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Abstract
In this short note,we showhowone canuse established results to prove various versions
of the positive mass theorem for initial data sets with boundary, in dimensions less
than 8.
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The positive mass theorem for asymptotically flat initial data sets without boundary
(sometimes called the “spacetime positive mass theorem”) was established in the spin
case by Witten in [25] and in dimensions less than 8 in [11], the latter of which was
based on [20–22] and strengthened the positive energy theorem of Schoen and Yau
in dimension 3 [23]. The general case was treated in [17]. It is generally believed
that the theorem applies to initial data sets with boundary as long as one assumes
that the boundary is weakly outer trapped. This was first observed and verified in the
spin case in [12,13]. In the time-symmetric case, it follows from [19]. More recently,
Hirsch et al. [14] have discovered a new proof of the positive mass theorem for three-
dimensional initial data sets, based on ideas from [24], and their results imply a positive
mass theorem for initial data sets with weakly outer trapped boundary. Our goal here
is to explain how the technique of [11] can be generalized to the case of outer trapped
boundary and how that fact can then be used to apply to other situations.

We begin by reviewing some of the relevant definitions. Given initial data (g, k) on
a manifold M , we define

μ := 1
2

[
Rg + (trg k)

2 − |k|2g
]
,
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J i := (divg k)
i − ∇ i (trg k),

and say that the dominant energy condition (or DEC) holds at a point p ∈ M if
μ ≥ |J |g at p.

Let � be a hypersurface of M , equipped with an “outward” normal. We define1 the
(outward) null expansion θ+

� := H� + tr� k, and we write θ+ if the context is clear.
We say that � is

• outer trapped if θ+ < 0,
• weakly outer trapped if θ+ ≤ 0,
• marginally outer trapped, or a MOTS if θ+ = 0,

at every point of�. Recall that if (M, g, k) sits inside a spacetime, i.e., a time-oriented
Lorentzian manifold, (N , g), then θ+ can also be thought of as the trace of the null
second fundamental form of � with respect to a future-directed outward null normal,
and from this perspective, θ+ depends only on how � embeds into N and not on
choice of M .

As there are various inequivalent definitions of asymptotic flatness, we select the
following one (which implies completeness):

Definition 1 Let n ≥ 3. We say that an initial data set (Mn, g, k) is asymptotically
flat if there exists a compact set K ⊂ M such that M � K is a disjoint union of ends,
each of which is diffeomorphic to R

n
� B for some closed ball B ⊂ R

n , and in each
of these coordinate charts,

gi j (x) = δi j + O2(|x |−q)

ki j (x) = O1(|x |−q−1),

for some q > (n − 2)/2, and also

(μ, J ) ∈ L1(M).

Each end of an asymptotically flat initial data set has a well-defined ADM energy-
momentum (E, P), whose definition statement is not essential to the exposition in this
note. Theorem 1 of [11] states the following:

Theorem 2 Let n < 8, and let (Mn, g, k) be an asymptotically flat initial data set
without boundary. If (M, g, k) satisfies the dominant energy condition everywhere,
then the ADM energy momentum (E, P) of each end of (M, g, k) satisfies E ≥ |P|.
Remark 3 Technically, as stated, Theorem 1 of [11] requires some Hölder decay of
(μ, J ) rather than mere integrability (see Definition 3 of [11]), but it was observed in
[16] that this is unnecessary. (See footnotes on pages 255 and 299.) In fact, we will
explain below exactly what (small) modification must be made to the argument.

Our main result is the following:

1 Our sign convention is that a sphere in Euclidean space with its usual outward pointing normal has H > 0.
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Theorem 4 Let n < 8, and let (Mn, g, k) be an asymptotically flat initial data set
with boundary. If (M, g, k) satisfies the dominant energy condition everywhere, and
the boundary is outer trapped, then the ADM energy momentum (E, P) of each end
of (M, g, k) satisfies E ≥ |P|.
In the above statement, “outer trapped” means with the respect to the normal pointing
“outward” toward the designated end, which means that the normal points into the
manifold M .

