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1 Introduction

A key development in the study of manifolds of positive scalar curvature is the fol-
lowing fundamental observation of Schoen and Yau [41].

Theorem 1.1. Let (M, g) be an n-dimensional, n ≥ 3, Riemannian manifold with
positive scalar curvature, R > 0. If N is a stable, closed two-sided minimal hypersur-
face in M then N admits a metric of positive scalar curvature.

Moreover, by refinements of the arguments in [41], one obtains the infinitesimal
rigidity statement that if R ≥ 0, and N does not admit a metric of positive scalar
curvature then N must be totally geodesic and Ricci flat, and R must vanish along
N (cf. [18, 21]). In [9], M. Cai proved the following splitting theorem by assuming N
is area-minimizing, rather than just being stable (see also [21] for a simplified proof).

Theorem 1.2. Let (M, g) be an n-dimensional, n ≥ 3, Riemannian manifold with
nonnegative scalar curvature, R ≥ 0, and suppose Nn−1 is a closed two-sided minimal
hypersurface which locally minimizes area. If N does not admit a metric of positive
scalar curvature then there exists a neighborhood V of N such that (V, g|V ) is isometric
to ((−δ, δ)×N, dt2 ⊕ h).

This result extends to higher dimensions the torus splitting result in [10] for 3-
manifolds of nonnegative scalar curvature. Over the years a number of related rigidity
results have been obtained under various assumptions on the ambient scalar curvature
and the topology of the minimal surface, see, e.g. [8, 35, 34, 1, 11, 12]. Indeed, the
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study of scalar curvature rigidity continues to be an active area research; see e.g.
[30, 44, 43].

From the point of view of initial data sets in general relativity, such results are
often referred to as time-symmetric results, meaning more specifically that they are
purely Riemannian results. An initial data set in general relativity consists of a
smooth manifold M equipped wtih a Riemanian metric g and a symmetric covariant
2-tensorK. Physically, such an initial data set corresponds to a spacelike hypersurface
M in an enveloping spacetime (time-oriented Lorenzian manifold) (M̄, ḡ), together
with its induced metric g and second fundamental form K. A time-symmetric initial
data set is then one in which K = 0.

In this paper we wish to present some rigidity results for, in general, non-time-
symmetric initial data sets, in which the assumption of nonnegative scalar curvature
is replaced by the dominant energy condition (see Section 2 for basic definitions).
The results we consider are motivated in part by the positive mass theorem.

In [17], Eichmair, Huang, Lee and Schoen proved the following spacetime version
of the positive mass theorem.

Theorem 1.3 (EHLS). Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, asymptotically
flat initial data set satisfying the dominant energy condition. Then E ≥ |P |, where
(E,P ) is the ADM energy-momentum vector of (M, g,K).

While the proof involves some interesting new ideas, in broad terms, it generalizes
to the spacetime setting the proof of the Riemannian positive mass theorem of Schoen
and Yau [40, 38], where now marginally outer trapped surfaces (see Section 2) play a
role analogous to minimal surfaces in the Schoen-Yau proof.

An interesting development in the proof of the Riemannian positive mass theorem
is based on the following observation of Lohkamp [31]: To show that the mass in
this case is nonnegative, it is sufficient to consider asymptotically flat Riemannian
manifolds (Mn, g) with nonnegative scalar curvature, which are exactly Euclidean
outside a compact set. In other words, by assuming the mass is negative, on can
reduce to this situation. One may then compactify (Mn, g) to obtain a manifold of
nonnegative scalar curvature with topology T n#Nn, where T n = n-torus, and Nn

is compact. Then one reaches a contradiction by applying known obstructions to
the existence of positive scalar curvature metrics on manifolds with this topology; cf.
Schoen and Yau [42], and Gromov and Lawson [25] (in the case N is spin).

