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Abstract
Is the Universe !nite or in!nite, and what shape does it have? These fundamen-
tal questions, of which relatively little is known, are typically studied within the
context of the standard model of cosmology where the Universe is assumed to
be homogeneous and isotropic. Here we address the above questions in highly
general cosmological models, with the only assumption being that the aver-
age "ow of matter is irrotational. Using techniques from differential geometry,
speci!cally extensions of the Bonnet–Myers theorem, we derive a condition
which implies a !nite Universe and yields a bound for its diameter. Further-
more, under a weaker condition involving the interplay between curvature and
diameter, together with the assumption that the Universe is !nite (i.e. has closed
spatial slices), we provide a concise list of possible topologies. Namely, the spa-
tial sections then would be either the ring topologies S1 × S2, S1 ×̃ S2, S1 × RP2,
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RP3#RP3, or covered by the sphere S3 or torus T3. In particular, under this con-
dition the basic construction of connected sums would be ruled out (save for
one), along with the plethora of topologies associated with negative curvature.
These results are obtained from consequences of the geometrization of three-
manifolds, by applying a generalization of the almost splitting theorem together
with a curvature formula of Ehlers and Ellis.

Keywords: topology, mathematical cosmology, Bakry–Emery

1. Introduction

The standard model of cosmology, or ΛCDM model, is based on the Friedmann–
Lemaître–Robertson–Walker (FLRW) solutions of the Einstein equations which describe a
Universe that is both homogeneous and isotropic, meaning that the set of possible observations
does not depend on location or direction. These symmetries characterize the FLRW models,
and imply that the three-dimensional spatial sections (an instant of time) are of constant sec-
tional curvature and that all physical quantities, such as the matter density ρ and Hubble scalar
H, are constant along the time slices. An interesting feature of these models is the prediction
that if

8πGρ/c2 − 3(H/c)2 + Λ > 0, (1.1)

where c, G, and Λ are respectively the speed of light, and the gravitational and cosmological
constant, then the spatial sections are of curvature greater than a positive constant and hence
compact (!nite). This is the closure result of FLRW cosmologies. It should be noted that in the
case when the inequality of (1.1) is reversed, the time slices are of zero or negative curvature and
can be either open (in!nite) or closed and, if closed, will have nontrivial topology manifested
by an in!nite fundamental group.

The hypotheses of homogeneity and isotropy are well-motivated when averaged over very
large scales, as can be seen by observation [1, 8] as well as through the successes of the
ΛCDM model. Nonetheless, it is of interest to study models that do not require these pillars
of the cosmological principle. A well-known theoretical framework that removes the isotropic
assumption is that of the Bianchi Universe. In [32], a thorough analysis of these models and
their relation to the CMB data has been given, and limits on the anisotropic expansion have been
found. Still, these models are homogeneous and provide a very speci!c type of anisotropy. In
this paper we drop the postulate of symmetry altogether, and study general cosmological mod-
els with the sole assumption that the average "ow of matter is irrotational. This hypothesis
guarantees that through any spacetime point, there passes a three-dimensional submanifold
orthogonal to the average "ow of matter, which represents the spatial Universe at a moment
of time. In this broad setting, we will generalize the closure result described above, giving
a condition which implies that these spatial sections are compact. In analogy with (1.1), the
condition is then shown to be satis!ed within the margin of error by the observed values of rel-
evant physical quantities. Furthermore, our approach naturally produces an approximate upper
bound for the diameter of the spatial slice.

The methods that we use to study the closure property are based on a classical result
of differential geometry, known as the Bonnet–Myers theorem (or often simply the Myers
theorem) [31, theorem 25]. This states that a complete Riemannian manifold with Ricci curva-
ture bounded below by a positive constant must have !nite diameter, and also gives a bound for
this length. In the setting of general cosmological models, a formula of Ehlers and Ellis [16,
17] implies that a version of the Ricci tensor, referred to as the Bakry–Émery Ricci curvature,
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appears on the spatial sections and is coupled to the matter content as well as other aspects of
the geometry. An extended version of the Bonnet–Myers theorem [27] may then be employed
to ascertain a diameter bound for time slices. Initial results in this direction were obtained by
the !rst named author in [21, 22], where closure results were found under more stringent con-
ditions that are not necessarily consistent with current observations. Moreover, the suggestion
to directly apply the Bonnet–Myers theorem was discussed in [18].