Proof Without loss of generality, assume that (M, g, k) has only one end: If it has
more than one end, then large coordinate spheres in all of the other ends are outer
trapped with respect to the end we are interested in, and by cutting off those other
ends, we obtain a one-ended manifold with an outer trapped boundary (now with
more components).

Next observe that there exists a smooth compact manifold whose boundary is dif-
feomorphic to ∂M . (For example, just take M itself and compactify the infinite end.)
Let M̂ be the result of smoothly gluing this smooth compact manifold to M along their
diffeomorphic boundaries. Now smoothly extend g and k arbitrarily from M to all of
M̂ to obtain a new asymptotically flat initial data set (M̂, g, k) with one end and no
boundary. Note that (g, k) satisfies the DEC on the subset M ⊂ M̂ and that ∂M ⊂ M̂
is outer trapped, but essentially nothing is known about (g, k) away from M .

Our goal is to produce a small perturbation (M̂, g̃, k̃) with the property that (g̃, k̃)
has harmonic asymptotics in the sense of [11,16] and (g̃, k̃) satisfies the strict DEC
on M . Essentially, this follows from the proof of the density theorem in [11]. The
only difference is that instead of obtaining the strict DEC everywhere (as in [11]),
we will only obtain the strict DEC at points where the original (g, k) satisfied the
DEC, namely the subset M . We will review some of the steps of this construction
below. Since being outer trapped is an open condition (see Remark 6), it follows that
∂M ⊂ M̂ will remain outer trapped with respect to (g̃, k̃) as long as the perturbation
from (g, k) to (g̃, k̃) is small enough. Moreover, the ADM energy momentum (Ẽ, P̃)

of (g̃, k̃) can be taken to be arbitrarily close to the original values (E, P) by choosing
a small enough perturbation.

From here, we can follow the exact same proof of the positive mass theorem that
was given in [11] for initial data sets with strict DEC and harmonic asymptotics, for
(M̂, g̃, k̃), to see that Ẽ ≥ |P̃|. The point is that the proof involves the construction
of MOTS (using [10]), but the outer trapped boundary ∂M now acts as a barrier so
that all of the MOTS will lie in M , where the strict DEC holds. The region of M̂ away
from M , where we have no control over the DEC, turns out to be irrelevant.

Here, we will describe the perturbation procedure in more detail, mainly for the
convenience of the reader.Wewill follow the exposition given in [16,Chapter 9],which
the reader may consult for further explanation of the ideas used here. For convenience,
we use the quantity πi j := ki j − (trg k)gi j in place of k. The constraint operator on
initial data is defined by

�(g, π) := (2μ, J i ) =
(
Rg + 1

n−1 (trg π)2 − |π |2g, (divg π)i
)

,
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and the modified constraint operator at (g, π), first introduced in [8], is defined by

�(g,π)(γ, τ ) = �(γ, τ) +
(
0, 1

2g
i jγ jk J

k
)

,

where J k = (divg π)k .
The main usefulness of the modified constraint operator is that, unlike the regular

constraint operator, it allows us to control the DEC. Specifically, for any (ḡ, π̄), if

�(g,π)(ḡ, π̄) = �(g,π)(g, π) + (ψ, 0),

for some function ψ , then as long as |ḡ − g|g ≤ 3,

| J̄ |2ḡ ≤ |J |2g, (1)

where J̄ i = (divḡ π̄)i . See [16, Lemma 9.15] for a proof. (In contrast, there is no
reason for this inequality to hold if one replaces �(g,π) by � above.)