In [32], Lohkamp presents a proof of Theorem 1.3 (in all dimensions) using a similar
‘compactification’ strategy. His approach naturally leads to the presentation of our
first initial data rigidity result. This result, and its connection to Lokamp’s approach,
are discussed in Section 3. Some consequences, and related results, including some
pure scalar curvature rigidity results, are also presented in Section 3. As our results
rely on properties of marginally outer trapped surfaces, we begin with a discussion of
these generalizations of minimal surfaces in Section 2.
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2 Marginally outer trapped surfaces

Let (M, g,K) be an n-dimensional initial data set.1 For the purpose of making certain
definitions we find it convenient to assume that (M, g,K) is embedded in an n + 1
dimensional spacetime (M̄, ḡ), by which we mean M is a spacelike hypersurface in M̄
with induced metric g and second fundamental form K. (By our sign conventions,
K(X, Y ) = ḡ(∇̄Xu, Y ) where u is the future directed unit normal field to M in M̄ .)
Such an embedding can always be arranged; see e.g. [6, Section 3]. However, all
essential objects introduced here will depend only on the initial data.

The initial data set (M, g,K) is said to satisfy the dominant energy condition
(DEC) provided

µ ≥ |J | ,

along M , where µ = local energy density = G(u, u), and J = local momentum density
= 1-form G(u, ·) on M , where G is the Einstein tensor, G = RicM̄ − 1

2
RM̄ ḡ. Using

the Gauss-Codazzi equations, µ and J can be expressed solely in terms of the initial
data:

µ =
1

2

(
R + (trK)2 − |K|2

)
,

J = divK − d(trK) ,

where R is the scalar curvature of M . These are the so-called Einstein constraint
equations. Note that in the time-symmetric case (K = 0), the DEC becomes the
requirement that M have nonnegative scalar curvature.

Let Σ be a closed embedded 2-sided hypersurface in M . Let ν be a smooth unit
normal field along Σ in M , which, by convention, we shall refer to as outward pointing.
Σ admits two future directed null normal vector fields along Σ, `+ = u + ν (future
directed outward pointing) and `− = u− ν (future directed inward pointing).

Associated to `+ and `− are the two null second fundamental forms, χ+ and χ−,
respectively, defined as,

χ± : TpΣ× TpΣ→ R, χ±(X, Y ) = ḡ(∇̄X`
±, Y ) . (2.1)

These null second fundamental forms completely determine the second fundamental
form of Σ, viewed as a codimension two submanifold of spacetime. In terms of our

1We will always assume M is conencted. Moreover, although not needed for all results, we will
also assume M is orientable.
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initial data (M, g,K),
χ± = K|Σ ± A (2.2)

where A is the 2nd fundamental form of Σ in M , A(X, Y ) = g(∇Xν, Y ).
Tracing the null second fundamental forms, we obtain the null expansion scalars

(also referred to as null mean curvatures) θ+, θ−:

θ± = trΣχ
± = divΣ `

± .

Physically, θ+ (resp., θ−) measures the divergence of the outgoing (resp., ingoing)
light rays emanating from Σ. In terms of our initial data (M, g,K),

θ± = trΣK ±H ,

where H is the mean curvature of Σ within M . In particular, in the time-symmetric
case, K = 0, θ+ is just the mean curvature of Σ in M .

For round spheres in Euclidean slices of Minkowski space, or, more generally, for
large ‘radial’ spheres in asymptotically flat initial data sets, one has θ− < 0 and
θ+ > 0 (with the obvious choice of inside and outside). However, in regions of space-
time where the gravitational field is strong, one may have both θ− < 0 and θ+ < 0,
in which case Σ is called a trapped surface. The concept of a trapped surface was
introduced by Penrose [36], and plays a key role in the Penrose singularity theorem.

Focusing attention on the outward null normal only, we say that Σ is an outer
trapped surface if θ+ < 0. Finally, we define Σ to be a marginally outer trapped
surface (MOTS) if θ+ vanishes identically. MOTSs arise naturally in a number of
situations. For example, cross sections of the event horizon in stationary (i.e. steady
state) black hole spacetimes are MOTSs. MOTSs also arise as the boundary of the
so-called trapped region. Oldeer heuristic arguments for their existence in this case
were made rigorous first by Andersson and Metzger [6] for three dimensional initial
data sets, and then by Eichmair [14, 15] for initial data sets up to dimension seven.
For these reasons MOTSs are often used to model the surface of a black hole.

