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Abstract. We begin with a basic exploration of the (point-set topolog-
ical) notion of Hausdorff closed limits in the spacetime setting. Specif-
ically, we show that this notion of limit is well suited to sequences of
achronal sets, and use this to generalize the ‘achronal limits’ introduced
by the authors in Galloway and Vega (Ann Henri Poincaré 15(11):2241–
2279, 2014). This, in turn, allows for a broad generalization of the notion
of Lorentzian horosphere introduced in Galloway and Vega (2014). We
prove a new rigidity result for such horospheres, which in a sense encodes
various spacetime splitting results, including the basic Lorentzian split-
ting theorem. We use this to give a partial proof of the Bartnik splitting
conjecture (Bartnik in Commun Math Phys 117(4):615–624, 1988), un-
der a new condition involving past and future Cauchy horospheres, which
is weaker than those considered in Galloway (Some rigidity results for
spatially closed spacetimes. Mathematics of gravitation, part I (Warsaw,
1996), Banach Center Publications, vol 41, Polish Academy of Science,
Warsaw, pp 21–34, 1996) and Galloway and Vega (2014). We close with
some observations on spacetimes with spacelike causal boundary, includ-
ing a rigidity result in the positive cosmological constant case.
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1. Introduction

In the spirit of the classical horospheres of hyperbolic geometry, the authors
introduced a natural geometric and causal theoretic notion of horosphere in
Lorentzian geometry in [14]. By virtue of this approach, many of the tech-
nical analytic difficulties in dealing with conventional Lorentzian horospheres
(associated with timelike rays via Lorentzian Busemann functions; see, e.g.,
[13]) are circumvented. The approach in [14] also allowed for more general
types of horospheres, including a new ‘Cauchy horosphere.’ In the present pa-
per, we consider a very broad generalization of the definition of horosphere
in [14] based on Hausdorff closed limits. As noted in [4], the important limit
curve concept in Lorentzian geometry can be described in terms of such limits.
Somewhat in analogy, here we define a Lorentzian horosphere as the Hausdorff
closed limit of a certain class of Lorentzian spheres, which are in particular
achronal boundaries; see Fig. 1.

In Sect. 3.2 we review the definition of Hausdorff closed limits and es-
tablish some fundamental properties. In particular, we show that these limits
preserve achronality and edgelessness, and further show that the Hausdorff
closed limit of achronal boundaries is an achronal boundary itself (Theorem

γ(r)

γ(R)

Figure 1. Prototypical Lorentzian horosphere, from a future
timelike ray γ, is shown here in Minkowski space. The con-
ventional construction relies on the Busemann function asso-
ciated with γ. The approach here is to define the horosphere
directly as the Hausdorff closed limit of the sequence of past
spheres from γ
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3.4). In Sect. 4.2 we define a horosphere to be the Hausdorff closed limit of
Lorentzian spheres, with ‘causally complete’ centers, as the radii tend to infin-
ity. This drops the monotonicity requirement used in [14], and the horospheres
defined in [14], including the ray horospheres and Cauchy horospheres, now
become a special subclass. In Sect. 4.3 we present a very general splitting
theorem (Theorem 4.11) for past and future horospheres that meet in a ‘non-
crossing manner,’ which supersedes many known Lorentzian splitting results.
In Sect. 5 we discuss various applications of this horosphere splitting theorem
to, e.g., the Lorentzian splitting theorem and the Bartnik splitting conjecture,
as well as some rigidity results for spacetimes with spacelike (past or future)
causal boundary (see, e.g., Theorem 5.13). For more detailed background on
the Bartnik splitting conjecture and its connection to the Lorentzian splitting
theorem, we refer the reader to [4, Chapter 14], as well as the introduction to
[14].

2. Lorentzian Preliminaries

We begin with some brief Lorentzian preliminaries. For further background,
we note the standard references [4,18,20,23]. This section also serves to set a
few conventions, though we note that these remain unchanged from [14].

Throughout the following, M = (Mn+1, g) will denote a spacetime, i.e.,
a connected, time-oriented Lorentzian manifold, of dimension n + 1 ≥ 2. We
take the Lorentzian metric g to be smooth. A vector X ∈ TM will be called
timelike if g(X,X) < 0, null if g(X,X) = 0, and spacelike if g(X,X) > 0. We
say X is causal if X is either timelike or null.

The time orientation of M implies that any nontrivial causal vector points
either to the ‘future’ or to the ‘past.’ By a future causal curve, we mean a
piecewise-smooth curve α, with α′ always future causal (including any one-
sided tangents). Past causal curves are defined time-dually, and future/past
timelike/null curves are defined analogously. By a ‘causal curve,’ we will always
mean either a future causal curve or a past causal curve, and similarly for
timelike and null curves.

If there is a future causal curve from p ∈ M to q ∈ M , we write p ≤ q, or
equivalently q ∈ J+(p), or p ∈ J−(q). If there is a future timelike curve from p
to q, we write p � q, or equivalently q ∈ I+(p), or p ∈ I−(q). More generally,
we define the causal future J+(S) of any subset S ⊂ M to be the set of points
q ∈ M which can be reached by a future causal curve starting from S. The
sets J−(S), and I+(S) and I−(S), are defined analogously.

Finally, we note that a spacetime is globally hyperbolic if the set of all
‘timelike diamonds’ I+(p)∩I−(q) forms a basis for the manifold topology, and
all ‘causal diamonds’ J+(p) ∩ J−(q) are compact. Because of its relationship
to Lorentzian distance, we work exclusively in the globally hyperbolic setting
from Sect. 4.2 on. All of Sect. 3, however, applies to general spacetimes. For
further background on global hyperbolicity, and causal theory in general, we
defer again to the references above.
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3. Achronal Limits

A subset A ⊂ M is called achronal if no two points in A are joined by a
timelike curve, i.e., I+(A) ∩ A = ∅. It is a basic causal theoretic fact that any
achronal set without ‘edge’ points is a C0 hypersurface in M . A special case
of such a set is that of an ‘achronal boundary,’ i.e., any nonempty set of the
form A = ∂I±(S).

In Sect. 3.1, we first treat some of the basic theory of achronal sets and
of achronal boundaries specifically, as studied by Penrose in [22]. In Sect. 3.2,
we then use the notion of Hausdorff closed limits to broadly generalize the
‘achronal limits’ introduced in [14].

3.1. Achronal Sets

To define the ‘edge’ of an achronal set, we must first recall the notion of local
or relative causality. Let U ⊂ M be any open neighborhood, and let p ∈ U .
By I+(p, U) we mean the timelike future of p within the (sub)spacetime U .
That is, q ∈ I+(p, U) iff there is a future timelike curve from p to q which lies
completely within U . I−(p, U) is defined time-dually.

Now let A ⊂ M be any achronal set. The edge of A is defined to be the
set of points p ∈ A such that every neighborhood U of p contains a timelike
curve from I−(p, U) to I+(p, U) which does not meet A. We say A is edge-
less if edge(A) = ∅. The following is one of the fundamental consequences of
achronality.

Proposition 3.1 (See [20]). Let A be any nonempty achronal set. Then A is a
(topologically) closed C0 hypersurface iff A is edgeless.

We now proceed to the special case of achronal boundaries. As in [22],
we say a subset P ⊂ M is a past set if it is the timelike past of a set, i.e.,
P = I−(S), for some S ⊂ M . It follows that P is a past set iff P = I−(P ).
Future sets are defined time-dually. The nonempty boundary of a past or future
set is called an achronal boundary. Hence, an achronal boundary is a set of the
form ∅ 	= A = ∂I±(S).

Proposition 3.2 ([22]). Let A be an achronal boundary. Then A is achronal and
edgeless, and hence a closed C0 hypersurface. Moreover, there is a unique past
set P such that A = ∂P , and a unique future set F such that A = ∂F , and this
triple forms a disjoint partition, M = P ∪ A ∪ F . It follows that I−(A) ⊂ P
and I+(A) ⊂ F .

Hence, if A is an achronal boundary, then any future timelike curve from
I−(A) to I+(A) must pass through A. While this fails in general if A is only
taken achronal and edgeless, the following result says, in effect, that this does
hold locally.