Planck temperature and polarization measurements combined with lensing data show that,
if our Universe is FLRW at least, the closure criterion is satis!ed at approximately an 85%
con!dence level. Since the data analysis hypothesizes a background FLRW cosmology, it is
possible that the con!dence level for the closure criterion may have some dependence on that
choice. But even if the lower bound for the Bakry–Émery Ricci curvature of spatial sections
is not positive (i.e. so that the Universe is possibly closed but the energy density is not suf!-
cient to force the Universe to be closed), it is reasonable to assume that it is almost4 positive.
This suggests the application of another result from differential geometry, namely the almost
splitting theorem [12], which is a re!nement of the classical splitting theorem [13]. The lat-
ter result asserts that in the presence of a line (a geodesic which is in!nite in both directions
and minimizes length between any two of its points), a complete manifold of nonnegative
Ricci curvature splits off a Euclidean factor both geometrically and topologically. The almost
splitting re!nement deals with almost nonnegative Ricci curvature, and while the conclusion
is weaker than the original result, strong topological restrictions still follow when applied to
compact manifolds. As mentioned above, in the setting of general cosmological models, the
Ricci curvature of spatial sections should be replaced by the Bakry–Émery Ricci curvature. It
turns out that the almost splitting result may be extended to the Bakry–Émery context [23],
and as we will see this is suf!cient for cosmological applications. If the spatial sections are
indeed compact, the topology is then highly restricted in the sense that the fundamental group
must be almost abelian, or rather, it admits an abelian subgroup of !nite index.

A major development in topology and geometry came over 15 years ago, when Thurston’s
geometrization conjecture was con!rmed [11, 26, 29, 30]. This gives a classi!cation of com-
pact three-manifolds in terms of eight model geometries. Consequences of geometrization,
when combined with restrictions placed on the fundamental group from the almost splitting
theorem, yield a short list of possible topologies for the spatial sections of the Universe. More
precisely, the time slices can either admit as a covering space the three-sphere S3 or three-torus
T3, or are covered by S1 × S2. In this last case there are only four possibilities. The sections can
be the trivial or non-orientable two-sphere bundle over a circle S1 × S2 or S1 ×̃ S2, the product
of a circle and the two-dimensional real projective space S1 × RP2, or the connected sum of
two copies of three-dimensional real projective space RP3#RP3. Interestingly, the last four on
this list, which qualitatively may be interpreted in terms of complexity as lying between the
!rst two possibilities, are not considered within the FLRW models because they do not admit
metrics of constant curvature. The !rst two cases are quotients of the sphere or torus, and do
arise in the standard model of cosmology. Such quotients of the sphere are known as spherical
three-manifolds, and they are divided into !ve classes related to the Platonic solids, with their
classi!cation given in [33]. The corresponding quotients of the torus are known as Bieberbach
manifolds, and there are 10 in total [36], six being orientable and four non-orientable. The
results of this paper may then be interpreted as reducing the topology question for general cos-
mological models, which forgo any symmetry hypotheses, to the same question as presented

4 While the quanti!er ‘almost’, as used here, may be interpreted in the colloquial sense, other instances have a precise
mathematical meaning. Examples of the latter case include ‘almost abelian group’ and ‘almost splitting’ (see [12]).

3



Class. Quantum Grav. 39 (2022) 195004 G J Galloway et al

by the FLRW models for positive and zero curvature, plus the four additional candidates aris-
ing from the product of a circle with the two-sphere. Notably, this would eliminate the case of
negative curvature with its in!nite variety of topologies, as well as the possibility of connected
sums, except for one. The connected sum construction is a fundamental method for build-
ing new manifolds out of others of the same dimension, and allows for the three-dimensional
classi!cation problem to be focused on the study of basic building blocks through the prime
decomposition. From a cosmological perspective, a Universe that is a nontrivial connected
sum may be interpreted as possessing one or more wormholes between regions having prime
three-manifold topology. Thus, even without the assumption of homogeneity and isotropy, the
presence of wormholes is strongly disfavored. While these conclusions, drawn from the almost
splitting theorem, apply to closed universes that may not quite achieve closure density, they
apply to observations on scales larger than a certain quantity set by the amount that closure
density exceeds the actual mass-energy density. The mathematics asserts that there is such a
scale but does not provide a clear method to compute it.