Note that in the time-symmetric case, a MOTS is simply a minimal hypersurface
in M . It is in this sense that MOTSs may be viewed as spacetime analogues of
minimal surfaces. Despite the absence in general of a variational characterization of
MOTSs, like that for minimal surfaces, MOTSs have been shown to satisfy a number
of analogous properties.

2.1 Stability and local rigidity of MOTS.

MOTSs admit an important notion of stability, as introduced by Andersson, Mars
and Simon [4, 5]. This is based on variations of the null expansion, as we now discuss.

Let Σ be a MOTS in our initial data set (M, g,K) with outward normal ν. Con-
sider a normal variation t→ Σt of Σ = Σ0 in M , with variation vector field

V =
∂

∂t

∣∣∣∣
t=0

= φν, φ ∈ C∞(Σ) . (2.3)
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Let θ+(t) denote the null expansion of Σt with respect to l+t = u+ νt, where u is
the future directed timelike unit normal to M and νt is the outward unit normal to
Σt in M . A computation shows,

∂θ+

∂t

∣∣∣∣
t=0

= L(φ) := −4φ+ 2〈X,∇φ〉+
(
Q+ divX − |X|2

)
φ , (2.4)

where,

Q =
1

2
RΣ − (µ+ J(ν))− 1

2
|χ+|2 . (2.5)

Here ∆, ∇, and div are the Laplacian, gradient, and divergence operators, respec-
tively, and RΣ is the scalar curvature, of Σ with respect to the induced metric 〈 , 〉.
Moreover, and X is the vector field on Σ dual to the one form K(·, ν)|TΣ.

A MOTS Σ is said to be stable if there exists φ ∈ C∞(Σ), φ > 0, such that
L(φ) ≥ 0. Hence, in view of (2.4), a MOTS Σ is stable if there exists an outward
variation of Σ such that the null expansion is ‘infinitesimally nonincreasing’. In the
time-symmetric case, θ+ becomes the mean curvature H, the vector field X vanishes
and L reduces to the stability (or Jacobi) operator of minimal surface theory. As
shown in [5], although in general L is not self-adjoint, it nevertheless admits a real
principal eigenvalue λ1(L) and an associated eigenfunction φ, L(φ) = λ1(L)φ, which
is strictly positive. Morever, one has that Σ is stable if and only if λ1(L) ≥ 0.

A basic criterion for stability is the following. Let Σ be a MOTS in (M, g,K),
and let U ⊂ M be a neighborhood of Σ that is separated by Σ. (Since Σ is 2-
sided, such a neighborhood always exists.) We say the Σ is weakly outermost in U
if there are no outer trapped (θ+ < 0) surfaces in U+ (the part of U to the outside
of Σ) homologous to Σ. When this situation holds, we say that Σ is locally weakly
outermost. If, however, U = M , we simply say that Σ is weakly outermost. It
then follows that (locally) weakly outermost MOTSs are necessarily stable. Indeed,
if λ1(L) < 0, equation (2.4), with φ a positive eigenfunction, would then imply that
Σ could be perturbed outward to an outer trapped surface.

Let Σ be a stable MOTS in (M, g,K); hence, there exists φ > 0 such that L(φ) ≥
0. As shown in [24], one may derive from this inequality, the following MOTS stability
inequality, ∫

Σ

|∇ψ|2 +

(
1

2
S − (µ+ J(ν))− 1

2
|χ|2
)
ψ2 ≥ 0 , (2.6)

for all ψ ∈ C2(Σ). This inequality is remarkably similar to the well-known stability
inequality of minimal surface theory, and in fact reduces to the latter in the time-
symmetric case. Of particular significance for applications is the fact that the vector
field X in (2.4) does not appear. From (2.6), one readily obtains the following result.

Theorem 2.1 (infinitesimal rigidity). Let (M, g,K) be an n-dimensional, n ≥ 3,
initial data set that satisfies the DEC, µ ≥ |J |. If Σ is a connected stable MOTS in
M that does not admit a metric of positive scalar curvature then
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(1) Σ is Ricci flat and has vanishing null second fundamental form, χ+ = 0.