Lemma 3.3. Let A be an achronal and edgeless subset of a spacetime (M, g).
Let U be a convex normal neighborhood of M , and let N be a globally hyperbolic
sub-spacetime of (U, g|U ). If A enters a timelike diamond I+(x,N)∩I−(y,N),
then any future timelike curve from x to y in N must meet A.
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Proof. Consider A0 := A∩J+(x,N)∩J−(y,N). Note that x ∈ I−(A0, N) and
y ∈ I+(A0, N). Hence, letting β be any future timelike curve in N from x to
y, then β must meet ∂I−(A0, N) at some point z0. Since A is closed, and N
is globally hyperbolic, it follows that A0 is compact, and hence J−(A0, N) is
closed in N . Thus, z0 ∈ J−(A0, N). If z0 ∈ A0, we are done. Suppose then
that z0 	∈ A0. Then by standard causal theory, there is a future null geodesic
η in N from z0 to a0 ∈ A0, with η ⊂ ∂I−(A0, N), and η ∩ A0 = {a0}. Since
a0 ∈ J−(y,N) and N is globally hyperbolic, there is a future causal geodesic
ζ in N from a0 to y. Hence, the concatenation η + ζ gives a future causal
curve in N from z0 to y. But since z0 ∈ I−(y, U) and U is convex, the unique
geodesic joining z0 and y in U is timelike. It follows that η and ζ must form a
‘corner’ at a0, and hence that every point of ζ\{a0} is in the timelike future
of every point of η\{a0}. Moreover, since z0 ∈ ∂I−(A0, N), it follows that
ζ ∩A0 = {a0}. But then η ∩A = {a0} = ζ ∩A implies that a0 is an edge point
of A, a contradiction. Hence, β does in fact meet A at z0 ∈ A0 ⊂ A. �

3.2. Achronal Limits

In [14], a natural notion of ‘achronal limit’ was defined for sequences of achronal
boundaries exhibiting a basic kind of monotonicity. The results of this section
broadly generalize such limits, using so-called Hausdorff closed limits. In par-
ticular, we establish the following facts:

Theorem 3.4. Let {Ak} be any sequence of subsets with Hausdorff closed limit,

A∞ = lim{Ak}
If each Ak is achronal, then so is A∞. If further each Ak is edgeless, then so
is A∞. Finally, if each Ak is an achronal boundary, then so too is A∞.

Theorem 3.4 thus demonstrates that all of the basic properties of
achronal sets are preserved under Hausdorff closed limits. In light of these
results, if {Ak} is any sequence of achronal subsets, with Hausdorff closed
limit A∞ = lim{Ak}, we will call A∞ the achronal limit of {Ak}. That such
limits do indeed generalize those in [14] follows immediately from Proposition
2.5 in [14] and Lemma 3.6. (Further discussion of this point is included at the
end of this subsection.)

As we will see, the first statement in Theorem 3.4 follows quite easily,
while the next two are somewhat more subtle. The complete proof will be
carried out in stages, culminating in Theorems 3.9 and 3.13. As an immediate
application, these results are used in Sect. 4 to generalize the horospheres
defined in [14].

We begin by recalling the following definitions, introduced by Hausdorff
in [17], and used, for example, in [4,5,21].

Definition 3.5 (Hausdorff closed limits [17]). Let {Sk} be a sequence of subsets
of a topological space M. The Hausdorff upper and lower limits of {Sk} are
defined, respectively, by
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Sup
∞ = lim{Sk} = {p : each neighborhood of p meets infinitely many Sk’s}

Slow
∞ = lim{Sk} = {p : each neighborhood of p misses only finitely many

Sk’s}
Hence, in general, lim{Sk} ⊂ lim{Sk}. In the case of equality, the common

limit is called the Hausdorff closed limit of {Sk}, which we denote by S∞ =
lim{Sk}.

It is straightforward to check that Sup
∞ and Slow

∞ are closed. Hence, when
it exists, the Hausdorff closed limit S∞ is indeed closed. In a metric space, this
notion of limit is closely related to convergence of subsets with respect to the
Hausdorff distance; see [21] for some basic discussion. Moreover, the following
characterizations are easily verified:

Lemma 3.6. Let {Sk} be a sequence of subsets of a metric space M.
(1) Sup

∞ is precisely the set of limit points of sequences sk ∈ Sk.
(2) Slow

∞ is precisely the set of limits of sequences sk ∈ Sk.
In particular, if S∞ exists, then any limit point of a sequence xk ∈ Sk is in
S∞, and every point in S∞ is the limit of some (convergent) sequence yk ∈ Sk.

The following implies that achronality is preserved under Hausdorff closed
limits.

Lemma 3.7. Let {Ak} be any sequence of achronal subsets of a spacetime M .
Then the Hausdorff lower limit, Alow

∞ , is achronal.

Proof. Suppose to the contrary that there is a future timelike curve α : [0, b] →
M from α(0) ∈ Alow

∞ to α(b) ∈ Alow
∞ . For 0 < ε small, let U := I−(α(ε)) and

V := I+(α(b − ε)). Hence, U is an open neighborhood of α(0), and V is an
open neighborhood of α(b), and every point in U is timelike related to every
point in V . Note that α(0) is the limit of a sequence xk ∈ Ak, and α(b) is the
limit of a sequence yk ∈ Ak. Hence, for all sufficiently large k, Ak must enter
both U and V . But this violates the achronality of Ak. �

Figure 2 shows how Lemma 3.7 can fail for upper limits. On the other
hand, Fig. 3 shows how a lower limit can develop an edge. By contrast, upper
limits do not develop edge points in this way, as shown in the next lemma.

Lemma 3.8. Let {Ak} be a sequence of edgeless achronal sets, such that the
Hausdorff upper limit Aup

∞ is achronal. Then Aup
∞ is also edgeless.

Proof. Since Aup
∞ is closed, note that edge(Aup

∞ ) ⊂ Aup
∞ . Fix any (candidate

edge point) p ∈ Aup
∞ . Let N be a neighborhood of p which is globally hyperbolic

as a (sub)spacetime and which is contained in a convex normal neighborhood
U of p. (For example, one may take a spacelike hypersurface through p which
is acausal within U , and take N to be its domain of dependence relative to
U .) Fix x ∈ I−(p,N) and y ∈ I+(p,N), and let β be a future timelike curve
from x to y in N . It follows that we can find a (sub)sequence aj ∈ Akj

, with
aj → p, such that aj ∈ I+(x,N)∩ I−(y,N), for all j. But then by Lemma 3.3,
β must meet each Akj

, and hence also Aup
∞ . Hence, p 	∈ edge(Aup

∞ ). �
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A2k A2k+1 Aup
∞

Figure 2. Upper limit of achronal sets may not be achronal

A2k A2k+1 Alow
∞

Figure 3. Lower limit of achronal sets may develop an edge

Combining Lemmas 3.7 and 3.8 gives the first half of Theorem 3.4. In
particular, we note the following:

Theorem 3.9. The achronal limit of a sequence of edgeless achronal hypersur-
faces is itself an edgeless achronal hypersurface.

We now turn to the final statement in Theorem 3.4, concerning limits of
achronal boundaries. This will be established in two main steps, Propositions
3.11 and 3.12. We first note the following basic facts (with proofs left to the
reader).

Lemma 3.10. Let Q ⊂ M be an arbitrary subset.
(1) In general, int (Q) ⊂ I−(Q).
(2) If I−(Q) ⊂ Q, then int (Q) = I−(Q) and ∂Q = ∂I−(Q).

The following may itself be viewed as a generalization of the achronal
limits in [14], where the assumption of monotonicity of {Pk} is relaxed to the
existence of lim{Pk}.

Proposition 3.11. Let {Ak} be a sequence of achronal boundaries, with associ-
ated past sets {Pk} as in Proposition 3.2, so that Ak = ∂Pk. If the pasts have
a Hausdorff closed limit, Π∞ := lim{Pk}, then we have the following:
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3406 G. J. Galloway, C. Vega Ann. Henri Poincaré

(1) int (Π∞) =: P∞ is a past set; specifically, P∞ = I−(Π∞).
(2) ∂ (Π∞) is the Hausdorff closed limit of {Ak}, i.e., A∞ = ∂(Π∞) = ∂P∞.

Proof. (1) The statement holds trivially if Π∞ = ∅. If nonempty, fix x ∈ Π∞.
Then we can find a sequence xk ∈ Pk, with xk → x. Fix any y ∈ I−(x).
Then for all large k, we have y ∈ I−(xk), and hence y ∈ Pk. So y ∈ Π∞.
This shows I−(Π∞) ⊂ Π∞. Hence, as in Lemma 3.10, we have P∞ =
int (Π∞) = I−(Π∞).

(2) Suppose first that ∂Π∞ 	= ∅. We will show that ∂Π∞ ⊂ Alow
∞ and Aup

∞ ⊂
∂Π∞. First fix x ∈ ∂Π∞, and let W be any neighborhood of x. Let U
be a connected open neighborhood of x, with U ⊂ W . Since Hausdorff
closed limits are closed, we have x ∈ Π∞. Hence, we can find a sequence
xk ∈ Pk with xk → x. In particular, there is an index kU ∈ N such that
xk ∈ Pk ∩ U for all k ≥ kU . Suppose that U ⊂ Pj for infinitely many j.
But this implies U ⊂ Π∞, and hence x ∈ int Π∞, contradicting x ∈ ∂Π∞.
Thus, there is an index jU ∈ N such that, for all j ≥ jU , we can find a
point yj ∈ U ∩ (Aj ∪ Fj). Let 	U = max{kU , jU}. Then for all 	 ≥ 	U , we
have points x� ∈ U ∩ P� and y� ∈ U ∩ (A� ∪ F�), and, since we took U
connected, a point a� ∈ U ∩ A�. Hence, U meets all but possibly finitely
many of the Ak’s, and since U ⊂ W , so does W . This shows ∂Π∞ ⊂ Alow

∞ .

