hence is a MOTS.

By Theorem A in [17] (and the discussion of its proof), one can modify the initial
data set (Mt, gt,Kt) by adding a handle from one side of the torus Σt to the other
so as to preserve positive scalar curvature of Mt. In the resulting initial data set,
Σt is no longer homologically trivial and the DEC still holds.

However, the resulting initial data manifold won’t be retractable with respect
to Σt, as follows from the next theorem.

Theorem 4.3. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, closed initial data
set satisfying the DEC, μ ≥ |J |. Suppose that (M, g,K) admits a MOTS Σ, with
respect to a unit normal field ν, such that the following conditions hold:

(I) M is retractable with respect to Σ towards ν and
(II) Σ satisfies the cohomology condition.

Then χ+ = 0 on Σ and Σ is a flat (n−1)-torus with respect to the induced metric.
Moreover, the following hold:

(a’) M \ Σ ∼= (0, �) × Σ for some � > 0.
Let Σt

∼= {t} × Σ with unit normal νt in direction of the foliation.
(b’) χ+ = 0 on Σt for every t ∈ (0, �).
(c’) Σt is a flat (n − 1)-torus with respect to the induced metric for every

t ∈ (0, �).
(d’) μ + J(νt) = 0 on Σt for every t ∈ (0, �). In particular, μ = |J | on M .
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If we assume further that K is (n− 1)-convex, we also have:
(e’) (M, g) is isometric to [0, �] × Σ/∼ endowed with the induced metric from

the product ([0, �] × Σ, dt2 + h), where h is the induced metric on Σ. In
particular, (M, g) is flat.

(f’) K = a dt2, where a ∈ C∞(M) depends only on t.
(g’) μ = 0 and J = 0 on M .

Proof. As in the proof of Theorem 3.3, let (M ′, g′,K ′) be the initial data set derived
from (M, g,K) — by making a ‘cut’ along Σ — with two boundary components,
Σ0 and S, both isometric to Σ, such that Σ0 is a MOTS with respect to the normal
that points into M ′ and S is a MOTS with respect to the normal that points out
of M ′.

It is not difficult to see that (M ′, g′,K ′) satisfies all the assumptions of Theo-
rem 2.4 and then all its conclusions. Thus Σ is a flat (n− 1)-torus with χ+ = 0 on
it and conclusions (a’)–(d’) of the theorem hold.

If K is (n− 1)-convex, since A(Σ0) = A(S), it follows that (M ′, g′,K ′) satisfies
all the hypotheses of Theorem 4.1 for ε = 0. Conclusions (e’)–(g’) then follow. �

Remark 4.4. It follows, for example, that in a 4-dimensional spacetime which satis-
fies the DEC strictly and which has toroidal Cauchy surfaces, there cannot be any
homologically nontrivial toroidal MOTS in any Cauchy surface. This applies, in
particular, to the time slices in the toroidal (k = 0) FLRW spacetimes, that satisfy
the Einstein equations with dust (zero-pressure perfect fluid) source.

In view of property (g’), to find initial data sets satisfying the assumptions of
Theorem 4.3, one should perhaps consider vacuum spacetimes. A well-known class
of examples are the toroidal Kasner spacetimes,

N̄ = (0,∞) ×M, h̄ = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2,

where x, y, z are to be understood as periodic coordinates, and where p1 ≤ p2 ≤ p3
must satisfy,

p1 + p2 + p3 = 1 and p2
1 + p2

2 + p2
3 = 1.

Let (M1, g1,K1) be the time slice t = 1 in (N̄ , ḡ). One easily computes the eigenval-
ues of K1 to be p1, p2, p3. For the well-known Kasner values p1 = −1

3 , p2 = p3 = 2
3 ,

K1 is 2-convex, but is clearly not of the form of (f’). Hence, (M1, g1,K1) does
not contain any MOTS satisfying (I) and (II). Consider, however, the choice,
p1 = p2 = 0, p3 = 1, so that h̄ becomes,

h̄ = −dt2 + dx2 + dy2 + t2dz2.