(2) µ+ J(ν) = 0 along Σ.

This theorem was formulated in a slightly different way in [24], and interpreted
to mean that, apart from certain exceptional circumstances, a stable MOTS must
admit a metric of positive scalar curvature. This gives rise to certain topological
restrictions, and, in particular, generalizes to higher dimensions Hawking’s black hole
topology theorem [27].

By strengthening the stability assumption, namely by requiring the MOTS Σ to be
(locally) weakly outermost, we obtain additional rigidity. The following was proved
in [22] (see also [20]).

Theorem 2.2. Let (M, g,K) be an n-dimensional, n ≥ 3, initial data set that satisfies
the DEC. If Σ is a connected locally weakly outermost MOTS in M that does not admit
a metric of positive scalar curvature then there is a neighborhood U ∼= [0, δ)×Σ of Σ
in M such that the following hold for each t ∈ [0, δ):

(1) Σt = {t} ×Σ is a MOTS. In fact, Σt has vanishing outward null second funda-
mental form.

(2) Σt is Ricci flat with respect to the induced metric.

(3) µ + J(νt) = 0 for every t ∈ [0, δ), where νt is the unit normal of Σt pointing
towards increasing values of t.

Properties (1), (2), (3) follow from Theorem 2.1 and the fact that each Σt is stable.

2.2 A basic MOTS existence result

We will make use of the following fundamental existence result for MOTSs. It was
obtained by L. Andersson and J. Metzger [6] in dimension n = 3 and then, using
different techniques, by the Eichmair [14, 15] in dimensions 3 ≤ n ≤ 7. The regularity
theory developed by Eichmair relies on aspects of geometric measure theory, which
is responsible for the dimension restriction. Both approaches are based on an idea
of R. Schoen [39] to construct a MOTS between suitably trapped hypersurfaces by
forcing a blow up of the Jang equation. See also [3] for an excellent survey of these
existence results.

Theorem 2.3. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, compact-with-
boundary initial data set. Suppose that the boundary ∂M can be expressed as a
disjoint union of hypersurfaces, ∂M = Σin ∪ Σout, such that θ+ < 0 along Σin

with respect to the normal pointing into M , and θ+ > 0 along Σout with respect to
the normal pointing out of M . Then there is an outermost MOTS Σ in (M, g,K)
homologous to Σout.
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Remarks.

1. Here outermost means that (i) Σ is separating and (ii) there are no weakly outer
trapped (θ+ ≤ 0) surfaces in the region outside of (and including) Σ that are homol-
ogous to Σ, other than Σ itself.

2. In the time-symmetric case, the boundary conditions simply mean that M has
mean convex boundary. One can then minimize area in the homology class determined
by Σout, to obtain a compact minimal hypersurface homologous to Σout. This direct
variational approach is not in general available for MOTSs. As noted above, a quite
different approach to the proof of existence is taken.

3. Theorem 2.3 remains valid under the slightly weaker boundary condition: θ+ ≤ 0
along Σin (cf. [6, Section 5]). In this case the MOTS Σ guaranteed by theorem may
have some components in common with Σin. However, by the maximum principle for
MOTSs [7], Σ will not meet Σout.

3 Global rigidity results

In [32] Lohkamp presented a proof of the EHLS spacetime positive mass theorem,
Theorem 1.3, in the introduction (in all dimensions n ≥ 3), by extending his com-
pactification approach to the general spacetime setting. By this approach, the proof
reduces to establishing the following result (cf. [32, Theorem 2]:

Nonexistence of µ− |J | > 0 - islands: Let (M, g,K) be an initial data set that is iso-
metric to Euclidean space, with K = 0, outside some bounded set U . Then one
cannot have µ > |J | on U .

In particular, in the case of general interest, in which (M, g,K) satisfies the DEC,
there must be a point in U at which µ = |J |. The goal of our first result is to show
that a much stronger conclusion holds in dimensions 3 ≤ n ≤ 7.

