
1 23

Letters in Mathematical Physics
A Journal for the Rapid Dissemination
of Short Contributions in the Field of
Mathematical Physics
 
ISSN 0377-9017
Volume 108
Number 10
 
Lett Math Phys (2018) 108:2285-2292
DOI 10.1007/s11005-018-1079-7

Rigidity in vacuum under conformal
symmetry

Gregory J. Galloway & Carlos Vega



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V., part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Lett Math Phys (2018) 108:2285–2292
https://doi.org/10.1007/s11005-018-1079-7

Rigidity in vacuum under conformal symmetry

Gregory J. Galloway1 · Carlos Vega2

Received: 2 February 2018 / Accepted: 26 March 2018 / Published online: 2 April 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Motivated in part by Eardley et al. (Commun Math Phys 106(1):137–158,
1986), in this note we obtain a rigidity result for globally hyperbolic vacuum space-
times in arbitrary dimension that admit a timelike conformal Killing vector field.
Specifically, we show that if M is a Ricci flat, timelike geodesically complete space-
time with compact Cauchy surfaces that admits a timelike conformal Killing field X ,
then M must split as a metric product, and X must be Killing. This gives a partial
proof of the Bartnik splitting conjecture in the vacuum setting.
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1 Introduction

The classical Hawking–Penrose singularity theorems form a cornerstone in the global
theory of spacetime geometry and general relativity. These theorems guarantee the
existence of incomplete causal geodesics, (i.e., ‘singularities’), in large, generic classes
of spacetimes satisfying natural energy conditions.

The singularity theorems can be viewed as Lorentzian analogs to Riemannian Ricci
comparison theorems like Myers’ theorem and rely on strict curvature conditions. In
the early 1980s, S.-T. Yau put forth the question of the rigidity of the singularity
theorems and posed a Lorentzian analog to the Cheeger–Gromoll splitting theorem in
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his famous problem section [18], in 1982. This was settled in a series of papers by the
end of the decade [5,8,15], with the basic version of the result (due to Eschenburg) as
follows:

Theorem 1.1 (Lorentzian splitting theorem) Let M be a globally hyperbolic, time-
like geodesically complete spacetime, satisfying the timelike convergence condition,
Ric(X, X) ≥ 0, for all timelike X. If M admits a timelike line (i.e., an inextendible
globally maximizing timelike goedesic), then M splits as an isometric product

(Mn+1, g) ≈ (R × �n,−dt2 + h) (1.1)

where �n is a smooth, geodesically complete, spacelike (Cauchy) hypersurface, with
induced metric h.

For basic background in Lorentzian geometry and causal theory used here and
below, we refer the reader to the references [14,16].

Despite the resolution of Theorem 1.1, however, the result did not ultimately settle
the original motivating rigidity question. A concrete formulation of this was posed by
Bartnik in 1988 as follows:

Conjecture 1.2 (Bartnik splitting conjecture) Let M be a spacetime with compact
Cauchy surfaces, which satisfies Ric(X, X) ≥ 0 for all timelike X. If M is timelike
geodesically complete, then M splits as in (1.1), (with � compact).

Thus, according to the conjecture, only under quite exceptional circumstances can
M fail to be singular, i.e., timelike geodesically incomplete. The conjecture has been
established under various auxiliary conditions; see, for example, [1,6,7,9–11]. It was
proven under the stronger sectional curvature condition in [4], using [13].

Conjecture 1.2 is most simply illustrated by the special case of a warped product
(Mn+1, g) = (I × �n,−dτ 2 + φ2(τ )˜h), where (�n,˜h) is a compact Riemannian
manifold, I ⊂ R an open interval, and φ : I → (0,∞) a smooth, positive function.
For such a spacetime, the timelike convergence condition forces φ′′ ≤ 0. But then if
M is timelike complete, we must have I = R, which forces φ = c to be constant.
(Then, h := c2h̃ is the induced metric on �, and hence, M splits as above.)

While the warped product case is trivial, one may ask what happens when this is
‘weakened’ to the assumption of a timelike conformal symmetry, i.e., the existence
of a timelike conformal Killing field. By the latter, we mean a timelike vector field
X such that LX g = 2σg, where L is the Lie derivative and σ : M → R is smooth.
For example, a warped product as above has timelike conformal Killing vector field
X = φ(τ)∂τ , with conformal factor σ = φ′(τ ). In [3], various results are established
showing the ‘rigidity’ imposed by the existence of conformal symmetries on solutions
(M4, g) of the Einstein equations. Theorem 3 in [3], for example, shows that a vacuum
solution with a proper conformal symmetry must be one of a few special types. The
proof makes special use of the dimension 3 + 1.