Now fix a ∈ Aup
∞ . Then there is a subsequence akj

∈ Akj
with akj

→ a.
Hence, any neighborhood W of a meets Pkj

and also Fkj
for all sufficiently large

j. Consequently, a is realizable as a limit point of a sequence pk ∈ Pk, which
means a ∈ Π∞. But also a is realizable as a limit point of a sequence fk ∈ Fk.
Suppose a ∈ int(Π∞). Then there is a neighborhood V of a contained in Π∞.
Choose points b, c ∈ V with a � b � c. Since a is a limit point of a sequence
fk ∈ Fk, b meets infinitely many Fk. But then I+(b) is a neighborhood of c
which is contained in infinitely many Fk, and hence must miss the infinitely
many corresponding Pk. Consequently, c 	∈ Π∞, a contradiction. Hence, a ∈
∂Π∞. This shows Aup

∞ ⊂ ∂Π∞. Thus, we have ∂Π∞ ⊂ Alow
∞ ⊂ Aup

∞ ⊂ ∂Π∞. So
A∞ exists, and A∞ = ∂Π∞ = ∂P∞, the last equality following as in Lemma
3.10.

To finish the proof, it remains to consider the case that ∂Π∞ = ∅, that
is, either Π∞ = ∅ or Π∞ = M . In either case, it suffices to show Aup

∞ = ∅. The
details are left to the reader. �

We now establish a converse of Proposition 3.11.

Proposition 3.12. Suppose that {Ak} is a sequence of achronal boundaries with
Hausdorff closed limit, A∞ = lim{Ak}. Then the sequence of associated pasts
{Pk} also has a Hausdorff closed limit, Π∞ = lim{Pk}.
Proof. Suppose not. Then it follows that there must be a point x ∈ M such
that x ∈ Pk for infinitely many k and also x ∈ Fk for infinitely many k,
with x 	∈ A∞. Suppose that x ∈ I+(A∞). Hence, there is some a ∈ A∞ with
a ∈ I−(x). Let ak ∈ Ak be a sequence with ak → a. Then for all sufficiently
large k, we have ak ∈ I−(x) ∩ Ak, and hence I−(x) ∩ ∂Fk 	= ∅. But this
implies x ∈ Fk for all large k, which is a contradiction. Hence, x 	∈ I+(A∞),
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and similarly x 	∈ I−(A∞). Let α : [0, b] → M be any continuous path from
α(0) = x to α(b) ∈ A∞, with α(s) 	∈ A∞ for all s ∈ [0, b). Note that A∞ is
achronal and edgeless, by Theorem 3.9. Then there must be a first parameter
time 0 ≤ s0 < b such that α(s0) ∈ ∂I+(A∞)∪∂I−(A∞). It suffices to consider
the case α(s0) ∈ ∂I+(A∞). Let β : [s0, s1] → M be a future timelike curve
from α(s0) = β(s0). It follows that β(s1) ∈ I+(A∞), and hence β(s1) ∈ Fk

for all large k. Consider the path σ : [0, s1] → M defined by σ(s) = α(s) for
0 ≤ s ≤ s0 and σ(s) = β(s) for s0 < s ≤ s1. Then, for infinitely many k, σ is a
continuous path from Pk to Fk. It follows that σ meets Ak for infinitely many
k, and hence that σ meets A∞. But this is a contradiction. �

Combining Propositions 3.11 and 3.12, and their time-duals, we have the
following:

Theorem 3.13. Let {Ak} be a sequence of achronal boundaries with associated
past and future sets, {Pk} and {Fk}. Then the following are equivalent:
(1) {Pk} has a Hausdorff closed limit, Π∞ = lim{Pk}.
(2) {Ak} has a Hausdorff closed limit, A∞ = lim{Ak}.
(3) {Fk} has a Hausdorff closed limit, Φ∞ = lim{Fk}.

When any of the above conditions holds, let P∞ := int (Π∞) and F∞ :=
int (Φ∞). Then P∞ is a past set, F∞ is a future set, and M = P∞ ∪A∞ ∪F∞,
with ∂P∞ = A∞ = ∂F∞.

In particular, we note:

Corollary 3.14. The achronal limit of a sequence of achronal boundaries is
itself an achronal boundary.

We close this section by formalizing the observation that Hausdorff closed
limits do indeed generalize the ‘achronal limits’ originally defined in [14]. Con-
sider a sequence of achronal boundaries {Ak}, with associated pasts {Pk}, and
futures {Fk} (as per Proposition 3.2). As in [14], we say {Pk} is increasing if
Pk ⊂ Pk+1 for all k, or decreasing if Pk+1 ⊂ Pk for all k. It follows that the Fk’s
are increasing iff the Pk’s are decreasing, and vice versa. We say a sequence
of achronal boundaries {Ak} is monotonic if the pasts Pk are monotonic, i.e.,
either increasing or decreasing. The following is an immediate consequence of
Proposition 2.5 in [14] and Lemma 3.6:

Proposition 3.15. Let {Ak} be a sequence of achronal boundaries, with associ-
ated pasts {Pk} and futures {Fk}, as in Proposition 3.2.
(1) If {Pk} is increasing, then the Hausdorff closed limit lim{Ak} exists and

lim{Ak} = ∂

( ⋃
k

Pk

)

(2) If {Pk} is decreasing, and hence {Fk} increasing, then the Hausdorff
closed limit lim{Ak} exists and we have:

lim{Ak} = ∂

(⋃
k

Fk

)
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4. Horospheres

We now use the results of Sect. 3 to generalize the notion of Lorentzian horo-
sphere defined in [14]. In addition, we establish a new splitting result for such
horospheres in Sect. 4.3 (Theorem 4.11) generalizing those in [14], and in a
sense encoding various other spacetime splitting results, including the basic
Lorentzian splitting theorem, as discussed in Sect. 5. We begin in Sect. 4.1
with a brief review of standard material on the Lorentzian distance function
and maximal curves, as well as the notion of ‘causal completeness’ introduced
in [10], and used throughout [14]. From Sect. 4.2 on, we assume that all space-
times are globally hyperbolic.

4.1. Lorentzian Distance and Maximal Curves

The Lorentzian arc length of a causal curve α : [a, b] → M is defined by

L(α) :=
∫ b

a

√
−g(α′, α′)ds

It is a basic fact that causal geodesics are locally Lorentzian arc length-
maximizing. The Lorentzian distance function of M is then defined by

d(p, q) := sup{L(α) : α ∈ Ωc
p,q}

where Ωc
p,q denotes the set of future causal curves from p ∈ M to q ∈ M , and

where we take the supremum to be zero if there are no such curves, i.e., if
p 	≤ q.

A causal curve α is maximal if it realizes the (Lorentzian) distance be-
tween any two of its points, i.e., d(α(s1), α(s2)) = L(α|[s1,s2]). A maximal curve
is necessarily a timelike or null geodesic (up to parameterization, a distinction
which we will often ignore below).

We recall that a spacetime is globally hyperbolic if the set of all ‘timelike
diamonds’ I+(p)∩I−(q) forms a basis for the manifold topology, and all ‘causal
diamonds’ J+(p) ∩ J−(q) are compact. By a Cauchy surface, we mean an
achronal set S which is met by every inextendible causal curve in M . It is
a basic fact that a spacetime is globally hyperbolic iff it admits a Cauchy
surface, and that these conditions are related to Lorentzian distance as follows
(cf., [4]).

Proposition 4.1. Let M be a spacetime and d its Lorentzian distance function.
If M is globally hyperbolic, then d is finite and continuous, and any causally
related pair of points p ≤ q are connected by a maximal causal geodesic α,
L(α) = d(p, q).

It is also natural to consider, for example, distance to the past of a subset
S ⊂ M ,

d(p, S) := sup{d(p, z) : z ∈ S}
If S is compact, Proposition 4.1 generalizes immediately. However, a natural,
weaker compactness condition suffices, which we now review. As introduced
in [10], a subset S ⊂ M is said to be past causally complete if for all p ∈ M ,

Author's personal copy



Vol. 18 (2017) Hausdorff Closed Limits and Rigidity 3409

p1

p2

S

Figure 4. Testing for past causal completeness

the closure in S of J+(p) ∩ S is compact. It follows that such a set must be
closed. Further, if M is globally hyperbolic, then a closed set S is past causally
complete iff J+(p) ∩ S is compact for all p ∈ M (See Fig. 4).

Future causal completeness is defined time-dually. Any compact set is
(both past and future) causally complete, as is any Cauchy surface. As shown
in [14], we have the following generalization of Proposition 4.1:

Proposition 4.2. Let C ⊂ M and consider the ‘past distance function’

d(x,C) = sup{d(x, z) : z ∈ C}

If M is globally hyperbolic and C is past causally complete, then d(·, C) is finite
and continuous, and for every p ∈ J−(C), there is a maximal causal geodesic
α from p to C, with L(α) = d(p,C). Time-dual statements hold for the ‘future
distance function,’ d(C, x) := sup{d(z, x) : z ∈ C}, when C is future causally
complete.

We close this section by reviewing rays and lines. A maximal, future
causal curve α : [a, b) → M , with a < b ≤ ∞, which is future inextendible
is called a future ray. Past rays are defined time-dually. By a line we mean a
maximal curve which is inextendible to both the future and past. Hence, rays
and lines are necessarily causal geodesics, though they need not be complete
as such. Finally, let S ⊂ M be an arbitrary subset, and let α : [a, b) → M be a
future-inextendible causal curve, with a < b ≤ ∞, and α(a) ∈ S. We say that
α is a future S-ray if d(S, α(t)) = L(α[a,t]), for all t ∈ [a, b). Past S-rays are
defined time-dually. Note that S-rays are indeed rays as defined above. The
following will be used below.

