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Abstract
Marginally outer trapped surfaces (also referred to as apparent horizons) that are stable
in 3-dimensional initial data sets obeying the dominant energy condition strictly are
known to satisfy an area bound. The main purpose of this note is to show (in several
ways) that such surfaces also satisfy a diameter bound. Some comments about higher
dimensions are also presented.
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1 Introduction

As reviewed in Sect. 2, marginally outer trapped surfaces (a.k.a. apparent horizons)
admit an important notion of stability, analogous, at some level, to the stability of
minimal surfaces in Riemannian manifolds. Heuristically, a stable marginally outer
trapped surface is infinitesimally outermost. It is known that stable marginally outer
trapped surfaces in 3-dimensional initial data sets that obey the dominant energy
condition strictly satisfy an area bound, as we now briefly recall.

An initial data set (M, g, K ) consists of a smooth orientable n-dimensional man-
ifold M equipped with a Riemannian metric g and a symmetric (0, 2)-tensor K . The
main physical example is when (M, g, K ) is an initial data set in a spacetime (time
oriented Lorentzian manifold) (M, g), i.e. M is a spacelike hypersurface in M , with
induced metric g and second fundamental form K .

The local energy density μ and the local current density J of an initial data set
(M, g, K ) are given by

B Gregory J. Galloway
galloway@math.miami.edu

1 Department of Mathematics, University of Miami, Coral Gables, FL, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-023-01739-y&domain=pdf


  118 Page 2 of 10 G. J. Galloway

μ = 1

2
(S − |K |2 + (tr K )2) and J = div(K − (tr K )g),

where S is the scalar curvature of (M, g). When (M, g, K ) is a spacetime initial data
set, these quantities are given by μ = G(u, u), J = G(u, ·), where G is the Einstein
tensor G = RicM − 1

2 RMg.
The following was obtained with A. Mendes; see [8, Proposition 3.1]. Henceforth

we use the shorthand ‘MOTS’ for ‘marginally outer trapped surface’.

Proposition 1.1 Let � be a stable MOTS in a 3-dimensional initial data (M, g, K ).
Suppose there exists c > 0, such that μ + J (ν) ≥ c on �, where ν is the outward unit
normal to �. Then � is topologically a 2-sphere and its area satisfies,

A(�) ≤ 4π

c
. (1.1)

Moreover, if equality holds, � is a round 2-sphere, with Gaussian curvature κ� = c,
the outward null second fundamental form χ of � vanishes, and μ + J (ν) = c on �.

In the statement of Proposition 3.1 in [8], for convenience it was assumed that �

is topologically a 2-sphere, but it is immediate from the proof that this is necessarily
the case.

As discussed in [8], the equality case holds in certain well knownmodels. The rigid-
ity part of Proposition 1.1 was an important element in proving local and global initial
data rigidity results for outer area minimizing marginally outer trapped 2-spheres; see
[8, Theorem 3.2] and [9, Theorem 3.1]. These results extend to general initial data sets
certain results of Bray, Brendle and Neves [5] concerning area minimizing 2-spheres
in Riemannian 3-manifolds with positive scalar curvature.

We note that a positive lower bound on the quantity μ + J (ν) arises naturally
due to the presence of matter fields and/or a positive cosmological constant. Suppose
(M, g, K ) is an initial data set in a spacetime (M, g) that satisfies theEinstein equation,

G + �ḡ = T , (1.2)

where T is the energy-momentum tensor. Setting � = u+ν, where ν is any unit vector
tangent to M and where u is the future directed unit normal to M , we have,

μ + J (ν) = G(u, �) = T (u, �) + � ≥ �.

provided T obeys the dominant energy condition (which includes the matter vacuum
case T = 0). Hence, for positive �, the inequality (1.1) becomes,

A(�) ≤ 4π

�
.

Such an inequality was obtained by Hayward, Shiromizu, and Nakao [12] for space-
times with positive cosmological constant, using a slightly different notion of stability

123



Remarks on the size of apparent horizons Page 3 of 10   118 

in the spacetime setting. Finally, note that the condition μ + J (ν) ≥ c is implied by
the strict dominant energy condition μ − |J | ≥ c.

The main purpose of this note is to point out that stable MOTS in a 3-dimensional
initial data set obey a diameter bound, as well.