Interestingly, Conjecture 1.2 remains open even in the vacuum setting,
Ric ≡ 0. Indeed, we are not aware of any prior results in this direction. The main
result established here is the following:
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Theorem 1.3 Let n ≥ 2 and suppose that (Mn+1, g) is a Ricci flat, timelike geodesi-
cally complete spacetime, with compact Cauchy surfaces. If M admits a timelike
conformal Killing field X, then M splits isometrically as

(Mn+1, g) ≈ (R × �n,−dt2 + h) (1.2)

with the (Riemannian) fiber (�n, h) compact and Ricci flat, and X is in fact Killing.

2 Preliminary results

Recall that a smooth vector field X on a semi-Riemannian manifold (M, g) is Killing
if g is invariant under the flow of X , i.e., if LX g = 0, where L is the Lie derivative.
More generally, by a conformal Killing field on (M, g), we mean a smooth vector field
X , such that LX g = 2σg, for some smooth function σ : M → R. In the special case
that σ is a constant, X is called a homothetic Killing field.

We begin with the following standard observation. (The notation is suggestive for
our applications below, but note that we are not assuming that X is timelike or that M
is Lorentzian.)

Lemma 2.1 Let M = (Mn+1, g) be a semi-Riemannian manifold, and suppose that
X is a conformal Killing field, with LX g = 2σg. Then, in any local coordinates
{t = x0, x1, . . . , xn} with X = ∂t , we have:

g(t, x1, . . . , xn) = e2 f (t,x
1,...,xn)

n
∑

i, j=0

Gi j (x
1, . . . , xn)dxi ⊗ dx j

where f (t, x1, . . . , xn) := ∫ t
0 σ(s, x1, . . . , xn)ds. In particular, note that ∂t f = σ .

Proof Because LX (∂i ) = [∂t , ∂i ] = 0, we have 2σgi j = (2σg)(∂i , ∂ j ) = (LX g)
(∂i , ∂ j ) = X [g(∂i , ∂ j )] = Xgi j = ∂t gi j Hence, for any indices i, j ∈ {0, 1, 2, . . . , n},
we have ∂t gi j = 2σgi j . Both sides are functions of (t = x0, x1, . . . , xn), but
holding xi constant for all i ≥ 1, we have a first- order linear equation in the
single variable t . Using the integrating factor μ = e−2 f gives gi j (t, x1, . . . , xn)

= e2 f (t,x
1,...,xn)Gi j (x1, . . . , xn). �


We note that for a warped product spacetime metric g = −dτ 2+φ2(τ )h̃, the above
result holds globally. For example, letting t := ∫ τ

c 1/φ(s)ds, then dt = dτ/φ(τ), and

g = −dτ 2 + φ2(τ )h̃ = φ2(τ (t))(−dt2 + h̃) = e2 f (t)(−dt2 + h̃)

Indeed, this is precisely the form of the metric induced as in Lemma 2.1 by the
conformal Killing field X = φ(τ)∂τ = ∂t , with d f/dt = dφ/dτ = σ .

We shall make use of the following:

Lemma 2.2 Let M be a semi-Riemannian manifold, and let X be a conformal Killing
field, with LX g = 2σg. Then, we have:
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(1) g(∇Y X,Y ) = σg(Y,Y ), for all smooth vector fields Y .
(2) Let γ = γ (s) be any affinely parameterized geodesic, and set C := g(γ ′(s),

γ ′(s)). Then along the geodesic γ = γ (s), we have:

d

ds
g(X, γ ′) = σ(γ (s))C (2.1)

Proof (1) follows from the standard formula:

(LX g)(V,W ) = g(∇V X,W ) + g(∇W X, V )

To prove (2), note that for any curve γ , we have:

γ ′g(X, γ ′) = g(∇γ ′ X, γ ′) + g(X,∇γ ′γ ′)

If γ is a geodesic, the last term vanishes, and the result follows from (1). �

The following lemma is the key analytic result needed to prove Theorem 1.3.