We will actually perform two perturbations on the initial data (g, π) defined on the
manifold M̂ . The first perturbation is designed to obtain (ḡ, π̄) satisfying the (1+ t)-
strict DEC on M with some t > 0, meaning that μ̄ > (1 + t)| J̄ |ḡ . This is essentially
[11, Theorem 22] or [16, Lemma 9.17]. Let f be a positive function on M̂ such that
f decays exponentially at infinity, f ≤ 1 everywhere, and f = 1 on some large
coordinate ball containing the compact part of M̂ . For small t > 0, we look for a
solution (ḡ, π̄) to the equation

�(g,π)(ḡ, π̄) = �(g,π)(g, π) + (2t( f + |J |g), 0),

such that (ḡ, π̄) is a small perturbation of (g, π).2 If we can do this, then

μ̄=μ + t( f + |J |g) > μ + t |J |g
= (μ − |J |g) + (1 + t)|J |g ≥ (μ − |J |g) + (1 + t)| J̄ |ḡ,

where we used (1) for the last inequality. From this, we can see that at every point
where the DEC μ−|J |g ≥ 0 holds, we obtain the desired inequality μ̄ > (1+ t)| J̄ |ḡ ,
so this inequality holds on all of M . To prove existence of (ḡ, π̄) for sufficiently small
t > 0, one can use the fact that D�(g,π)

∣∣
(g,π)

is surjective [16, Theorems 9.16]. This
was proved for the regular constraint operator in [9] (see also [16, Theorems 9.9]),
and the proof for the modified constraint operator is essentially the same.

The second perturbation is designed to impose so-called harmonic asymptotics
while keeping the strict DEC on M . Let ϕ be a cutoff function that is exactly 1
on some large coordinate ball containing the compact part of M̂ and vanishes outside

2 Consult the references given to see the precise function spaces and the appropriate notions of closeness
used in these arguments.
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some larger ball, and define ϕk(x) := ϕ
( x
k

)
. Let f be the same exponentially decaying

function as above. For large k, we look for a solution (g̃, π̃) to the equation

�(g̃, π̃) = ϕk�(ḡ, π̄) + ( 2
k f , 0

)

such that (g̃, π̃) is a small perturbation of (ḡ, π̄) and also has harmonic asymptotics.
If we can do this, then we can see that at every point of M , we have

μ̃ = ϕkμ̄ + 1
k f > ϕk(1 + t)| J̄ |ḡ ≥ ϕk | J̄ |g̃ = | J̃ |g̃,

where the last inequality holds as long as g̃ is close enough to ḡ so that the difference
between | J̄ |ḡ and | J̄ |g̃ can be absorbed by the t | J̄ |ḡ term. Therefore, the strict DEC
holds on M .

To solve for (g̃, π̃), surjectivity of D�|(ḡ,π̄) is not enough since we also want
(g̃, π̃) to have harmonic asymptotics. For our purposes, the definition of harmonic
asymptotics is not as important as the fact that (g̃, π̃) has harmonic asymptotics if we
can write

(g̃, π̃) =
(
u

4
n−2 gE, u

2
n−2 (LgEY )

)
,

outside some compact set, for some positive function u and some vector field Y , and if
we also know that �(g̃, π̃) decays sufficiently fast. Here, gE is the Euclidean metric,
andLgY := LY g−(divg Y )g. See [16, Lemma 9.8] for why such a solutionmust have
harmonic asymptotics. Note that our�(g̃, π̃) has been chosen to decay exponentially,
which is more than fast enough for [16, Lemma 9.8] to apply.

The desired solution exists by work of [9]. We summarize the argument: For large
λ > 0, let (gλ, πλ) be initial data that interpolates between (ḡ, π̄) in the ball of radius
of λ and (gE, 0) outside the ball of radius 2λ and consider the operator

Tλ(u,Y ) := �
(
u

4
n−2 gλ, u

2
n−2 (πλ + LgλY )

)
.