By placing U in a large box, and identifying all but one pair of sides, we ob-
tain a compact manifold, which we still refer to as M , with two compact boundary
components Σ0 and S, each of which is a flat, totally geodesic (n − 1)-torus in M .
Moreover, since we are in a region in which K vanishes, each are MOTS; in fact, each
has vanishing null second fundamental form, with respect to either choice of normal
ν (cf. (2.2)). This is the basic configuration for our first result. However, we want to
generalize the setting some.

The homotopy condition. Roughly speaking, the compactified manifold M has ‘almost
product’ topology, M ∼= ([0, 1] × Σ0)#N . Generalizing this, we will assume that
M satisfies the homotopy condition with respect to Σ0, namely that there exists a
continuous map ρ : M → Σ0 such that ρ ◦ i : Σ0 → Σ0 is homotopic to idΣ0 , where
i : Σ0 ↪→M is the inclusion map. Since M is connected by assumption, this condition
implies that Σ0 is connected. (We don’t require that S be connected.) Note that if
ρ ◦ i actually equals idΣ0 , this simply says that ρ is a retraction of M onto Σ0.
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The cohomology condition. Further, we will assume that Σ0 satisfies the cohomology
condition, namely that there exist ω1, . . . , ωn−1 ∈ H1(Σ0,Z) such that

ω1 ^ · · ·^ ωn−1 6= 0 . (3.7)

This condition insures that Σ0 does not carry a metric of positive scalar curvature
(and, in particular, is satisfied if Σ0 is a torus). This follows from [42, Theorem 5.2],
although the form of the condition used here is that given in [29, Theorem 2.28].

We are finally prepared to state the following theorem, cf. [16, Theorem 1.2].

Theorem 3.1. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, compact-with-
boundary initial data set. Suppose that (M, g,K) satisfies the DEC and that the
boundary ∂M can be expressed as a disjoint union of hypersurfaces, ∂M = Σ0 t S,
such that the following conditions hold:

(a) θ+ ≤ 0 along Σ0 with respect to the normal pointing into M , and θ+ ≥ 0 along
S with respect to the normal pointing out of M ,

(b) M satisfies the homotopy condition with respect to Σ0 and Σ0 satisfies the co-
homology condition.

Then M is diffeomorphic to [0, `]×Σ0, such that the following hold for each t ∈ [0, `]:

(i) Σt = {t} × Σ is a MOTS. In fact, each Σt has vanishing outward null second
fundamental form, χ+

t = 0.

(ii) Σt is a flat torus, with respect to the induced metric.

(iii) µ = |J | on M and J |TΣt = 0.

We note that Theorem 3.1 provides a relatively simple proof of Theorem 2 in [32]
in dimensions 3 ≤ n ≤ 7, without requiring any strictness in the dominant energy
condition.

We would like to make some comments about the proof of Theorem 3.1; for details
see [16]. The theorem follows from the next two results. The first is a global version
of Theorem 2.2.

Proposition 3.2. Let (M, g,K) be an n-dimensional, n ≥ 3, compact-with-boundary
initial data set satisfying the DEC. Suppose that ∂M can be expressed as a disjoint
union of hypersurfaces, ∂M = Σ0 t S, such that Σ0 is a (connected) MOTS and
S has null expansion θ+ ≥ 0, with repect to the normal pointing out of M . If Σ0

is weakly outermost in M and does not admit a metric of positive scalar curvature
then M ∼= [0, `] × Σ0, such that properties (1), (2), (3) of Theorem 2.2 hold for each
t ∈ [0, `].
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Comments on the proof. Applying Theorem 2.2, we obtain a neighborhood U ∼=
[0, δ)×Σ0 satisfying (1), (2), (3). The vanishing of the null second fundamental forms
of the Σt’s implies a uniform bound, in terms of K, on the second fundamental forms
of the Σt’s within M (cf. (2.2)). Area bounds for the Σt’s also follow from this. Then
by known compactness results, the Σt’s converge smoothly to an immersed MOTS Σδ

as t → δ. A surgery argument of Andersson and Metzger [5, Section 6] ensures that
Σδ does not touch itself to the outside, and hence is, in fact, embedded, as otherwise
the weakly outermost assumption would be violated. It follows that the foliation of U
be MOTSs, satisfying (1), (2), (3), extends to t = δ. Then, by a continuity argument,
the foliation will extend all the way to S. By the maximum principle for MOTS [7],
the “last leaf” Σ` must agree with S.