Proposition 4.3. If S is a closed achronal C0 hypersurface, then any null S-ray
is contained in S. It follows that if S is a Cauchy surface, then any S-ray is
timelike. A compact Cauchy surface S necessarily admits at least one future
S-ray and one past S-ray.

4.2. Lorentzian Spheres and Horospheres

Although we will continue to state this explicitly at times, we assume from
now on that M is globally hyperbolic.
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Thinking of any subset C ⊂ M as a ‘center,’ and fixing any radius r > 0,
we can consider the corresponding past and future spheres from C, respec-
tively,

S−
r (C) := {x ∈ M : d(x,C) = r}

S+
r (C) := {x ∈ M : d(C, x) = r}

It is immediate that such spheres must be achronal, though edge points
are possible in general. However, the following facts were established in [14].
We recall first that a set A ⊂ M is acausal if no two points in A are joined by
a nontrivial causal curve.

Proposition 4.4. Let M be globally hyperbolic, and C ⊂ M past causally com-
plete. Then for any r > 0, the past sphere S−

r (C) is acausal and edgeless, with
S−

r (C) = ∂I−(S−
r (C)). Moreover, each point x ∈ S−

r (C) is connected to C by
a future timelike geodesic ‘radial’ segment of length r.

Now consider a sequence of past spheres {S−
k := S−

rk
(Ck)}, with each

Ck past causally complete, and rk → ∞. If {S−
k } has an achronal limit as in

Sect. 3,

S−
∞ := lim{S−

k }
then we call S−

∞ (if nonempty) the past horosphere associated with {S−
k }.

Time-dually, an analogous sequence of future spheres, {S+
k }, leads to a future

horosphere, S+
∞.

We first note that the above represents a broad generalization of the
horospheres in [14], by dropping the requirement that the sequence of ‘pre-
horospheres’ be monotonic. At the same time, all of the basic properties of
horospheres established in [14] continue to hold, and indeed most of the proofs
that remain after Sect. 3 carry over unchanged. In particular, combining Propo-
sition 4.4, Theorem 3.4, and Lemma 3.6, with Lemma 3.19 in [14], we have:

Theorem 4.5. Suppose M is a globally hyperbolic spacetime, and suppose S−
∞ 	=

∅ is a past horosphere as above. Then S−
∞ is an achronal boundary and hence

a closed, achronal C0 hypersurface. Further, there is a ‘radial’ future S−
∞-ray

emanating from each point x ∈ S−
∞. If S−

∞ lies in the past of a Cauchy surface,
then S−

∞ is acausal, and every future S−
∞-ray is timelike. Time-dual statements

hold for future horospheres.

We think of a past horosphere S−
∞ as ‘a past sphere centered at future

infinity.’ The future S−
∞-rays from each point are, roughly, the radial segments

connecting S−
∞ to its ‘center’ and arise precisely as limits of the radial segments

of the corresponding sequence of spheres. Time-dually, a future horosphere S+
∞,

can be thought of as a sphere centered at past infinity, with each point in S+
∞

connected to its ‘center’ by a past S+
∞-ray.

Ray and Cauchy horospheres. We now briefly recall the two main horosphere
constructions defined in [14]. Although each remains unchanged from [14], this
will serve both as concrete illustrations of the above and also as preparation for
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Sect. 5, where both constructions will be used prominently. We begin with the
construction of a ‘ray horosphere,’ which is closely related to the conventional
Lorentzian Busemann horosphere. Let γ : [0,∞) → M be a future complete
timelike unit-speed ray. Taking the points Ck := γ(k) as centers, it follows that
the past spheres S−

k (γ(k)) form a monotonic sequence of achronal boundaries,
with increasing pasts Pk = I−(S−

k (γ(k))). Hence, as in Proposition 3.15, we
have a well-defined achronal limit S−

∞(γ) := lim{S−
k (γ(k))}, which we call

the past ray horosphere from γ. See [14] for further details and proofs of the
following:

Proposition 4.6. Suppose that M is globally hyperbolic, and let S−
∞(γ) be the

past ray horosphere associated with a future complete timelike ray γ. Then
γ(0) ∈ S−

∞(γ) ⊂ I−(γ). In particular, S−
∞(γ) is a nonempty, closed, achronal

C0 hypersurface, with future S−
∞(γ)-rays emanating from each point. In gen-

eral, γ is itself an S−
∞(γ)-ray. If γ is a future S-ray for some Cauchy surface S,

then S−
∞(γ) ⊂ J−(S), and hence S−

∞(γ) is acausal and all future S−
∞(γ)-rays

are timelike.

A ‘Cauchy horosphere,’ on the other hand, is built instead from a Cauchy
surface S. We assume that S is compact, and that M is future timelike geodesi-
cally complete, so that the future spheres Ck := S+

k (S) are compact Cauchy
surfaces as well (see [14]). Taking these as our sequence of centers, it follows
that the sequence of past spheres {S−

k (Ck)} is monotonic, with decreasing
pasts Pk = I−(S−

k (Ck)), and hence again we have a well-defined achronal
limit S−

∞(S) := lim{S−
k (S+

k (S))}, which we call the past Cauchy horosphere
from S. The following is also established in [14].

Proposition 4.7. Suppose that M is future timelike geodesically complete, with
compact Cauchy surface S, and let S−

∞(S) be the past Cauchy horosphere from
S. Then ∅ 	= S−

∞(S) ⊂ J−(S). In particular, S−
∞(S) is a nonempty, closed,

acausal C0 hypersurface, with future timelike S−
∞(S)-rays emanating from each

point. In fact, letting γ be any future S-ray, we have γ(0) ∈ S−
∞(S), with

S−
∞(γ) ⊂ J−(S−

∞(S)).

Finally, we note the time-dual constructions of the above. Namely, a
past complete timelike ray β gives rise to a future ray horosphere, S+

∞(β) :=
lim{S+

k (β(k))}, and if M is past timelike complete, we can similarly construct
the future Cauchy horosphere, S+

∞(S) := lim{S+
k (S−

k (S))}, from any compact
Cauchy surface S.

4.3. Horosphere Structure and Rigidity

We now present a new splitting result (Theorem 4.11) for general horospheres
as defined in Sect. 4.2. We begin with several key lemmas. We continue to
assume throughout that M is globally hyperbolic.

Lemma 4.8. Suppose S−
∞ is a past horosphere. Then p ∈ S−

∞ is causally related
to another point of S−

∞ iff there is a null future S−
∞-ray based at p.
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Proof. Since a null S−
∞-ray is necessarily contained in S−

∞ (cf. Proposition 4.3),
one direction is trivial. Suppose then that x, y ∈ S−

∞ with x ≤ y. Since S−
∞ is

achronal, x and y are necessarily joined by a (maximal) null geodesic segment
(contained in S−

∞). Being a past horosphere, S−
∞ admits a future S−

∞-ray βy

from y. If this were timelike, then by cutting the corner at y, we could produce
a ‘longer’ curve from x to βy. Hence, βy is null with βy ⊂ S−

∞, and in fact,
βy must extend the null geodesic segment joining x to y. Joining these then
gives a future-inextendible null S−

∞-ray βx from x, with βy ⊂ βx ⊂ S−
∞. The

statement of the lemma follows (with either p = x or p = y). �

Lemma 4.9. Suppose S−
∞ is a past horosphere and p ∈ S−

∞. Then S−
∞ fails to

be acausal near p iff there is a future null S−
∞-ray from p.

Proof. To be precise, we say S−
∞ is acausal near p ∈ S−

∞ if there is some
neighborhood U of p in M such that S−

∞ ∩ U is acausal in M . Suppose that
S−

∞ fails to be acausal near p. Fix a complete Riemannian metric h on M
and let Uk be the h-ball of radius 1/k around p. That S−

∞ fails to be acausal
near p means that for each k, there are distinct points xk, yk ∈ S−

∞ ∩ Uk with
xk ≤ yk. Then, as in Lemma 4.8, there is a null S−

∞-ray βk : [0,∞) → M from
xk, parameterized with respect to h arc length. Since xk → p, it follows, by
standard arguments, that any limit curve β : [0,∞) → M of {βk} is a future
S−

∞-ray from p. To see that β is null, one observes, for example, that for each
t > 0, we have d(β(0), β(t)) = limj→∞ d(βkj

(0), βkj
(t)) = 0. �

Let S−
∞ be a past horosphere. Motivated by Lemmas 4.8 and 4.9, we will

call p ∈ S−
∞ a null point if there is a future null S−

∞-ray from p. Otherwise, we
call p a spacelike point of S−

∞. Note that the set of spacelike points is open in
S−

∞. The points of a future horosphere are classified time-dually.

Lemma 4.10. Suppose that S−
∞ and S+

∞ are past and future horospheres, re-
spectively, satisfying I+(S+

∞) ∩ I−(S−
∞) = ∅. Then at any intersection point

p ∈ S−
∞ ∩ S+

∞, one of the following situations holds:

(1) The point p is a spacelike point for both horospheres, and there is a unique
future S−

∞-ray from p and a unique past S+
∞-ray from p, both of which are

timelike and join to form a timelike line.
(2) The point p is a null point for both horospheres, and there is a unique

future S−
∞-ray from p, and a unique past S+

∞-ray from p, both of which
are null and join to form a null line, β, with β ⊂ S−

∞ ∩ S+
∞.