One can show that DTλ|(1,0) is an elliptic operator. For large λ and k, ϕk�(ḡ, π̄) +( 2
k f , 0

)
is very close toTλ(1, 0) in the appropriate norm, so ifDTλ|(1,0) were surjective,

we could solve Tλ(u,Y ) = ϕk�(ḡ, π̄) + ( 2
k f , 0

)
as desired. Although DTλ|(1,0)

might have a finite-dimensional cokernel, surjectivity of D�|(gλ,πλ) together with the
inverse function theorem implies that we can solve Tλ(u,Y ) = ϕk�(ḡ, π̄) + ( 2

k f , 0
)

“modulo” a finite-dimensional space of smooth compactly supported tensors. That is,
there exists smooth, compactly supported (h, w) such that

�
(
u

4
n−2 gλ + h, u

2
n−2 (πλ + LgλY ) + w

)
= ϕk�(ḡ, π̄) + ( 2

k f , 0
)
.

Thus, (g̃, π̃) =
(
u

4
n−2 gλ + h, u

2
n−2 (πλ + LgλY ) + w

)
is our desired solution. See

[16, Theorem 9.10, Proposition 9.11] for a more detailed exposition. ��
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Remark 5 Following up on Remark 3, in the proof above, we use slightly different
prescribed values for �(g̃, π̃) from what is used in the original proof of [11, Theorem
18] (see pages 118–119), and this is the reason why the Hölder decay assumption on
(μ, J ) in [11] is unnecessary. Basically, we need Hölder decay of �(g̃, π̃) in order
to apply [16, Lemma 9.8], but we do not need Hölder decay of �(ḡ, π̄) to make this
work.

Remark 6 For the reader interested in weaker regularity and decay hypotheses, as
one can see from [11, Definition 3], Theorem 1 of [11] requires (g, k) to be locally
C2,α ×C1,α for some 0 < α < 1, and for (g, k) to have Sobolev decayW 2,p

−q ×W 1,p
−q−1

for some p > n and q > (n − 2)/2, rather than the C2−q × C1−q−1 decay required in

Definition 1. It also requires integrability of (μ, J ).3 It turns out that these hypotheses
are also sufficient for Theorem 4 to hold. The main point is that the small perturbations
in the proof of Theorem 4 areW 2,p

−q ×W 1,p
−q−1 perturbations with p > n, and these will

preserve the outer trapped condition because θ+ is computed using only C1
loc × C0

loc

data of (g, k), which isweaker thanW 2,p
loc ×W 1,p

loc data thanks to the Sobolev embedding
theorem.

We will now discuss some consequences of Theorem 4.

Corollary 7 Let n < 8, and let (Mn, g, k) be an asymptotically flat initial data set
with boundary, satisfying the dominant energy condition everywhere. If the boundary
is weakly outer trapped (θ+ ≤ 0 everywhere) and each component of the boundary
has a point where θ+ < 0, then the ADM energy momentum (E, P) of each end of
(M, g, k) satisfies E ≥ |P|.
Proof By [4, Lemma 5.2], ∂M can be perturbed to a surface� in M , which is isotopic
to ∂M and outer trapped. Now apply Theorem 4 to the initial data set (M ′, g|M ′ , k|M ′),
where M ′ ⊂ M is obtained by “truncating” M at �. ��

For the next result, consider the situation of an initial data set (M, g, k) sitting
inside a spacetime (N , g), and suppose � is a compact hypersurface of M with an
outward-pointing normal. Then, we can define a future-directed outward null normal
�+ to � in N , which generates null geodesics γ emanating from �, and we obtain a
smooth family �t by flowing along these geodesics for small affine time t , defining
�+ = γ ′ along�t . Recall that the Raychaudhuri equation states that the null expansion
of �t in N evolves in t according to the equation

(θ+)′ = −1
n−1 (θ

+)2 − |σ |2 − Ric(�+, �+),

where σ is the shear tensor of �t (that is, the trace-free part of the null second funda-
mental form of �t in N ) and Ric is the Ricci curvature of g.