Lemma 2.3 For n ≥ 2, suppose that (Mn+1, g) is a semi-Riemannian manifold, with
Ricg = λg, for some real number λ ∈ R, and suppose that X is a nowhere vanishing
conformal Killing field, with LX g = 2σg. Then, with 	gσ = tr(Hessg(σ )), we have:

Hessg(σ ) = −
(

	gσ + 2λσ

n − 1

)

g (2.2)

which after tracing gives:

	gσ = −λ

(

n + 1

n

)

σ (2.3)

Proof For the convenience of the reader, we provide an outline of the proof, which is
a lengthy computation. (See also the proof of Theorem 3 in [3], which treats λ = 0,
citing [17] for the relevant formula in this case.)

Fix local coordinates {t = x0, x1, . . . , xn}, and f and G, as in Lemma 2.1, with
X = ∂t . Hence, in the neighborhood U covered by the chart, g is conformal to a
metric whose components are independent of t , that is, onU we have g = e2 f G, with
G = G(x1, . . . , xn). Using the formula for Ricci under conformal change in [2], we
have:

Ricg = RicG − (n − 1)

(

H f
G − d f ⊗ d f

)

−
(

	G f + (n − 1)||d f ||2G
)

G (2.4)

where ||d f ||2G = G(∇G f,∇G f ), H f
G = HessG( f ) and 	G f = tr(H f

G ). (Note: the

sign convention in [2] is 	G f := −tr(H f
G ).) Applying the Einstein condition, we

obtain:
(

λ

n − 1

)

g = RicG
n − 1

− H f
G + d f ⊗ d f − ||d f ||2GG −

(

	G f

n − 1

)

G . (2.5)
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We now take the Lie derivative of (2.5) with respect to X = ∂t . First note that
LX (RicG) = L∂t (RicG) vanishes, since the coefficients (RicG)i j , which depend only
onGi j and its derivatives, are independent of t . Thus, taking the Lie derivative of (2.5)
gives:

(

2λσ

n − 1

)

g = −L∂t H
f
G +L∂t (d f ⊗ d f )−L∂t

(

||d f ||2GG
)

−L∂t

(

	G f

n − 1
G

)

(2.6)

One may now proceed to compute the four Lie derivatives in (2.6), using, where
appropriate, the fact that the Gi j ’s, and quantities defined in terms of the Gi j ’s, have
vanishing t-derivative, and ∂t f = σ . One obtains,

L∂t H
f
G = Hσ

G , L∂t [(	G f )G] = (	Gσ)G

L∂t (d f ⊗ d f ) = dσ ⊗ d f + d f ⊗ dσ , ∂t ||d f ||2G = 2G(∇Gσ,∇G f ) .

Substituting these into (2.6) gives:

(

2λσ

n − 1

)

g = −Hσ
G +dσ ⊗d f +d f ⊗dσ −2G(∇Gσ,∇G f )G−

(

	Gσ

n − 1

)

G (2.7)

We now translate all the G-terms in (2.7) back to the metric g. First note that:

G(∇Gσ,∇G f )G = g(∇gσ,∇g f )g

By standard formulas, we have for the Hessian and Laplacian,

Hσ
G = Hσ

g + dσ ⊗ d f + d f ⊗ dσ − g(∇gσ,∇g f )g

	Gσ = e2 f
(

	gσ − (n − 1)g(∇gσ,∇g f )

)

By plugging these pieces into (2.7), after some simple manipulations we arrive at (2.2)
and (2.3). �


The proof of Theorem 1.3 eventually reduces to the static case. We will then make
use of the following curve lifting result.

Lemma 2.4 Let M be a globally hyperbolic spacetime, with smooth spacelike Cauchy
surface S. If M admits a complete timelike Killing field X, then every spatial curve in
S lifts (along the integral curves of X) to a timelike curve in M.

Proof Because X is complete, we have a diffeomorphic splitting M ≈ R × S, given
by flowing along the integral curves of X . By reparameterizing if necessary, we may
suppose that each integral curve γ (t) of X meets S at t = 0.