Proof. Fix p ∈ S−
∞ ∩ S+

∞. Then there is a future S−
∞-ray γ : [0, c) → M from

p and a past S+
∞-ray η : [0, d) → M from p, with 0 < c, d ≤ ∞. Fixing

any 0 < s < d, and any 0 < t < c, the initial segments of η and γ join
to form a causal curve segment from η(s) to γ(t). Let σ : [a, b] → M be any
other causal curve from σ(a) = η(s) to σ(b) = γ(t). Letting P±

∞ and F±
∞ be the

unique past and future sets associated with S±
∞ (as in Proposition 3.2), we have

η(s) ∈ P±
∞ ∪ S±

∞ and γ(t) ∈ S±
∞ ∪ F±

∞. Hence, σ meets both horospheres. Let
τ−, τ+ ∈ [a, b] be any parameter times such that σ(τ−) ∈ S−

∞ and σ(τ+) ∈ S+
∞.
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Note that:

L(σ[a,τ+]) ≤ d(η(s), S+
∞) = L(η|[0,s])

L(σ[τ−,b]) ≤ d(S−
∞, γ(t)) = L(γ|[0,t])

Suppose first that τ− ≤ τ+. Then, by ‘counting σ[τ−,τ+] twice,’ we have:

L(σ) ≤ L(σ|[a,τ+]) + L(σ|[τ−,b]) ≤ L(η|[0,s]) + L(γ[0,t])

Suppose now that τ+ < τ−. Then since I+(S+
∞) ∩ I−(S−

∞) = ∅, the segment
σ|[τ+,τ−] must be null and does not contribute to the length of σ, and we have:

L(σ) = L(σ|[a,τ+]) +������
L(σ|[τ+,τ−]) + L(σ|[τ−,b]) ≤ L(η|[0,s]) + L(γ[0,t])

It follows that η and γ join to form a line, and from this follows the
uniqueness of η and γ. In particular, either η and γ are both timelike, or they
are both null. In the null case, p is a null point for both horospheres. On the
other hand, if η and γ are timelike, then by their uniqueness, p must be a
spacelike point for both horospheres. What remains to show is that in the null
case, β := −η + γ is contained in both horospheres. Since, in this case, γ is a
null S−

∞-ray, we have γ ⊂ S−
∞. Moreover, if there is a point on γ not in S+

∞,
then at some stage γ must enter the timelike past of S+

∞ (since by assumption
it cannot enter the timelike future). But this would violate the achronality
of S+

∞. Hence, γ ⊂ S+
∞. By a similar argument, η is also contained in both

horospheres. �
We are now ready to establish the fundamental rigidity result for horo-

spheres:

Theorem 4.11. Let M be a globally hyperbolic, timelike geodesically complete
spacetime, satisfying the timelike convergence condition, Ric(X,X) ≥ 0 for all
timelike X. Suppose S−

∞ is a past horosphere and S+
∞ is a future horosphere

which meet at a common spacelike point p ∈ S−
∞∩S+

∞, with I+(S+
∞)∩I−(S−

∞) =
∅. Then S−

∞ = S+
∞ =: S∞ is a smooth, geodesically complete spacelike Cauchy

surface along which M splits,

(M, g) ≈ (R × S∞,−dt2 + h)

Proof. Recall that, by Lemma 4.10, any point in the intersection S−
∞∩S+

∞ is ei-
ther a spacelike point for both horospheres or a null point for both horospheres.
Let U ⊂ S−

∞ ∩S+
∞ be the subset of spacelike intersection points. Hence, p ∈ U ,

and both S−
∞ and S+

∞ are acausal near any x ∈ U . In particular, each future
S−

∞-ray α near such x is timelike. Parameterizing α : [0,∞) → M with respect
to arc length, for any r > 0, the past sphere S−

r (α(r)) is smooth near α(0)
and lies locally to the past of S−

∞. Using the timelike convergence condition,
by standard comparison techniques (see, e.g., [19, Section 1.6]), S−

r (α(r)) has
mean curvature ≥ −n

r at α(0). It follows that S−
∞ has mean curvature ≥ 0 in

the support sense near any x ∈ U . Similarly, S+
∞ has support mean curvature

≤ 0 near any such x. It then follows from the ‘support’ maximum principle in
[2] that U is a smooth, maximal spacelike hypersurface, which is open in both
S−

∞ and S+
∞. But furthermore, since the normal geodesics from U , both to the

future and to the past, are timelike U -rays, which are complete (to the future
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or past) by assumption, standard Riccati (Raychaudhuri) equation techniques
imply that U is in fact totally geodesic, with split normal exponential image
(exp⊥(U), g) ≈ (R × U,−dt2 + h), where h is the induced metric on U .

We now extend to a global splitting of all of M . As a first step, we show
that U is ‘geodesically closed,’ that is, any geodesic initially tangent to U
can never leave U . To that end, fix any p ∈ U and any tangential vector
X ∈ TpU , and let σ : (−a, b) → M be the unique geodesic with σ(0) = p and
σ′(0) = X which is maximally extended in M , where 0 < a, b ≤ ∞. Because
U is totally geodesic, σ initially remains in U . Fix any 0 < s0 < b with
σ([0, s0)) ⊂ U . Again, since U is totally geodesic, i.e., its second fundamental
form K(X,Y ) = g(∇XN,Y ) vanishes, the future unit normal field N of U is
parallel along σ|[0,s0). By Lemma 4.10, there is a unique future S−

∞-ray γx from
each x ∈ U , which is timelike. If we give each γx a unit-speed parameterization,
then γ′

x(0) = Nx. Whether or not q = σ(s0) lies in U , there is a well-defined
limit vector Nq = lims→s0 Nσ(s), obtained by parallel transporting N on all of
σ[0,s0], with Nq necessarily future unit timelike. Let γq be the future-directed
unit-speed timelike geodesic with γ′

q(0) = Nq, which is necessarily complete.
Since q ∈ U ⊂ S−

∞ ∩ S+
∞, γq is a curve from S−

∞. Suppose that γq|[0,∞) is
not an S−

∞-ray, i.e., that for some T > 0, there is a point z ∈ S−
∞ with

d(z, γq(T )) ≥ T + 2ε, for some ε > 0. But then, for some neighborhood W of
γq(T ), we would have d(z, w) ≥ T + ε, for all w ∈ W , which would contradict
the fact that γσ(s) is an S−

∞-ray for all s ∈ [0, s0). Hence, γq|[0,∞) is a timelike
future S−

∞-ray. Since q ∈ S−
∞ ∩ S+

∞, we have q ∈ U (cf. Lemma 4.10). This
shows that σ can never leave U , i.e., we have σ : (−a, b) → U .

Now we show that, in fact, σ must be complete. Without loss of generality,
we take σ to be unit speed. Suppose to the contrary that b < ∞, for example.
Then the curve c(s) = (−2s, σ(s)), c : [0, b) → R × U ⊂ M is a past-directed
timelike geodesic in M , and σ(s) = expc(s)(2s∂t). By timelike completeness,
c extends to [0, b]. Furthermore, the vector field ∂t is parallel in exp⊥(U),
and hence, by parallel translating along c, has a limit at c(b). Hence, σ(s) =
expc(s)(2s∂t) has a limit as s → b, i.e., σ extends continuously, and hence as a
geodesic to [0, b]. But this would contradict the definition of b. Thus, in fact,
b = ∞, and similarly a = ∞, and σ is complete. Since σ was arbitrary, we have
shown that U is geodesically complete. But now a standard argument, using
the product structure and geodesic completeness of U , shows that J(U) =
exp⊥(U) ≈ R× U , and H±(U) = ∅. Hence, U is a Cauchy surface for M (and
is thus connected). This implies S−

∞ = U = S+
∞. �

Remark. One may ask, in the context of Theorem 4.11, what, if any, rigidity
occurs in the case that the common point p ∈ S−

∞ ∩ S+
∞ is a null point. In this

case, by part (2) of Lemma 4.10, there is a null line passing through p, the
future half of which is contained in S−

∞ and the past of which is contained in
S+

∞. If M is null geodesically complete and satisfies the null energy condition,
Ric(X,X) ≥ 0 for all null vectors X, then one can apply the results of [12] to
show that the components of S−

∞ and S+
∞ through p, respectively, agree along

a totally geodesic null hypersurface.
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5. Applications

We now explore some applications of the framework developed above. In Sect.
5.1, we show that the basic Lorentzian splitting theorem follows easily from
Theorem 4.11. In Sect. 5.2, we give a new result on the Bartnik splitting
conjecture. In Sect. 5.3, we explore some connections between rigidity and the
causal boundary, including some results in the case of positive cosmological
constant in Sect. 5.3.2. First, however, we note that Theorem 4.11 generalizes
the basic ‘Λ = 0’ splitting result in [14], there labeled Theorem 4.4.

Theorem 5.1. Let M be a globally hyperbolic, timelike geodesically complete
spacetime which satisfies the timelike convergence condition. Suppose that S−

∞
is a past horosphere which is future-bounded, i.e., S−

∞ ⊂ J−(Σ) for some
Cauchy surface Σ. If S−

∞ admits a past S−
∞-ray, then S−

∞ is a smooth, spacelike
geodesically complete Cauchy surface along which M splits.