The next result establishes conditions under which Σ0 is a weakly outermost
MOTS (cf. [16, Lemma 3.2]). It is here that the homotopy and cohomology con-
ditions are used.

Proposition 3.3. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7 compact-with-
boundary initial data set. Suppose that (M, g,K) satisfies the DEC and that ∂M
can be expressed as a disjoint union of hypersurfaces, ∂M = Σ0 t S, such that the
following conditions hold:

(a) θ+
K ≤ 0 along Σ0 with respect to the normal pointing into M , and θ+

K ≥ 0 along
S with respect to the normal pointing out of M ,

(b) M satisfies the homotopy condition with respect to Σ0 and Σ0 satisfies the co-
homology condition.

Then Σ0 is a weakly outermost MOTS in (M, g,K).

Here we have introduced subscript notation on θ+, to show its dependence on the
given initial data set, as a different (but related) initial data set, is used in the proof.

Comments on the proof. Assume for the moment that Σ0 is a MOTS. We want to
show it is weakly outermost. If it isn’t, then there exists an outer trapped surface
(θ+
K < 0) Σ homologous to Σ0 strictly between Σ and S. Let W be the region

bounded by Σ and S. Now reverse the time orientation, i.e. consider the initial data
set (W, g,−K). S has null expansion θ+

−K ≤ 0 with respect to the normal pointing
into W and Σ has null expansion θ+

−K > 0 with respect to the normal pointing
out of W . Hence, with these boundary conditions we can apply Theorem 2.3 (see
also point 3 of the remarks following its statement) to obtain an outermost MOTS
Σ′ in the initial data set (W, g,−K) homologous to Σ0. (It’s precisely here that the
dimension restriction is used.) Now one can use the homotopy condition, and the fact
that Σ0 satisfies the cohomology condition, to show that Σ′ satisfies the cohomology
condition. In particular, some component of Σ′ does not admit a metric of positive
scalar curvature. But then Theorem 2.2 implies that Σ′ can’t be outermost.
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Finally, Σ0 must be a MOTS. If not, then we have θ+ ≤ 0 along Σ0, and θ+ < 0
somewhere. In this case one can use null mean curvature flow to perturb Σ0 to a
strictly outer trapped surface [6, Section 5], and we can run the same argument again
to get a contradiction.

We can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Propositions 3.2 and 3.3 imply that properties (1), (2), (3) of
Theorem 2.2 hold for each t ∈ [0, `]. Hence property (i) holds. The DEC and
property (3) easily imply that (iii) holds. Finally, we need to observe that each
Σt is a flat torus. The cohomology condition, Poincaré duality, and the fact that
Hn(M,Z) is torsion free imply the first Betti number estimate, b1(Σt) ≥ n. However,
by a classical result of Bochner (see e.g. [37, p. 208]) it follows from the Ricci flatness
of Σt that b1(Σt) ≤ n with equality if and only if Σt is isometric to a flat torus.

One may ask if it is possible to obtain greater rigidity in Theorem 3.1. We briefly
describe an example which shows that there is still a fair amount of flexibility in the
initial data sets covered by Theorem 3.1.

Example. For notational simplicity, we restrict to 3-dimensional initial data sets.
Consider the box B : 0 ≤ x, y, z ≤ 1 in the t = 0 slice of 4-dim Minkowski space.
Let f : B → R be any smooth function which vanishes near the boundary of B and
whose graph is spacelike. Let M be the manifold obtained from the graph of f by
identifying the x-sides and the y-sides of B. Note that M ∼= [0, 1]×T2. Now, consider
the initial data set (M, g,K), where g and K are the induced metric and second
form fundamental of graph f . One sees that (M, g,K) satisfies all the assumptions of
Theorem 3.1; in particular, since the graph of f sits in Minkowski space, it is a vacuum
initial data set, µ = 0, J = 0, and so the DEC holds trivially. Hence, the conclusions
of Theorem 3.1 must hold, as well. Where, then, is the foliation by MOTSs ? In fact,
it is obtained by intersecting graph f with the null hyperplanes Hc : t = z+ c. These
are totally geodesic null hypersurfaces, and by interesting features of null geometry,
the intersections with graph f produce a foliation of M by flat tori with vanishing
null second fundamental forms; see Figure 1. This example is still quite special in
certain ways. In particular, (M, g,K) is embedded in a flat spacetime. It would be
interesting to find other, more general, examples.