Investigations using the ‘circles in the sky’ method have claimed that many of the Bieber-
bach manifolds are unlikely candidates for the topology of the Universe [14], and robust
constraints have been placed on the possible spherical topologies that can be detected [35].
Another primary tool that has been used to investigate cosmic topology is the ‘method of
images’ [9, 10], which has achieved restrictions in the compact hyperbolic setting. See [28]
for a survey of results. Furthermore, using the ΛCDM and Bianchi models, the Planck mission
[2] has found no signi!cant evidence for nontrivial topology. It should be pointed out, how-
ever, that the candidate ring topologies (those covered by S1 × S2) were not considered in this
analysis since they do not arise within the models studied. Early WMAP data was analyzed in
[6, 7], which ruled out most (but not all) spherical spaces, namely all except for the three-sphere
and two speci!c quotients of it. Therefore if the Universe is indeed closed, as is suggested by
Planck [19], then modulo the ring topologies which have not been previously investigated, the
current evidence seems to point toward the three-sphere as the most likely cosmic topology.
See, however, the very recent analysis of [5] showing evidence for toroidal topology.

We now summarize our results. In section 2 we give an explicit derivation of the Ehlers–Ellis
formula [20]. Using this formula, and without the usual assumptions of homogeneity and
isotropy, when critical closure density is surpassed we show that the full list of possible
topologies for the Universe is no larger than the spherical spaces allowed in FLRW models.
Furthermore, if the critical density is not quite achieved, we show in section 3 that topological
restrictions still apply to closed universes that have small diameter. Smallness is measured in
terms of the density, though the precise relationship is not known.

2. The closure criterion

2.1. Background

We begin by setting the stage for the cosmological models studied here. This will lead to the
Ricci curvature formula of Ehlers and Ellis, for spatial slices, from which we will apply an
extended version of the Bonnet–Myers theorem to obtain conditions for closure.

Consider a four-dimensional spacetime (M4, g) satisfying the Einstein equations

Rab −
1
2
Rgab + Λgab = κTab, (2.1)

with stress–energy tensor T and κ = 8πG/c4. Assume that there is a smooth unit time-like
vector !eld u which represents the velocity !eld of the average "ow of matter in the Universe.
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This implies the mild restriction that the spacetime is time-orientable, in which u points into the
future. Observe that the covariant derivative may be decomposed orthogonally into irreducible
parts based on symmetry by

∇aub = −uau̇b +
1
3
θgab + σab + ωab, (2.2)

where u̇ = ∇uu, and gab = gab + uaub is the projection onto the orthogonal complement of
u. Additionally, if i, j represent directions perpendicular to u then θ = ∇iui is the volume
expansion scalar or H = θ/3 is the Hubble scalar, σi j = ∇〈iu j〉 is the shear tensor, and
ωi j = ∇[iu j] is the vorticity tensor with σabub = ωabub = 0. Here the notation 〈〉 indicates
tracefree symmetrization, whereas [ ] indicates anti-symmetrization.

It will also be assumed that the average "ow of matter is irrotational, that is ω = 0. This
condition is equivalent to u ∧ du = 0, and by the Frobenius theorem it guarantees that the
distribution of orthogonal subspaces to u is integrable. Thus u is hypersurface orthogonal,
so that through any given spacetime point there is a maximal connected three-dimensional
submanifold M3 whose tangent spaces are orthogonal to u, and has positive de!nite induced
metric g. Physically, M3 may be interpreted as a spatial section, or some instant of time. Local
coordinates (t, x1, x2, x3) may then be introduced in a spacetime neighborhood about any point
of M3, such that the metric is expressed as

g = −ϕ2 dt2 + gi j(t, x)dxi dx j, (2.3)

where u = ϕ−1∂t. Here t is a synchronous time coordinate with t = 0 corresponding to M3,
and the xi are local coordinates on the time slice. Furthermore, letting ∇ denote the ‘spatial’
gradient/covariant derivative, it can be shown that

X: = ∇uu = ∇ logϕ = gab∂a logϕ∂b, (2.4)

in particular X is tangent to M3. Note that although the vector !eld X exists globally, it may
not globally be the gradient of a function, as the expression (2.4) is local. In what follows we
will use geometrized units where c = G = 1, so that coordinates carry distance units, time is
converted to distance using the speed of light, and u is dimensionless so that g(u, u) = −1.