Proof. To get this from Theorem 4.11, let γ be the past S−
∞-ray in the hy-

potheses. Since S−
∞ is future-bounded, S−

∞ is acausal, and hence γ must be
timelike. Constructing the associated future ray horosphere S+

∞(γ), we have
γ(0) ∈ S−

∞ ∩ S+
∞(γ), with I−(S−

∞) ∩ I+(S+
∞(γ)) = ∅, and γ(0) a spacelike

point. �

5.1. The Lorentzian Splitting Theorem

We now briefly note that Theorem 4.11 gives the basic Lorentzian splitting
theorem (stated below) as an easy consequence. Let α : (−∞,∞) → M be a
complete future-directed unit-speed timelike geodesic line. By the ‘future half ’
of α, we mean the future ray α+ := α|[0,∞). By the ‘past half ’ of α, we mean
the past ray α− := −α|(−∞,0]. Denote the ray horospheres associated with
each half of α by S−

α := S−
∞(α+) and S+

α := S+
∞(α−).

Lemma 5.2. The past and future pair of ray horospheres, S−
α and S+

α , associated
with each half of a complete timelike line α satisfy I+(S+

α ) ∩ I−(S−
α ) = ∅.

Proof. Suppose otherwise that there are points x ∈ S−
α and y ∈ S+

α with
y � x. Let U be a neighborhood of x and V a neighborhood of y such that,
for all u ∈ U and v ∈ V , we have v � u. Recall that x is the limit of a sequence
xk ∈ S−

k (α(k)) and y is the limit of a sequence yk ∈ S+
k (α(−k)). Then, for k0

a large enough integer so that both xk0 ∈ U and yk0 ∈ V , we have yk0 � xk0 .
But this leads to a contradiction of the maximality of α. �

Since α+ is a future timelike S−
α -ray (cf. Proposition 4.6), it then follows

from Lemma 4.10 that α(0) is a spacelike point for S−
α and S+

α . Theorem 4.11
thus gives the following version of the Lorentzian splitting theorem (due to
Eschenburg [8]):

Theorem 5.3 (Lorentzian Splitting Theorem). Let M be a globally hyper-
bolic, timelike geodesically complete spacetime, satisfying Ric(X,X) ≥ 0 for
all timelike X. If M admits a timelike line α, then M splits. In particular,
letting S−

α and S+
α be the ray horospheres associated with each half of α, then

Author's personal copy



3416 G. J. Galloway, C. Vega Ann. Henri Poincaré

S−
α = S+

α =: Sα is a smooth, spacelike, geodesically complete Cauchy surface
for M and (M, g) ≈ (R× Sα,−dt2 + h), where h is the induced metric on Sα.

5.2. The Bartnik Splitting Conjecture

The problem of establishing a Lorentzian analogue of the Cheeger–Gromoll
splitting theorem, posed by Yau [25] in the early 80s, was in fact originally
motivated by the question of rigidity in the classical singularity theorems of
Hawking and Penrose [18]. The ultimate resolution of the splitting theorem did
not, however, settle this rigidity question. In [3], Bartnik realized this question
concretely as follows.

Conjecture 5.4 (Bartnik Splitting Conjecture, ‘88). Suppose that M is a glob-
ally hyperbolic spacetime, with compact Cauchy surfaces, which satisfies the
timelike convergence condition, Ric(X,X) ≥ 0 for all timelike X. If M is
timelike geodesically complete, then M splits as (M, g) ≈ (R × Σ,−dt2 + h),
where Σ is a smooth spacelike Cauchy hypersurface, with induced metric h.

In physical terms, the conjecture roughly states that in a spatially closed,
relativistic spacetime (with Λ = 0), any dynamics whatsoever will always lead
to singularities. The conjecture is illustrated mathematically by the warped
product case, g = −dt2 + f2(t)h, for which the timelike convergence condition
implies f ′′ ≤ 0.

The Bartnik conjecture has been shown to hold under various auxiliary
conditions. (See for example, [3,9,11].) To our knowledge, the weakest of these
include the ‘ray-to-ray’ condition in [11] and the ‘max–min’ condition in [14].
In fact, it can be shown that the latter implies the former when M is timelike
complete. In any case, we will give a condition below which is weaker than
both, and under which Conjecture 5.4 still holds, cf. Theorem 5.8.

In [11], the first author established the following:

Theorem 5.5 ([11]). Let M be a (future or past) timelike geodesically complete
spacetime with compact Cauchy surface S. Suppose that there is a future S-ray
γ and a past S-ray η such that I+(η) ∩ I−(γ) 	= ∅. Then M admits a timelike
line.

The result above appears as Theorem 4.4 in [11], with the assumption
of full timelike completeness. We note, however, that timelike completeness in
either direction suffices, as the proof only involves applying Lemma 4.2 in [11]
in one direction. (See also Lemma 3.15 in [14].)

In fact, it is straightforward to see that the ‘ray-to-ray’ condition in Theo-
rem 5.5 can be weakened so that the future and past rays may be from different
Cauchy surfaces. That is, the construction of the timelike line given in [11] still
goes through if we only assume that there are (compact) Cauchy surfaces S
and Σ, and a future S-ray γ and past Σ-ray η satisfying I+(η)∩ I−(γ) 	= ∅. In
particular, this generalized ray-to-ray condition is sufficient to give the split-
ting in Conjecture 5.4.

A different condition was explored in [14]. Suppose that M is future
timelike geodesically complete. Let S be a compact Cauchy surface and set
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Sk := {x ∈ M : d(S, x) = k}, that is, Sk = S+
k (S). Then each Sk is itself

a compact Cauchy surface. Set Mk := max{d(x, Sk) : x ∈ S}, and mk :=
min{d(x, Sk) : x ∈ S}. We note that Mk = k, but we may have mk < k. Then,
as in [14], we say the ‘max-min’ condition holds on S if, for some positive
constant C > 0, we have Mk−mk ≤ C, for all k. The basic practical implication
of this condition is that if S satisfies the max-min condition, and if M is, in
addition, past timelike complete, then the past Cauchy horosphere S−

∞(S) is
compact, and hence a Cauchy surface itself. In particular, S−

∞(S) must admit
a past S−

∞(S)-ray, and thus, under the hypotheses of the Bartnik conjecture,
Theorem 5.1 applies to split M . This result, which we now state formally,
appears as Theorem 4.9 in [14].

Theorem 5.6 ([14]). Let M be a timelike geodesically complete spacetime which
satisfies the timelike convergence condition. If S is a compact Cauchy surface
which satisfies the max-min condition, then its past Cauchy horosphere S−

∞(S)
is a smooth compact spacelike Cauchy surface, along which M splits.

Hence, the Bartnik splitting conjecture holds under the additional as-
sumption of either the (generalized) ‘ray-to-ray’ condition or the ‘max-min’
condition. We now consider a kind of ‘horo-to-horo’ condition, which, in the
context of the conjecture, is implied by either of these, but still sufficient to
give the splitting.

Lemma 5.7. Suppose that M is timelike geodesically complete, with compact
Cauchy surfaces. If either the (generalized) ray-to-ray condition or the max-
min condition holds, then there are two Cauchy surfaces S and Σ such that
J+(S+

∞(Σ)) ∩ J−(S−
∞(S)) 	= ∅.

Proof. Suppose first that the generalized ray-to-ray condition holds, that is,
that there is a Cauchy surface S0 with future S0-ray γ : [0,∞) → M , and a
Cauchy surface Σ0 with past Σ0-ray η : [0,∞) → M , with both rays param-
eterized with respect to arc length, such that I+(η) ∩ I−(γ) 	= ∅. Hence, we
have η(a) � γ(b), for some 0 ≤ a, b < ∞. Letting S := S+

b (S0), then S is a
(compact) Cauchy surface, and the tail γ|[b,∞) is a future S-ray. Constructing
the past Cauchy horosphere S−

∞(S), we have γ(b) ∈ S−
∞(S) ∩ S, as in Proposi-

tion 4.7. Time-dually, letting Σ := S−
a (Σ0), then Σ is a Cauchy surface, with

η(a) ∈ S+
∞(Σ) ∩ Σ. In particular, this shows that J+(S+

∞(Σ)) ∩ J−(S−
∞(S))

	= ∅.
Now suppose instead that S is a Cauchy surface which satisfies the max-

min condition. It follows that the past Cauchy horosphere S−
∞(S) is a compact

Cauchy surface (see [14] for details). Letting Σ := S−
∞(S), then the future

Cauchy horosphere S+
∞(Σ) has a point in common with Σ. That is, we have

S+
∞(Σ) ∩ S−

∞(S) 	= ∅, from which the conclusion follows trivially. �

We now show the Bartnik conjecture holds under the condition in
Lemma 5.7.
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Theorem 5.8. Let M be a timelike geodesically complete spacetime, with com-
pact Cauchy surfaces, which satisfies the timelike convergence condition. Sup-
pose that there are two Cauchy surfaces S and Σ such that J+(S+

∞(Σ)) ∩
J−(S−

∞(S)) 	= ∅. Then M splits.