This is an exceptional Kasner spacetime, known as ‘flat Kasner’. It is locally iso-
metric to Minkowski space. Taking Σ to be the torus t = 1, z = z0, we see that
(M1, g1,K1) satisfies the assumptions of Theorem 4.3. One infers from the form
of K in (f’) that this is essentially the only toroidal Kasner model satisfying the
hypotheses of the theorem.

We mention one further example which illustrates a certain flexibility in initial
data sets satisfying (I) and (II), but not the convexity condition. It’s a small
modification of Example 4.2 in [12].

Let R
3
1 be Minkowski space with standard coordinates t, x, y, z. Consider the

box B = {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} in the t = 0 slice. Let
f : B → R be a smooth function that vanishes near the boundary of B and whose
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graph is spacelike in R
3
1. By identifying opposite sides of the box, we obtain an

initial data set (M, g,K) with M ∼= T 3, where M is given by the graph of f , and
where g and K are induced from the graph of f . Let Σ be the intersection of M
with the null hyperplane t = z − 1

2 ; see Figure 2. Because the null hyperplane is
totally geodesic, Σ is necessarily a MOTS. It follows that (M, g,K) satisfies (I) and
(II) with respect to Σ. Note also that (M, g,K) satisfies the DEC; in fact, because
it essentially sits in Minkowski space, it is a vacuum initial data set, μ = 0, J = 0.
Hence, (M, g,K) satisfies all the assumptions of Theorem 4.3, except, in general,
the convexity condition on K. The foliation by MOTS guaranteed by properties
(a’)–(d’) comes from intersecting M with the null hyperplanes t = z+c. That these
properties hold may be understood in terms of special features of totally geodesic
null hypersurfaces.

Figure 2. Initial data set satisfying (I) and (II) of Theorem 4.3

Remark 4.5. Finally, we mention a connection to the spacetime positive mass the-
orem, specifically the approach taken by Lohkamp [21], from a perspective slightly
different from the discussion in [12]. Lohkamp reduces the proof to a stand alone re-
sult, namely the nonexistence of ‘μ−|J | > 0 islands’, see [21, Theorem 2]. By a stan-
dard compactification (which Lohkamp also considers), the setting of Theorem 2
immediately gives an initial data set satisfying the DEC, with initial data mani-
fold M ∼= Tn #Q, Q closed, and a toroidal MOTS Σ, such that M is retractable
with respect to Σ (see the discussion at the beginning of Subsection 3.2). Theo-
rem 4.3 then yields that μ = |J | (among other things), which implies Lohkamp’s
no μ− |J | > 0 islands result in dimensions 3 ≤ n ≤ 7.

Lastly, we consider the following consequence of Theorem 4.2.

Corollary 4.6. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, closed initial data
set satisfying the DEC, μ ≥ |J |. Assume that −(K + g) is (n− 1)-convex. Then
(M, g,K) cannot satisfy conditions (I)–(II) of Theorem 4.3.
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As noted after the statement of Theorem 4.2, the convexity assumption holds
if K ≤ −g. This condition is satisfied by the time slices “near” the big bang in
standard FLRW models, if one defines the second fundamental form K with respect
to the past pointing unit normal. In fact, one has K ≤ −c g for arbitrarily large
c > 0. Thus, under these sorts of circumstances, if (I) and (II) are satisfied, M
cannot contain a MOTS.

Proof. Let (M ′, g′,K ′) be as in the proof of Theorem 4.3. If −(K + g) is (n− 1)-
convex, in particular, −(K ′ + g′) is (n− 1)-convex, it follows from the first part of
Theorem 4.2 that B(Σ0) ≤ B(S), which is a contradiction, because

B(Σ0) = A(Σ0) = A(S) > B(S).

�
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