The setup described above is useful, because it yields natural spatial sections that can then
be examined for closure, without imposing symmetry hypotheses. In particular, there is no
requirement that the cosmology be close in any sense to an FLRW model. In order to proceed,
we seek to understand positivity properties of the Ricci curvature Ri j of the slice M3. From
the Einstein equations, together with the Gauss and Codazzi relations, the following formula
appears in [20] (see also [16, 17])

Ri j = ∇〈iX j〉 + X〈iX j〉 +
1
3

(
2µ − 2

3
θ2 + |σ|2 + 2Λ

)
gi j − σ̇〈i j〉 − θσi j + Πi j, (2.5)

where σ̇ = ∇uσ. The derivation of this formula is not easily discerned from the literature,
and for this reason we present one at the end of this section. The remaining quantities appear-
ing in this equation either have been described above or arise from the decomposition of the
stress–energy tensor with respect to the "ow of matter

κTab = µuaub + qaub + qbua + pgab + Πab, (2.6)
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where qaua = 0, Πabub = 0, and Π〈ab〉 = Πab. Here µ is the energy density, which when
expressed in physical units is given by 8πGρ/c2. Likewise q represents momentum density, p
represents the isotropic pressure, and Π represents the trace-free anisotropic pressure all mul-
tiplied by κ; these have dimensions of inverse length squared in geometrized units. If qa = 0
and Πab = 0 then the matter is a perfect "uid. If in addition p = 0 then it is a dust, and in some
scenarios this pressureless perfect "uid is used to model cold dark matter. However, here, we
make no assumption about the type of matter present.

Notice that upon taking a trace of (2.5) we obtain a simple expression for the scalar curvature
of the spatial section

R = 2µ − 2
3
θ2 + |σ|2 + 2Λ. (2.7)

Observe that the condition (1.1), from the closure result of FLRW cosmologies, implies that
R > 0. Nevertheless, this is not suf!cient in the current context to conclude that M3 is compact,
because this spatial slice is not necessarily of constant curvature. On the other hand, positivity
of Ricci curvature, or Bakry–Émery Ricci curvature is suf!cient to obtain the closure property.

2.2. The Bakry–Émery Ricci condition

Consider an n-dimensional Riemannian manifold (Mn, g), and let m > 0. Recall that the
generalized m-Bakry–Émery Ricci tensor is given by

Ricm
V (g) = Ric(g) +

1
2
LV g − 1

m
V ⊗ V , (2.8)

in which (in a slight abuse of notation) LV denotes Lie differentiation along the vector !eld
metric-dual to the one-form V. Bakry–Émery Ricci curvature arises naturally in many contexts,
of which one notable instance is the warped product structure of Kaluza–Klein compacti!ca-
tion; in the present situation it appears in the Ehlers–Ellis formula (2.5), as we make note of
below. A version of the Bonnet–Myers theorem for this type of Ricci tensor was established
in [27]. It states that if the manifold is complete and

Ricm
V (g) ! (n + m − 1)λg, (2.9)

for some constant λ > 0, then the manifold has bounded diameter with the upper bound

diam (Mn) " π√
λ

. (2.10)

Since the manifold is complete with !nite diameter we conclude that it is compact, and has
!nite fundamental group |π1 (Mn) | < ∞. Moreover, in the case that n = 3, the elliptization
portion of the geometrization of three-manifolds implies that M3 must be a spherical manifold,
and thus is a quotient of S3 by a subgroup of isometries acting properly discontinuously.