Proof. We recall first that the two Cauchy horospheres S−
∞(S) and S+

∞(Σ)
are acausal (cf. Proposition 4.7), and hence, in particular, consist entirely
of spacelike points. Now, note that the nontrivial intersection occurs within
the compact region J+(Σ) ∩ J−(S). Hence, there is a finite distance d :=
max{d(p, q) : p ∈ S+

∞(Σ), q ∈ S−
∞(S)}, and points p0 ∈ S+

∞(Σ) and q0 ∈
S−

∞(S), with d(p0, q0) = d(S+
∞(Σ), S−

∞(S)) = d. If d = 0, then it follows
(along the lines of Proposition 4.3) that the two horospheres ‘meet without
crossing’ as in Theorem 4.11, and we are done. If d > 0, the basic idea of
the proof is to replace S−

∞(S) with a modified horosphere which again gives
the situation of Theorem 4.11. More precisely, suppose that d > 0. Recall
that S−

∞(S) = lim{S−
k (S+

k (S))}. We then consider the modified horosphere
S−

∞+d(S) := lim{S−
k+d(S

+
k (S))}, which we claim is the same as taking the past

sphere from the original Cauchy horosphere, i.e., S−
∞+d(S) = S−

d (S−
∞(S)).

(See Fig. 5.) Suppose for now that this holds. Since d(p0, S−
∞(S)) = d, we

have p0 ∈ S−
d (S−

∞(S)) = S−
∞+d(S). Hence, S+

∞(Σ) ∩ S−
∞+d(S) 	= ∅. Further-

more, using the fact that S−
∞+d(S) = S−

d (S−
∞(S)), it follows that we must have

I+(S+
∞(Σ)) ∩ I−(S−

∞+d(S)) = ∅. Hence, Theorem 4.11 gives the splitting.
It remains to show that S−

∞+d(S) := lim{S−
k+d(S

+
k (S))} exists and equals

S−
d (S−

∞(S)). With regard to the latter, we note that, as was shown in [14],
S−

∞(S) is past causally complete and hence is an appropriate center for a past
sphere. To simplify notation, let Ck := S+

k (S). Hence, S−
∞(S) = lim{S−

k (Ck)}
and S−

∞+d(S) = lim{S−
k+d(Ck)}. To show that the latter (exists and) equals

the past sphere from the former, it suffices to show the two inclusions: (1)
lim{S−

k+d(Ck)} ⊂ S−
d (S−

∞(S)) and (2) S−
d (S−

∞(S)) ⊂ lim{S−
k+d(Ck)}. The

proof of these inclusions is facilitated by the fact that, as derived in [14],
we have S−

k (C−
k ) ⊂ J−(S) for all k, and that, moreover, S−

∞(S) is a ‘past
achronal limit’ as defined in [14] (cf. the last statement in Proposition 2.5 in
[14]). We leave the details to the interested reader. �

S−
∞(S)

S+
∞(Σ)

d

S−
d (S−

∞(S))

S+
∞(Σ)

Figure 5. Past sphere from S−
∞(S) gives a new horosphere
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The proof of Theorem 5.8 is a natural and immediate application of
Theorem 4.11 (cf. Fig. 5). However, we note also that the case I+(S+

∞(Σ)) ∩
I−(S−

∞(S)) 	= ∅ can alternatively be obtained from Theorem 3.7 in [11].

5.3. Connections to the Causal Boundary

We conclude with an exploration of some connections between rigidity and the
causal boundary of spacetime. More specifically, we consider the case that the
(past or future) causal boundary of M is spacelike. In Sect. 5.3.1, we show
in particular that the Bartnik splitting conjecture holds in this case. In Sect.
5.3.2, we explore this condition in the setting of positive cosmological constant.

We begin with some comments about the causal boundary of a globally
hyperbolic spacetime (M, g), cf. [15,18] for further details. We shall focus on
the past causal boundary C−; time-dual statements apply to the future causal
boundary C+. Heuristically, C− consists of ‘ideal points’ which represent the
‘past end points’ of past inextendible timelike curves. This is made precise in
terms of indecomposable future sets (IFs). Let F be a future set, F = I+(S)
for some set S ⊂ M . Recall, F is a future set if and only if I+(F ) = F . By
definition, F is an indecomposable future set if it cannot be expressed as the
union of two future sets which are proper subsets of F . It can be shown [18]
that there are only two types of IFs: the timelike future of a point p, I+(p),
and the timelike future of a past inextendible timelike curve γ, I+(γ). The
latter sets are called terminal indecomposable future sets, or TIFs for short.
The past causal boundary C− is, by definition, the set of all TIFs (with obvious
identifications). Following the terminology of Wald and Yip [24], C− is said to
be spacelike if no TIF is properly contained in another.

5.3.1. Ray-to-Ray and the Causal Boundary. There is a connection between
the ray-to-ray condition and the causal boundary of spacetime, which yields
yet another ‘special case’ of the Bartnik splitting conjecture.

Proposition 5.9. Let (M, g) be a spacetime with compact Cauchy surfaces. If
the past causal boundary of (M, g) is spacelike, then (M, g) satisfies the ray-
to-ray condition. Hence, if in addition (M, g) is future timelike geodesically
complete, (M, g) contains a timelike line.

This proposition is consistent with the example constructed in [7], which
does not contain any timelike lines, and whose past causal boundary is C− is
nontimelike, but not spacelike.

Proof of Proposition 5.9. Let S be a compact Cauchy surface for M , and let
γ be a future S-ray starting at p ∈ S. Let σ be a past inextendible timelike
curve starting at p. Use σ to construct a past S-ray in the usual manner: Take
a sequence of points pk along σ that exhaust σ to the past, and, for each k,
construct a past-directed maximizer to S, ηk, from S to pk. Since S is compact,
by a standard limit curve argument, a subsequence of the ηk’s converges to a
past S-ray η, which, again by compactness, must be timelike. By construction,
η ⊂ I+(σ), and hence by standard properties, I+(η) ⊂ I+(σ). Since the past
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causal boundary is assumed to be spacelike, we must have I+(η) = I+(σ).
Hence, I−(γ) ∩ I+(η) = I−(γ) ∩ I+(σ) 	= ∅. �

Proposition 5.9 thus gives the Bartnik conjecture under the additional
assumption of spacelike boundary:

Theorem 5.10. Let (M, g) be a spacetime which contains a compact Cauchy
surface and satisfies the timelike convergence condition. Assume that either
the future or past causal boundary of M is spacelike. If (M, g) is timelike
geodesically complete, then (M, g) splits as in the Bartnik conjecture.

Indeed, Proposition 5.9, or its time-dual, implies that M admits a timelike
line. One can then apply the Lorentzian splitting theorem. We note that the
past causal boundary of a complete product spacetime with compact Cauchy
surfaces, as in the conclusion of the theorem, is trivially spacelike, since it
consists of a single TIF. Indeed, the product structure and compactness of
the Cauchy surfaces imply that I+(γ) = M for any past inextendible timelike
curve and hence C− consists of a single element.

It is natural to ask if the timelike convergence condition, or a curvature
condition consistent with this (involving only weak inequalities), could be used
to show, in the context of Proposition 5.9, that the past causal boundary
is necessarily spacelike. Recall [4] that the spacetime Ricci curvature tensor
evaluated on a unit timelike vector can be expressed as minus the sum of
timelike sectional curvatures. Theorem 3 in [7], which is based on a causality
theorem of Harris [16], can be used to show the following.

Proposition 5.11. Let (M, g) be a spacetime with compact Cauchy surfaces and
with everywhere nonpositive timelike sectional curvatures, K ≤ 0. If (M, g)
is past timelike geodesically complete, then the past causal boundary C− is
spacelike; in fact C− consists of single element.

Proof. Indeed, one has I+(γ) = M for any past inextendible timelike curve.
For if this were not the case, then there would be a past inextendible time-
like curve γ such that ∂I+(γ) 	= ∅. By properties of achronal boundaries
[22], ∂I+(γ) is an achronal C0 hypersurface ruled by past inextendible null
geodesics. However, by the time-dual of [7, Theorem 3], any such null geo-
desic would enter its own timelike past, thereby violating the achronality of
∂I+(γ). �

Of course, [7, Theorem 3] also shows that there can be no null lines in
such a spacetime, and hence the standard causal line construction must give
rise to a timelike line.

5.3.2. An Application with Positive Cosmological Constant. In this section
we consider spacetimes (Mn+1, g) which obey the Einstein equations,

Rij − 1
2
Rgij + Λgij = 8πTij , (5.1)
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with positive cosmological constant Λ, where the energy–momentum tensor
Tij is assumed to satisfy the strong energy condition,(

Tij − 1
n − 1

Tgij

)
XiXj ≥ 0 (5.2)

for all timelike vectors X, where T = Ti
i.

After a rescaling, we may assume Λ = n(n−1)/2. With this normalization
the strong energy condition is equivalent to

Ric(X,X) ≥ −n for all unit timelike vectors X. (5.3)

The aim of this section is to prove the following singularity theorem and
a rigidity result from which it follows.

Theorem 5.12. Let (M, g) be a globally hyperbolic spacetime satisfying:
(1) (M, g) obeys (5.1)–(5.2), with Λ = n(n − 1)/2.
(2) (M, g) has spacelike past causal boundary C−.
(3) (M, g) admits a noncompact geodesically complete spacelike Cauchy sur-

face V of nonpositive scalar curvature, S ≤ 0.
(4) The local energy density along V is nonnegative, μ := T (u, u) = Tiju

iuj

≥ 0, where u is the future-directed unit normal to V .
Finally, assume V has nonnegative mean curvature at some point. Then (M, g)
is past timelike geodesically incomplete; in fact, some timelike geodesic orthog-
onal to V is past incomplete.