In order to obtain results with stronger rigidity, we make use of the notion of a ‘k-
convex’ hypersurface (k an integer between 1 and the dimension of the hypersurface),
which has been well-studied in Riemannian geometry; see e.g. [19, 28, 26]. This
concept, as applied initial data sets, was first considered by Mendes in [33].

Let (M, g,K) be a given initial data set. We say that a symmetric covariant 2-
tensor P on M is (n − 1)-convex if, at every point, the sum of the smallest n − 1
eigenvalues of P , with respect to g, is non-negative. It can be shown that if P
is (n − 1)-convex then the partial trace of P along every hypersurface Σ in M is
nonnegative, trΣP ≥ 0.
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Figure 1: Example for Theorem 3.1

With this definition at hand we may state the following theorem (see [16, Theo-
rem 1.3]).

Theorem 3.4. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, compact-with-
boundary initial data set. Suppose that (M, g,K) satisfies the DEC and that the
boundary ∂M can be expressed as a disjoint union of hypersurfaces, ∂M = Σ0 t S,
such that the following conditions hold:

(i) θ+
K ≤ 0 along Σ0, and θ−K ≤ −2(n− 1)ε along S, where ε = 0 or 1.

(ii) M satisfies the homotopy condition with respect to Σ0 and Σ0 satisfies the co-
homology condition.

(iii) K + ε g is (n− 1)-convex.

Then

(a) (M, g) is isometric to the (warped) product ([0, `] × Σ0, dt
2 + e2 ε t g0), where

(Σ0, g0) is a flat torus.

(b) K = (1− ε) a(t) dt2 − ε g on M .

(c) µK = 0 and JK = 0 on M . (vacuum IDS).

In the ε = 0 case, the assumptions are the same as in Theorem 3.1 (except for a
small change in the boundary condition at S), but now with the added assumption
that K is (n− 1)-convex. With the “parameter choice” ε = 1, Theorem 3.4 becomes
relevant to asymptotically hyperbolic (or hyperboloidal) initial data sets. It is shown
in [16], that, in either case (ε = 0 or ε = 1), the resulting initial data set can be
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embedded into a quotient of Minkowski space. We make a few remarks about the
proof.

- The (n− 1)-convexity condition, and the inequality θ−K ≤ −2(n− 1)ε along S imply
θ+
K ≥ 0 along S. Then (M, g,K) satisfies all the assumptions of Theorem 3.1, and

hence is foliated by MOTS, θ+
K = 0.

- Now consider the initial data set (M, g, P ), where P = −K − 2ε g. Using the
(n − 1)-convexity condition and properties of (M, g,K), one shows that (M, g, P )
also satisfies all the assumptions of Theorem 3.1, and hence is foliated by MOTS,
θ+
P = 0.

- Again using the (n− 1)-convexity condition, one may apply the maximum principle
for MOTS to conclude that these two foliations agree. One then makes use of the fact
that θ+

K = θ+
P = 0 along each leaf Σt of the common foliation, in conjunction with

equation (2.4), adapted to each initial data set, to derive the result. The scalar φ
in (2.4) is determined by the foliation, and is ultimately shown to be constant along
each Σt.

3.1 Scalar curvature rigidity

In this final section, we present some rigidity results for Riemannian manifolds with
scalar curvature suitably bounded from below. We first consider the consequences of
Theorem 3.4 from setting K = −εg. With this choice for K, the DEC reduces to the
scalar curvature inequality,

R ≥ −n(n− 1)ε , ε = 0, 1 . (3.8)

This choice for K then leads to the following result (see [16, Corollary 1.4]).