Corollary 8 Let n < 8, and let (Mn, g, k) be an asymptotically flat initial data set
with weakly outer trapped boundary, sitting inside a spacetime (N , g) which satisfies

3 As discussed in Remarks 3 and 5, the assumption of Hölder decay of (μ, J ) in Theorem 1 of [11] is
unnecessary.
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(the spacetime version of) the dominant energy condition. Suppose also that on each
component of ∂M, either the shear tensor σ or the curvature quantity Ric(�+, �+) is
not identically zero. Then, the ADMenergymomentum (E, P) of each end of (M, g, k)
satisfies E ≥ |P|.
Proof Take � = ∂M and consider the family �t in N described above. The dominant
energy condition on g implies thatRic(�+, �+) ≥ 0, so theRaychaudhuri equation tells
us that for all t , (θ+)′(t) ≤ 0 everywhere, and our hypotheses imply that (θ+)′(0) < 0
somewhere on each component of �. So for small t , �t has θ+ ≤ 0 and θ+ < 0
somewhere on each component of �t .

Next, we slightly deform the initial data set (M, g, k) in a spacetime neighborhood
of ∂M in N to produce an initial data set (M ′, g′, k′) sitting inside N with ∂M ′ = �t .
Since (N , g) satisfies the (spacetime) dominant energy condition, (M ′, g′, k′) satisfies
the DEC for initial data sets, and we can now apply Corollary 7 to (M ′, g′, k′), which
has the same ADM energy-momentum as (M, g, k). ��

The main improvement of Corollary 8 over Corollary 7 is that it applies to the
case when the boundary is a MOTS, but the tradeoff is that it requires an ambient
spacetime. The next corollary is a pure initial data result that applies to the case of
MOTS boundary but only under certain additional conditions.

Recall that MOTS admit an important notion of stability (see [3], [16, Sect. 7.5]).
Given a MOTS � in (M, g, k), let L� be the MOTS stability operator, which is
essentially the linearization of θ+ with respect to normal first variations of �. For a
compact MOTS �, there exists an eigenvalue of L� with minimal real part, which
is real and denoted by λ1(L�), and we say that � is stable if λ1(L�) ≥ 0, and
strictly stable if λ1(L�) > 0. If� is connected, there exists a principal eigenfunction,
which is a positive eigenfunction with eigenvalue λ1(L�). Recall that for n < 8, if
an asymptotically flat initial data set has a weakly outer trapped boundary, then for
each end, there exists a MOTS which is outermost with respect to that end, and that
outermost MOTS must be stable (see [2] and [16, Theorem 7.40]). In other words, if
we want to relax the outer trapped assumption of Theorem 4 to weakly outer trapped,
it is sufficient to consider the case of stable MOTS boundary. The next corollary is the
closest we get to this.

Corollary 9 Let n < 8, and let (Mn, g, k) be an asymptotically flat initial data set with
boundary. Assume that (M, g, k) satisfies the dominant energy condition everywhere
and also that M contains a strictly stable MOTS in its interior which is isotopic to
∂M. Then, the ADM energy momentum (E, P) of that end satisfies E ≥ |P|.

We note that a similar assumption is used in the proof of the main result in [1].
In [18],M.Mars obtained interesting criteria for aMOTS to be strictly stable. Let�

be a compact “cross section” of an event horizonH in a spacetime (N , g). Suppose that
H is aKilling horizon (as discussed in [6], for example) or, more generally, what Mars
calls a “non-evolving” horizon. Since such horizons are totally geodesic, it follows
that cross sections are MOTS. Mars shows, under further mild conditions, that if the
surface gravity ofH is positive, then� is a strictly stableMOTS. (See [18, Proposition
3] for a more detailed statement.) Therefore, Corollary 9 applies to initial data sets
with boundary that may arise from this natural class of spacetimes studied by Mars.
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Proof of Corollary 9 Let � be a strictly stable MOTS enclosing ∂M , and for now
assume that � is connected. Let ϕ be the principal eigenfunction of L� , meaning
that ϕ > 0 and L�(ϕ) = λ1(L�)ϕ. Choose any variation �t of � = �0 with vari-
ation vector field X = −ϕν at �, where ν is the outward unit normal to �. By the
definition of L� , the null expansion θ+ of �t satisfies