Theorem 1.2 Let � be a stable MOTS in a 3-dimensional initial data set (M, g, K ).
Suppose there exists c > 0, such that μ + J (ν) ≥ c on �, where ν is the outward unit
normal to �. Then the diameter of � satisfies,

diam(�) ≤ 2√
3

· π√
c

. (1.3)

Here diam(�) has the usual meaning,

diam(�) = sup
x,y∈�

d(x, y),

where d(x, y) is the distance between x and y in � with respect to the induced metric
on �. The obvious advantage of a diameter estimate, is that when μ + J (ν) is large,
� must, roughly speaking, be small in all directions. In general, surfaces with small
area can still have very large diameter. We note, however, whereas the bound in (1.1)
is sharp, the bound in (1.3) is not.

As we shall discuss in Sect. 3, Theorem 1.2 can be obtained from one of the recent
spectral torical band inequalities for n-dimensional manifolds, 2 ≤ n ≤ 7, by Hirsch
et al., [13, Theorem 1.3], whose proof is based on the theory of μ-bubbles, together
with a key property of stable MOTS [11] (see Sect. 2). In Sect. 2, we also present a
direct proof of Theorem 1.2, using only elementary techniques, in addition to this
property of MOTS. Some comments about higher dimensions are presented at the end
of Sect. 3. In what follows all manifolds are assumed to be smooth, connected and
orientable, unless otherwise stated.

2 Preliminaries and a proof of Theorem 1.2

2.1 Preliminaries

Let (M, g, K ) be an n-dimensional, n ≥ 3, initial data set. One can always arrange for
(M, g, K ) to be an initial data set in a spacetime (M, g) (see e.g. [3, Sect. 3.2]), and
we find it convenient to do so. However, all essential quantities depend only on the
initial data. Thus we may assume M is a spacelike hypersurface, with induced metric
g and second fundamental form K , in an (n + 1)-dimensional spacetime (M, g). Our
sign convention is such that, for vectors X ,Y ∈ TpM , K is defined as, K (X ,Y ) =
g(∇̄Xu,Y ), where u is the future directed timelike unit normal field to M .

Let � be a closed two-sided surface in M . Then � admits a smooth unit normal
field ν in M , unique up to sign. By convention, we refer to such a choice as outward
pointing. Then l+ = u + ν and l− = u − ν are future directed outward pointing
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and inward pointing, respectively, null normal vector fields along �. The null second
fundamental forms χ+ and χ− of � in M̄ are defined by

χ±(X ,Y ) = g(∇̄Xl±,Y ), X ,Y ∈ Tp�. (2.1)

The null expansion scalars θ± of � are obtained by tracing χ±,

θ± = tr �χ± = div��±. (2.2)

Physically, θ+ measures the divergence of the outgoing light rays from �. In terms of
the initial data (M, g, K ),

θ± = tr�K ± H ,

where H = div�ν is the mean curvature of � within M .
Penrose famously defined � to be a trapped surface if both θ− and θ+ are negative.

Focusing attention on the outward null normal, we say that � is an outer trapped
surface if θ+ < 0. If θ+ vanishes identically we say that � is a marginally outer
trapped surface (or MOTS). Note that in the ‘time-symmetric case’ (K = 0) a MOTS
is simply a minimal surface.

We now recall the notion of stability of MOTS as introduced by Andersson, Mars
and Simon ([1, 2]; see also [14]).

Let � be a MOTS in the initial data set (M, g, K ) with outward unit normal ν.
We consider a normal variation of � in M , i.e., a variation t → �t of � = �0 with
variation vector field V = ∂

∂t |t=0 = φν, φ ∈ C∞(�). Let θ+(t) be the null expansion
of �t with respect to lt = u + νt , where νt is the outer unit normal to �t in M . A
computation gives,

∂θ+
∂t

∣
∣
∣
∣
t=0

= L(φ), (2.3)

where L : C∞(�) → C∞(�) is the operator,

L(φ) = −	φ + 2g(X ,∇φ) +
(

Q + div X − |X |2
)

φ , (2.4)

Q = 1

2
S� − (μ + J (ν)) − 1

2
|χ+|2 , (2.5)

where	,∇ and div are the Laplacian, gradient and divergence operators, respectively,
on �, S� is the scalar curvature of � and X is the vector field on � dual to the one
form K (ν, ·)|T� .

The operator L is not self-adjoint in general, but nevertheless admits a principal
eigenvalue.