Theorem 3.5. Let (M, g) be an n-dimensional, 3 ≤ n ≤ 7, compact Riemannian
manifold with boundary. Suppose that the scalar curvature of (M, g) satisfies R ≥
−n (n−1) ε, where ε = 0 or 1. Suppose further that the boundary ∂M can be expressed
as a disjoint union of hypersurfaces, ∂M = Σ0 t S, such that the following hold.

(i) The mean curvature of Σ0 satisfies H ≤ (n − 1) ε with respect to the normal
pointing into M , and the mean curvature of S satisfies H ≥ (n − 1) ε with
respect to the normal pointing out of M .

(ii) Σ0 satisfies the cohomology condition and M satisfies the homotopy condition
with respect to Σ0.

Then (M, g) is isometric to ([0, `]× Σ0, dt
2 + e2 ε t g0), where (Σ0, g0) is a flat torus.

By setting K = −ε g in Theorem 3.4, one easily verifies that all the assumptions
of Theorem 3.4 are satisfied. Hence the result follows.
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Theorem 3.5 bears a similarity to a (warped) product splitting theorem of Croke
and Kleiner [13, Theorem 1], in which they assume the corresponding lower bound on
Ricci curvature. We also note that Theorem 3.5, with ε = 1, contains the hyperbolic
space rigidity result, Theorem 1.1 in [2], as a special case. The proof of Theorem 3.5
may also be approached via variational methods, e.g. area minimization in the case
ε = 0. The MOTS methodology described here gives a way of treating both cases in
a unified way.

We would like to consider one further scalar curvature rigidity result that is a
conseqeunce of the MOTS methodology. Let M be a complete noncompact Rieman-
nian manifold, with compact connected boundary Σ0. Suppose Σ0 has constant mean
curvature H0 with respect to the normal pointing into M . We say that Σ0 is weakly
outermost in M if there does not exist a compact hypersurface Σ ⊂M\Σ0 homologous
to Σ0 satisfying the (strict) mean curvature inequality, HΣ < H0.

Theorem 3.6. Let (M, g) be a complete, noncompact n-dimensional (n ≥ 3) Rieman-
nian manifold with compact connected boundary Σ0. Suppose that the scalar curvature
of (M, g) satisfies R ≥ −n (n − 1) ε, where ε = 0 or 1. Suppose, further, that the
following hold:

(i) Σ0 has mean curvature H = ε(n− 1).

(ii) Σ0 does not carry a metric of positive scalar curvature and is weakly outermost.

Then (M, g) is isometric to [0,∞) × N , with (warped) product metric dt2 + e2εth,
where (N, h) is Ricci flat.

This is essentially Theorem 3.1 in [23]. The slightly weaker assumption made
there, H ≤ ε(n − 1), together with the weakly outermost assumption, in fact forces
Σ0 to have constant mean curvature ε(n− 1). Well-known examples discussed in [23]
show that Theorem 3.6 fails if, in (ii), either one of the two conditions is dropped.
Theorem 3.6 is a consequence of the following variation of Proposition 3.2.

Proposition 3.7. Let (M, g,K) be an n-dimensional, n ≥ 3, initial data set, where
(M, g) is a complete noncompact manifold with compact connected MOTS boundary
Σ0. Suppose that (M, g,K) satisfies the DEC. If Σ0 is weakly outermost in M and
does not admit a metric of positive scalar curvature then M ∼= [0,∞)×Σ0, such that
properties (1), (2), (3) of Theorem 2.2 hold for each t ∈ [0,∞).

The proof of this is almost identical to that of Proposition 3.2. To establish
Theorem 3.6, one applies Proposition 3.7 to the initial data set (M, g,K), with K =
−εg. One easily verifies in this case that all assumptions of Proposition 3.7 are
satisfied. One may now make use of properties (1), (2), (3), of Theorem 2.2, and
equation (2.4) (adapted to the present setting), with θ = 0, to derive the result. See
[23, Theorem 3.1] for further details.

In this section we have described some of the main results from [16, 23] (or small
variations thereof). The interested reader may consult these papers for further results.
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