We will now prepare a convenient collection of coordinate patches on Mn+1. First
note that, choosing any local coordinates {x1, . . . , xn} on S, then {t = x0, x1, . . . , xn}
give local coordinates on M , and by Lemma 2.1 we have:

123

Author's personal copy



2290 G. J. Galloway, C. Vega

g(t, x1, . . . , xn) =
n

∑

i, j=0

Gi j (x
1, . . . , xn)dxi ⊗ dx j (2.8)

For p ∈ S, let Up be a neighborhood of p in S, with local coordinates {x1, . . . , xn}.
Let Vp be a smaller neighborhood, with p ∈ Vp ⊂⊂ Up. Hence, {t = x0, x1, . . . , xn}
give local coordinates on R × Vp, on which g has coordinate representation (2.8).
Because g is continuous, and Vp ⊂⊂ Up, and because the component functions Gi j

are independent of t , the Gi j ’s are bounded on R × Vp. Moreover, because G00 is
negative on R × Vp, we have

mp := min{−G00(z) : z ∈ R × Vp} > 0 (2.9)

Now fix any spatial curve β : [0, �] → S. Since the image of β is compact, we can
find finitely many points {p1, . . . , pN } such that Im(β) ⊂ (Vp1 ∪· · ·∪VpN ). Hence, β
breaks into finitely many subsegments, with each contained in a single patch. Provided
that we are able to lift to any desired ‘initial height’ or ‘starting time,’ it thus suffices
to assume that β lies in a single chart as above, say, Im(β) ⊂ Vp. Hence, we have
β(u) = (β1(u), . . . , βn(u)), for u ∈ [0, �]. For 0 < s ≤ 1, consider βs(u) = β(su),
for u ∈ [0, �/s]. Consider the simple lift up to the starting time t = t0, given by
αs(t) = (t + t0, β(st)). Then, for t ∈ [0, �/s],

g(α′
s(t), α

′
s(t)) = G00(β(st)) + 2sG0i (β(st))β ′

i (st) + s2Gi j (β(st))β ′
i (st)β

′
j (st)

≤ −mp + 2sG0i (β(st))β ′
i (st) + s2Gi j (β(st))β ′

i (st)β
′
j (st)

where we sum over all repeated indices, with i, j ∈ {1, . . . , n}. Since −mp is strictly
negative and everything else is bounded, we can find an s small enough so that this
last quantity is negative, and hence so that αs(t) is timelike, for all t ∈ [0, �/s]. �


3 Proof of the splitting result

Proof of Theorem 1.3 Applying Lemma 2.3 with λ = 0, we see that ∇σ is parallel.
Fix any smooth, spacelike Cauchy surface, S. By compactness, σ |S attains amaximum
at some p ∈ S, and thus, (∇σ)p is normal to S. Thus, either (∇σ)p is timelike or
zero. But since ∇σ is parallel, then either ∇σ is everywhere timelike, or it vanishes
identically. That is, either ∇σ is an everywhere timelike vector field, or σ is constant.
The proof will show that, in fact, σ must be zero, but we proceed by considering each
case below.

Case 1 Suppose first that∇σ is everywhere timelike. By reversing the time orientation
of M if necessary, we may suppose that∇σ is future pointing. Since∇σ is parallel, its
integral curves are timelike geodesics and hence complete by assumption. Moreover,
the quantity g(∇σ,∇σ) is constant, which by a rescaling can be taken to be − 1. The
condition g(∇σ,∇σ) = −1 then forces the integral curves of ∇σ to be maximal (and
hence to be timelike lines). To see this, fix one such integral curve, γ . Since∇σ is future
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pointing, γ is a future-directed, unit-speed timelike geodesic. Without loss of gener-
ality, suppose that α : [a, b] → M is another future timelike curve from α(a) = γ (0)
to α(b) = γ (�). Since −1 = g(∇σ,∇σ) = g(∇σ, γ ′) = (σ ◦ γ )′, note that along
γ we have σ(γ (u)) = −u + σ(γ (0)). Also, because ∇σ is future pointing, we have
g(α′,∇σ) < 0. Define the ‘spacelike part’ of α′ by N := α′ + g(α′,∇σ)∇σ . It
follows that N is a vector field on α with g(N , N ) ≥ 0 and g(N ,∇σ) = 0, and
α′ = −g(α′,∇σ)∇σ + N . Then, |α′| = [−g(α′, α′)]1/2 = [g(α′,∇σ)2

− g(N , N )]1/2 ≤ −g(α′,∇σ) = −α′(σ ) = − d
ds (σ (α(s)). Integrating this gives

L(α) = ∫ b
a |α′|ds ≤ σ(α(a)) − σ(α(b)) = σ(γ (0)) − σ(γ (�)) = � = L(γ |[0,�]).