Proposition 2.1 There is a real eigenvalue λ1 = λ1(L), called the principal eigen-
value, which is an eigenvalue with smallest real part. The associated eigenfunction
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φ, L(φ) = λ1φ, is unique up to a multiplicative constant, and can be chosen to be
strictly positive.

In the time-symmetric case (K = 0), L reduces to the classical stability (or Jacobi)
operator for minimal surfaces in Riemannian manifolds. As such, we refer to L as
the MOTS stability operator. In analogy with the minimal surface case, we say that a
MOTS is stable provided λ1(L) ≥ 0. (In the minimal surface case this is equivalent
to the second variation of area being nonnegative.) Note that, by taking φ > 0 to be
the principal eigenfunction in (2.3), a stable MOTS � admits an outward variation
t → �t with

∂θ+
∂t |t=0 ≥ 0. It can be shown, in a certain sense, that the converse also

holds.
Stable MOTSs arise in various situations. For example, weakly outermost MOTSs

are stable. A separating MOTS � is weakly outermost in (M, g, K ) if there are no
outer trapped surfaces outside of and homologous to �. Indeed, if λ1(L) < 0, (2.3)
implies that� can be deformed outward to an outer trapped surface.Weakly outermost
MOTSs include, in particular, compact cross sections of the event horizon in stationary
black hole spacetimes obeying the null energy condition, aswell as theMOTS foliating
a dynamical horizon; cf. [4]. More generally, the boundary of the trapped region is a
weakly outermost MOTS (see e.g. [3, 6]).

The proof of Theorem 1.2 in Sect. 2 relies on the following key fact. Consider the
“symmetrized” operator L̂ : C∞(�) → C∞(�),

L̂(φ) = −	φ + Qφ, (2.6)

obtained formally from (2.4) by setting X = 0.

Proposition 2.2 [11] If� is a stableMOTS in an n-dimensional, n ≥ 3, initial data set,
then � is ‘symmetric stable’, i.e.λ1(L̂) ≥ 0, where λ1(L̂) is the principal eigenvalue
of L̂.

In fact, the arguments in [11] show that λ1(L̂) ≥ λ1(L). These arguments were
motivated in part by computationsmade by Schoen andYau [16] on graphical solutions
of Jang’s equation in the presence of a translational symmetry, in their proof of the
positive mass theorem in the general non-time-symmetric case.

Remark The arguments in [11] apply equally well to the following. Let�n−1 be a sta-
bleMOTS in an n-dimensional, n ≥ 3, initial data set, and let be a smooth connected
compact (n − 1)-dimensional submanifold-with-boundary in �. Then λ1() ≥ 0,
where λ1() is the principal Dirichlet eigenvalue of the symmetrized operator L̂
restricted to . This mild variation of Proposition 2.2 will be used in Sect. 3.

2.2 Proof of Theorem 1.2

We now present a proof of the diameter estimate (1.3). The proof is based largely on
the proof of Theorem 3.2 in [10]. The latter result was motivated by, and extends to
the fully non-time-symmetric case, Theorem 1 in [17], but uses a different measure of
size, one which is amenable to the present situation.
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Proof Fix points p, q ∈ � such that diam(�) = d(p, q). � is a stable MOTS, hence
by Proposition 2.2, it is symmetric stable, λ1 = λ1(L̂) ≥ 0. Letψ > 0 be an associated
eigenfunction. Substituting φ = ψ into Eq. (2.6), we obtain,

	ψ = −
(

μ + J (ν) + 1

2
|χ+|2 + λ1 − κ

)

ψ (2.7)

where κ = 1
2 S� is the Gaussian curvature of � in the induced metric h.

Now consider � in the conformally related metric h̃ = ψ2 h. The Gaussian
curvature of (�, h̃) is given by,

κ̃ = ψ−2κ − ψ−3	ψ + ψ−4|∇ψ |2. (2.8)

Substituting (2.7) into (2.8) gives,

κ̃ = ψ−2(P + ψ−2|∇ψ |2), (2.9)

where,

P = μ + J (ν) + 1

2
|χ+|2 + λ1. (2.10)

Let γ be a minimal geodesic from p to q in the metric h̃. Then by Synge’s formula
[15] for the second variation of arc length, we have along γ ,

∫ �̃

0

(
d f

ds̃

)2

− κ̃ f 2 ds̃ ≥ 0, (2.11)

for all smooth functions f defined on [0, �̃] that vanish at the end points, where �̃ is
the h̃-length of γ and s̃ is h̃-arc length along γ . By making the change of variable
s = s(s̃), where s is h-arc length along γ , and using Eqs. (2.9), (2.11) becomes,