∂θ+

∂t

∣∣∣∣
t=0

= L�(−ϕ) = −λ1(L�)ϕ < 0,

since � is strictly stable. So for small t > 0, �t is outer trapped and is isotopic to
∂M . If � is not connected, then each component is also strictly stable, and we can
just run the same argument on each component to obtain the same result. Now apply
Theorem 4 to the initial data set (M ′, g|M ′ , k|M ′), where M ′ ⊂ M is obtained by
“truncating" M at �t . ��

We can also obtain a corollary that applies to general MOTS boundaries if we
assume a “no KIDs” condition. Recall that a KID on an initial data set (�, g, k) is
a nontrivial element in the kernel of D�|∗(g,π), which is the formal adjoint of the
linearization of the constraint map � described in the proof of Theorem 4. For a given
set S in an initial data set (M, g, k), we will say that (M, g, k) has no local KIDs
near S if the kernel of D�|∗(g,π) over � is trivial for every open set � containing S.
Because this kernel condition is heavily overdetermined, the existence of a KID is a
very special situation, and in fact, it was shown that having no local KIDs at all is a
generic condition within the space of vacuum initial data sets [5].

Corollary 10 Let n < 8, and let (Mn, g, k) be an asymptotically flat initial data set
with boundary, satisfying the dominant energy condition everywhere. Assume that the
boundary is a MOTS, that there are no local KIDs near the boundary, and that we
either have J = 0 or μ > |J |g near the boundary. Then, the ADM energy momentum
(E, P) of each end of (M, g, k) satisfies E ≥ |P|.
Proof Under the exact hypotheses of the corollary, themain result of [7] says that there
exists a perturbation (g̃, k̃) of (g, k) such that (g̃, k̃) satisfies the DEC everywhere and
is identically equal to (g, k) away from some neighborhood of ∂M , and moreover,
∂M is outer trapped in (M, g̃, k̃). The result now follows directly from Theorem 4. ��
Remark 11 The condition that J = 0 or μ > |J |g near the boundary (which comes
from [7]) is a consequence of the fact that the kernel of D�|∗(g,π) is related to the
prescribed constraint equation, and as noted earlier, prescribing the constraints does
not allow one to control the DEC in general. We conjecture that if one were to
replace the “no KIDs” hypothesis by an analogous “modified” hypothesis related
to D�(g,π)

∣∣∗
(g,π)

, then one can use the results of [8] in the argument in [7] to remove
the condition that J = 0 orμ > |J |g near the boundary. In fact, invoking the results of
[15] could narrow down the only possible “exceptions” to the positive mass theorem
with MOTS boundary to cases where a neighborhood of the boundary sits inside a
null perfect fluid spacetime with constant pressure.
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Remark 12 Recall that an inner untrapped (i.e., “past” outer trapped) hypersurface�

in an initial data set is one with θ−
� := −H� + tr� k > 0. Simply by flipping the sign

of k, one trivially sees that all of the results of this paper still hold if one replaces all
instances of “(weakly) outer trapped” by “(weakly) inner untrapped” and all “MOTS”
by “MITS” (i.e., hypersurfaces with θ− = 0), as well as other corresponding changes.
It is slightly less obvious, but still true and easy to check, that in all of the results above,
one can relax the assumptions so that each component of the relevant hypersurface is
“either (weakly) outer trapped or (weakly) inner untrapped,” or is “either a MOTS or
a MITS,” depending on context, together with other obvious changes.

Declarations

Funding The research of GJG was supported by the NSF under the grant DMS-171080.

References

1. Andersson, L., Dahl, M., Galloway, G.J., Pollack, D.: On the geometry and topology of initial data
sets with horizons. Asian J. Math. 22(5), 863–881 (2018)

2. Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped
surfaces, Complex analysis and dynamical systems IV. Part 2, Contemp. Math., vol. 554, Amer. Math.
Soc., Providence, pp. 13–45 (2011)

3. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of
marginally outer trapped tubes. Adv. Theor. Math. Phys. 12(4), 853–888 (2008)

4. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun.Math. Phys. 290(3),
941–972 (2009)
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