This shows that the (arbitrary) subsegment γ |[0,�] is maximal, and thus, γ is a time-
like line. (A local version of this basic maximality argument appears, for example, in
Proposition 34 in Chapter 5 of [16].)

It now follows that M splits as a product, as in (1.1), with compact, totally geodesic
spacelike slices {t} × �. Since ∇σ is parallel, it follows from a standard maximum
principle argument that each level set of σ must coincide with a slice in the splitting.
Fix any nonzero level set {σ = k}, k �= 0. Since {σ = k} is a slice in the product, it
is totally geodesic and compact and hence admits a closed spacelike geodesic, γ . But
then (2.1) in Lemma 2.2 leads to a contradiction as we traverse a full circuit of γ .

Case 2Wehave shown that σ must in fact be constant, i.e., that X is in fact a homothetic
Killing field, LX g = 2cg, for some constant c. We now claim that c = 0 and X is
Killing. To see this, let α : R → M be a complete unit-speed timelike geodesic. Then,
we have − c = cg(α′, α′) = g(∇α′ X, α′) = α′(g(X, α′)). This implies g(X, α′(s))
= −cs + d. If c �= 0, then g(X, α′(d/c)) = 0 gives a contradiction, since both α′ and
X are timelike.

Hence X is Killing. The assumption of timelike completeness implies, in fact, that
X is a complete Killing vector field; cf. [12, Lemma 1]. Without loss of generality, we
may assume that X is future pointing. For a ∈ S, we can think of the integral curve
La of X as the ‘spatial location’ corresponding to a ∈ S, flowing in time. Since X is
complete and Killing, it follows fromLemma 2.4 that any spatial curve in S lifts, along
the integral curves of X , to a timelike curve in M . It follows that for each a, b ∈ S,
there is some finite time t ∈ (0,∞) for which Lb(t) ∈ I+(a). For a, b ∈ S, define
the shortest such ‘commute time’ from a to b, (really from a to Lb) by:

Ca(b) := inf{t : Lb(t) ∈ I+(a)} (3.1)

LettingC(a, b) = Ca(b), we claim thatC : S×S → [0,∞) is upper semicontinuous.
Suppose so for the moment. Since S is compact, it then follows thatC is bounded, that
is, there is a ‘maximum commute time’ τ , such that Lb(τ ) ∈ I+(a), for all a, b ∈ S.
Let γ : [0,∞) → M be any future timelike unit-speed S-ray. (Hence, γ is future
inextendible, with d(S, γ (s)) = s for all s ≥ 0.) Note that the integral curves of X
give a diffeomorphic splitting M ≈ R × S. Since the slab [0, τ ] × S is compact, γ

must meet the slice {τ } × S, at some point γ (s0) = (τ, a0) = La0(τ ). It follows that
S ⊂ I−(γ (s0)) ⊂ I−(γ ). But then by Theorem A in [6], M contains a timelike line.
Thus, again, by the Lorentzian splitting theorem, M splits.
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It remains to show that ‘commute time’ C : S × S → [0,∞) is upper semicon-
tinuous. Fix a, b ∈ S, and ε > 0. Let t0 := Ca(b), and set t1 := t0 + ε/2. Hence,
Lb(t1) ∈ I+(a). Letting πS : M → S be the standard projection, πS(Lx (t)) = x ,
define Ua := πS(I−(Lb(t1))). Hence, Ua is an open neighborhood of a in S, such
that Lb(t1) ∈ I+(x), for all x ∈ Ua . Letting t2 := t0 + ε and St2 := {t2} × S,
define Vb := πS(I+(Lb(t1)) ∩ St2). Hence, Vb is a neighborhood of b in S such that
Ly(t2) ∈ I+(Lb(t1)), for all y ∈ Vb. But then, for all (x, y) ∈ Ua × Vb ⊂ S × S, we
have Ly(t2) ∈ I+(Lb(t1)) ⊂ I+(x), i.e., Ly(t0 + ε) ∈ I+(x). In other words, for all
(x, y) ∈ Ua × Vb, we have Cx (y) ≤ t0 + ε = Ca(b) + ε.

We have now shown that M splits as in (1.2), for some smooth, compact space-
like Cauchy hypersurface �n . That this, with its induced Riemannian metric h, has
Rich = 0 follows, for example, from the warped product curvature formulas in [16],
with Ricg = 0 and f = 1.
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