∫ �

0
ψ−1( f ′)2 − (P + ψ−2|∇ψ |2)ψ−1 f 2 ds ≥ 0, (2.12)

for all smooth functions f defined on [0, �] that vanish at the endpoints, where � is
the h-length of γ , and ′ = d

ds .
Setting k = ψ−1/2 f in (2.12), we obtain by a small computation,

∫ �

0
(k′)2 − P k2 − (3

4
ψ−2(ψ ′)2k2 − ψ−1ψ ′kk′) ds ≥ 0, (2.13)

where ψ ′ is shorthand for (ψ ◦ γ )′, etc. Completing the square on the bracketed term
of the integrand shows that,

3

4
ψ−2(ψ ′)2k2 − ψ−1ψ ′kk′ ≥ −1

3
(k′)2,
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which then implies,

∫ �

0

4

3
(k′)2 − P k2 ds ≥ 0. (2.14)

Since, from (2.10), P ≥ μ + J (ν) ≥ c, (2.14) gives,

4

3

∫ �

0
(k′)2 ds ≥ c

∫ �

0
k2 ds. (2.15)

Setting k = sin πs
�
in (2.15) then gives,

� ≤ 2√
3

· π√
c
.

Since diam(�) ≤ �, the diameter bound (1.3) is established. �
Remark From the inequality μ + J (ν) ≥ c, and the fact that λ1(L̂) ≥ 0, one can also
derive from (2.7) that the principal eigenvalue of the operator −	φ + κ φ is greater
than or equal to c, i.e., λ1(−	φ +κ φ) ≥ c. In the case of 2-dimensional compact (or,
more generally, complete) Riemannian manifolds, Kai Xu has shown for β > 1

4 , that
the eigenvalue condition λ1(−	φ + βκ φ) ≥ c leads to a diameter bound depending
on β; see [18, Theorem 1.4]. In the case β = 1, one obtains the diameter bound (1.3).
Xu gives two proofs, one which uses a method similar to that used here, and one which
uses the theory of μ-bubbles.

3 A spectral bound inequality of Hirsch et al. [13]

Given a smooth n-dimensional Riemannian manifold (Mn, g) and real number ξ , in
[13] the authors define what they call the ξ -spectral constant �ξ . As they point out,
when (Mn, g) is a compact manifold with boundary, �ξ is the principal Dirichlet
eigenvalue of the operator

Lξ (φ) = −	φ + ξ Rφ , (3.1)

where R is the scalar curvature of (Mn, g).
A compact Riemannian manifold-with-boundary (Nn, g)whose boundary compo-

nents are separated into two disjoint and non-empty collections, ∂Nn = ∂−Nn∂+Nn ,
is referred to as a Riemannian band. Following [13], a Riemannian band is called over-
torical if there exists a smooth map1 F : Nn → T n−1 × [−1, 1] of nonzero degree,
with F(∂±Nn) ⊂ T n−1 × {±1}.

The following result, which assumes ξ = 1
2 , is proved in [13].

1 In some places in the literature, the band map F is only required to be continuous. In fact, while not
needed here, Theorem 1.3 in [13] still holds in this case. There are situations where this may be useful. We
thank Marcus Khuri for a communication regarding this point.
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Theorem 3.1 [13, Theorem 1.3] Let (Nn, ∂±Nn, g) be an overtorical band with 2 ≤
n ≤ 7. If � 1

2
> 0 then

d(∂−Nn, ∂+Nn) ≤ π

√

2n

(n + 1)� 1
2

, (3.2)

where d(∂−Nn, ∂+Nn) is the distance between ∂−Nn and ∂+Nn.

We refer to d(∂−Nn, ∂+Nn) as the width of the overtorical band.
As noted in the introduction, the proof of Theorem 3.1 is based on the theory of

μ-bubbles. The dimension restriction, n ≤ 7, comes from the regularity theory of μ-
bubbles, which is tied to the regularity theory of surfaces of prescribedmean curvature.
We now use Theorem 3.1 in the case n = 2 to obtain Theorem 1.2.