A distinctive feature of this theorem (in addition to the assumption of
a spacelike past causal boundary) is that the Cauchy surface is required to
be noncompact. Theorem 5.12 is well illustrated by the classical dust-filled
FLRW models satisfying (5.1) with Λ > 0; see, e.g., [6, chapter 23]. The spa-
tially isotropic Cauchy surfaces in these models are, up to a time-dependent
scale factor, complete simply connected spaces of constant (sectional) curva-
ture k = +1, 0,−1. If the so-called mass parameter is sufficiently small, the
‘closed’ models (k = +1) will be past timelike geodesically complete (the limit-
ing case being that of de Sitter space). However, the ‘open’ models (k = 0,−1),
to which, in fact, our theorem applies, are all past timelike geodesically incom-
plete, and in fact all begin with a big bang singularity.

Theorem 5.12 is a simple consequence of the following theorem.

Theorem 5.13. Let (M, g) be a globally hyperbolic spacetime which satisfies
the energy condition (5.3), and which has a spacelike past causal boundary
C−. Suppose M admits a geodesically complete spacelike Cauchy surface V
with mean curvature H ≥ n. If all timelike geodesics orthogonal to V are past
complete then V is necessarily compact, and (J−(V ), g) is isometric to the
warp product ([0,∞) × V,−dt2 + e−2th), where h is the induced metric on V .
(Here ∂

∂t is past pointing.)

Theorem 5.13 may be viewed as an extension of Proposition 3.4 in [1], to
the case of a complete, but not necessarily compact Cauchy surface.
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Suppose that (M, g) and V satisfy the hypotheses of Theorem 5.12. Con-
traction of the Gauss equation for V ⊂ M leads to the Hamiltonian constraint,

S − 2Λ − |K|2 + H2 = 16πμ,

where K is the second fundamental form of V . Using μ ≥ 0, Λ = n(n − 1)/2,
S ≤ 0, and |K|2 ≥ H2/n (by the Cauchy–Schwartz inequality) in the above
gives,

H2 ≥ n2 − n

n − 1
S ≥ n2.

Since H is assumed to be nonnegative somewhere, we conclude that H ≥ n. It
follows that (M, g) and V satisfy the conditions of Theorem 5.13. Since V is
assumed to be noncompact, we see that the conclusion of Theorem 5.12 now
follows from Theorem 5.13.

We now focus attention on the proof of Theorem 5.13. The proof makes
essential use of the following result of Wald and Yip [24].

Lemma 5.14 ([24]). Let (M, g) be a spacetime with Cauchy surface S and with
spacelike past causal boundary C−. Then for any TIF W , S ∩ W is compact.

This is the key consequence of assuming the past causal boundary is
spacelike. It will also be convenient for the proof of Theorem 5.13 to single out
the following:

Lemma 5.15. Let (M, g) be a globally hyperbolic spacetime satisfying the energy
condition (5.3). Let V be a spacelike Cauchy surface for M with mean curvature
H ≥ n, such that each timelike geodesic orthogonal to V is past complete. If
each such geodesic is a V -ray then (J−(V ), g) is isometric to the warp product
([0,∞) × V,−dt2 + e−2th), where h is the induced metric on V .

Proof of Lemma 5.15. The proof technique is fairly standard. The V -ray as-
sumption implies that there can be no focal points to V along any past-directed
normal geodesic. Furthermore, no two past-directed normal geodesics can in-
tersect. It follows that global Gaussian normal coordinates can be introduced
on J−(V ), i.e., up to isometry, J−(V ) = [0,∞) × V , and on J−(V ),

g = −dt2 + ht, (5.4)

where, for each t ∈ [0,∞), ht is the induced metric on Vt = {t} × V ; in local
coordinates we write, ht = hij(t, x)dxidxj .

For each t, let H = Ht and K = Kt be the mean curvature and second
fundamental form, respectively of Vt defined with respect to the future unit
normal field u = − ∂

∂t . H = Ht obeys the traced Riccati (Raychaudhuri)
equation,

∂H

∂t
= Ric(u, u) +

H2

n
+ |σ|2, (5.5)

where σ = σt, the shear tensor, is the trace free part of K, σ = K − H
n h. Since,

by assumption Ric(u, u) ≥ −n, we obtain the differential inequality

∂H

∂t
≥ H2

n
− n,
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where, in addition, H(0) ≥ n. It follows by basic comparison techniques (see,
e.g., [19, Section 1.6], [1, Proposition 3.4]) that H(t) ≥ n for all t ≥ 0. If
moreover, one had H(t) > n at some point along a normal geodesic to V ,
then, by the same sort of comparison techniques, H would necessarily diverge
to +∞ in finite parameter time t, which would be a contradiction. Hence, we
must in fact have H(t) ≡ n for all t ≥ 0. Using this and the Ricci curvature
condition (5.3) in (5.5), we conclude that the shear σ vanishes for all t ≥ 0,
which in turn implies that Kt = ht, or in terms of coordinates, Kij = hij for
all t ≥ 0. Since, in our Gaussian normal coordinates, Kij = − 1

2
∂hij

∂t , we obtain
ht = e−2th. Insertion of this in (5.4) yields the desired result. �

Proof of Theorem 5.13. We use Lemma 5.14 to construct a past V -ray. Let μ
be a past inextendible timelike curve starting on V . Consider a sequence of
points qk on μ, qk+1 ∈ I−(qk), exhausting μ to the past. Let γk be a past-
directed timelike geodesic maximizer to V , from pk ∈ V to qk; γk meets V
orthogonally. Since we are assuming the past causal boundary is spacelike,
Lemma 5.14 applied to the TIF I+(μ) gives that V ∩ I+(μ) is compact. Since
each pk ∈ V ∩ I+(μ), it follows that a subsequence of the γk’s converges to a
past inextendible timelike geodesic γ orthogonal V starting at p ∈ V , say. By
the maximality of the γk’s , γ is a past complete V -ray.

Now, let S+
∞ = S+

∞(γ) be the future ray horosphere associated with γ. By
Proposition 4.6, we know (i) S+

∞ ⊂ J+(V ), (ii) S+
∞ passes through p = γ(0),

and (iii) S+
∞ is acausal and there is a past timelike S+

∞-ray emanating from
each point. Consider any such S+

∞-ray α. By the manner in which these rays
are constructed (see [14, Lemma 3.22]), α ⊂ I+(γ), and hence I+(α) ⊂ I+(γ).
Since we are assuming the past causal boundary is spacelike, we must in fact
have I+(α) = I+(γ). It follows that for any point on γ there is a point on α in
its timelike past. Hence, since γ is past complete and α maximizes length to
S+

∞, α must also be past complete. Let α : [0,∞) → M be parameterized with
respect to arc length. For any r > 0, the future sphere S+

r (α(r)) is smooth near
α(0) and lies locally to the future of S+

∞. Using (5.3), by standard comparison
techniques ([19, Section 1.6], [14, Lemma 6.4]) S+

r (α(r)) has mean curvature
≤ n coth r at α(0). It follows that S+

∞ has mean curvature ≤ n in the support
sense. Let S+ be the connected component of S+

∞ which contains γ(0). Then
S+ ∩ V is nonempty and closed. Since S+ meets V locally to the future near
any intersection point x ∈ S+∩V , the maximum principle in [2] gives that, for
some spacetime neighborhood U of x, we have V ∩U = S+ ∩U . It follows that
S+ ∩ V is open in both V and S+, and hence that V = S+. Consequently, the
timelike past S+

∞-rays from each point of S+ = V are also V -rays. But these
V -rays are precisely the past normal geodesics from V .

We may now apply Lemma 5.15 to conclude that (J−(V ), g) is isometric
to the warped product ([0,∞)×V,−dt2+e−2th), where h is the induced metric
on V . To complete the proof, we show that if V is noncompact then the past
causal boundary of (J−(V ), g) (which agrees with the past causal boundary of
(M, g)) is not spacelike, contrary to assumption. Under the change of variable
u = et − 1, g on J−(V ) = {(u, x) : u ≥ 0, x ∈ V } becomes g = (u + 1)−2g̃,
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where g̃ is the product metric, g̃ = −du2 + h. Since the causal boundary is
conformally invariant, we may work with g̃. In what follows, all spacetime
quantities refer to this metric. If (V, h) is complete and noncompact, from any
point q ∈ V , we can construct a unit-speed ray σ : [0,∞) → V , s → σ(s).
Then η : [0,∞) → J−(S), defined by η(s) = (s, σ(s)) is a past inextendible
achronal null geodesic. By considering a past inextendible timelike curve in
I+(η) that asymptotes to η, we see that I+(η) defines a TIF. Let β be the
past-directed time line, β(u) = (u, q), u ≥ 0. By the product structure of g̃,
η ⊂ I+(β), and hence I+(η) ⊂ I+(β). On the other hand, since η is achronal,
q /∈ I+(η). Thus, I+(η) is a proper subset of I+(β), which implies that the
past causal boundary is not spacelike. Hence, V must be compact. �
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