Assume (M, g, K ) and � satisfy the hypotheses of Theorem 1.2. Choose points
p−, p+ ∈ � such that diam(�) = d(p−, p+). Let γ be a minimizing geodesic from
p− to p+ of length �. Let �ε be the compact surface-with-boundary obtained from �

by removing from� the interiors of two small geodesic disks D±
ε of radius ε, centered

at p±. �ε has boundary consisting of two circles C±
ε = ∂D±

ε .
Since, by Proposition 1.1, � is diffeomorphic to a 2-sphere, �ε is diffeomorphic to

S1×[−1, 1], and hence is a 2-dimensional overtorical Riemannian band. By applying
Theorem 3.1 in the case n = 2, we obtain,

d(C−
ε ,C+

ε ) ≤ 2√
3

· π
√

� 1
2

. (3.3)

Using the fact that γ is a minimizing geodesic from p− to p+, it follows that

d(C−
ε ,C+

ε ) = � − 2ε = diam(�) − 2ε ,

and hence,

diam(�) ≤ 2√
3

· π
√

� 1
2

+ 2ε (3.4)

for all ε sufficiently small. Thus to complete this proof of Theorem 1.2, it suffices to
observe that � 1

2
≥ c.

By Proposition 2.2 and the remark shortly after its statement, λ1(�ε) ≥ 0, where
λ1(�ε) is the Dirichlet eigenvalue of the symmetrized operator

L̂(φ) = −	φ +
[
1

2
S� −

(

μ + J (ν) + 1

2
|χ+|2

)]

φ. (3.5)

By Rayleigh’s formula this implies

∫

�ε

|∇ψ |2 +
[
1

2
S� −

(

μ + J (ν) + 1

2
|χ+|2

)]

ψ2 d A ≥ 0 (3.6)
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for all ψ ∈ C∞
0 (�ε). Hence,

∫

�ε

|∇ψ |2 + 1

2
S�ψ2 d A ≥

∫

�ε

(

μ + J (ν) + 1

2
|χ+|2

)

ψ2 d A (3.7)

≥ c
∫

�ε

ψ2d A, (3.8)

for all ψ ∈ C∞
0 (�ε). It now follows from Rayleigh’s formula again that � 1

2
≥ c. �

Comments on higher dimensions. The argument above to show that � 1
2

≥ c holds
for any stable MOTS � in any n-dimensional, n ≥ 3, initial data set (M, g, K ) that
satisfies μ − J (ν) ≥ c.

In [13], a Riemannian band (Nn, ∂±Nn, g) is referred to as a nonPSC-band if
∂−Nn and ∂+Nn are not separable by a smooth embedded hypersurface V n−1 ⊂ Nn

which admits a metric of positive scalar curvature. As observed in [13], it follows
from a classical result of Schoen and Yau that overtorical bands in dimensions 3 ≤
n ≤ 7 are nonPSC-bands. Moreover, as is also pointed out, it follows from their
proof of Theorem 1.3, that the theorem holds more generally for nonPSC bands. Then
given an n-dimensional Riemannianmanifoldn , the authors define the torical-radius
Radt (n) to be the supremum of widths of all nonPSC-bands (Nn, ∂±Nn, g) that are
isometrically immersed into . Putting these facts together, one easily obtains the
following.

Theorem 3.2 Let �n−1 be a stable MOTS in an n-dimensional, 3 ≤ n ≤ 8, initial
data set (Mn, g, K ). Suppose there exists c > 0, such that μ + J (ν) ≥ c on �n−1,
where ν is the outward unit normal to �n−1. Then the torical-radius satisfies,

Radt (�
n−1) ≤ π

√

2(n − 1)

n c
. (3.9)

In [13] this inequality is shown to hold, with 3 ≤ n ≤ 7, for MOTS that arise
from the cylindrical blow-up of Jang’s equation, in connection with the authors’s
generalization of a result of Schoen and Yau [17] on the existence of black holes.
As the analysis of Schoen and Yau in [16] showed for 3-dimensional initial data sets
(which was extended to n-dimensions, 3 ≤ n ≤ 7, by Eichmair [7]), the Jang graph
satisfies a stability property that is inherited by MOTS arising from the blow-up of
Jang’s equation, and implies that suchMOTSare symmetric stable. The inequality (3.9)
for such MOTS is a result of this analysis and Theorem 1.3 in [13] (and its extension
to nonPSC bands). The point we wish to make here is that (3.9) holds for all stable
MOTS up to dimension 7, regardless of how they arise. Finally, we note that for n ≥ 3
the torical-radius Radt (n) does not directly relate to the diameter.
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