These observations may now be applied to general cosmological models. Namely, we may
rewrite the Ricci formula for spatial slices (2.5) to !t within the context of the Bakry–Émery
Ricci curvature, by setting V = −X and m = 1 to !nd

Ric1
−X(g) =

2
3

(
µ + Λ +

1
2
|σ|2 − 1

3
θ2 − 1

2
div X − 1

2
|X|2

)
g − σ̇ − θσ + Π. (2.11)
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In order to estimate this from below, and make contact with cosmological parameters, we de!ne
the Hubble scalar H, total matter density Ω0, and dark energy density ΩΛ as follows

H =
1
3
θ, Ω0 = inf

M3

µ

3H2 , ΩΛ = inf
M3

Λ

3H2 . (2.12)

The remaining terms on the right-hand side of (2.11) should be negligible, and we denote their
smallest eigenvalue by

ε = inf
x∈M3

min
w∈TxM3

|w|=1

[(
|σ|2

6H2 − div X + |X|2

6H2

)
g − σ̇

2H2 − 3σ
2H

+
Π

2H2

]
(w, w). (2.13)

It follows that

Ric1
−X(g) ! 2 (Ω0 + ΩΛ − 1 + ε) H2g. (2.14)

By applying the generalized Bonnet–Myers theorem we obtain a closure result and diameter
bound for the Universe. The Hubble constant will be set as H0 = infM3 H.

Theorem 2.1. Consider a four-dimensional spacetime satisfying the Einstein equations
with matter, and assume that there exists a smooth unit time-like irrotational vector !eld which
represents the velocity !eld of the average "ow of matter in the Universe. Let M3 be a complete
spatial section orthogonal to the average "ow or matter with positive Hubble constant H0 > 0.
If the sum of the matter and dark energy densities is suf!ciently large so that

Ω = Ω0 + ΩΛ > 1 − ε, (2.15)

then the following properties hold.

(a) The Universe is closed, that is, M3 is compact.
(b) The spatial section M3 is a spherical three-manifold, namely, it is a quotient of S3 by a

subgroup of isometries acting properly discontinuously.
(c) The diameter of the Universe satis!es

diam
(
M3) " π

H0

√
3

2(Ω− 1 + ε)
. (2.16)

How large might the right-hand side of (2.16) be? According to [3, (47a) page 40], if one
assumes the Universe to be FLRW then data from the CMB temperature and polarization
anisotropies together with lensing yield

Ω = 1.0106 ± 0.0065 (2.17)

at 68% con!dence yielding an upper bound for the diameter of the Universe

diam " 1.2 × 1028 m (2.18)

at 85% con!dence. This is larger than estimates obtained using traditional models, but depends
on many assumptions, including that Planck data analyzed using an assumed FLRW back-
ground will not yield an appreciably different result if the Universe is not (nearly) FLRW, and
that the estimate (2.17) applies to the entire Universe and not just the observable portion. Yet
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there is much room for error, since this estimate is well beyond the distance from Earth to the
edge of the observable Universe, which in [24] is approximated to be 4.26 × 1026 m.

It should be noted, however, that the fundamental question of whether closure density is
actually achieved remains undecided and is an area of intense investigation. As the theorem
indicates, the possible topologies in this regime are tightly constrained, even far from the
setting of homogeneous and isotropic cosmologies. On the other hand, if closure density is
not achieved then the almost splitting result could apply, which implies restrictive yet milder
topological constraints that are discussed in the next section.

2.3. The Ehlers and Ellis spatial Ricci formula

Here we present justi!cation for the Ricci formula (2.5) associated with spatial sections. This
formula appears in [20] (see also [16, 17]), although a detailed derivation does not seem to be
recorded in the literature.

First observe that the second fundamental form of a time slice is given by Ai j = 〈∇iu, ∂ j〉,
and by the Gauss equations

Ri jkl = Ri jkl + AikA jl − AilA jk, (2.19)

where Ri jkl and Ri jkl denote the curvature tensors of g and g, respectively, while i, j, k, and l
indicate directions tangent to the slice. Taking traces produces

R jl + Ru jul = R jl + θA jl − AliAi
j, R + 2Ruu = R + θ2 − |A|2, (2.20)

with θ = gi jAi j. By setting X = ∇uu, the curvature tensor components are given by

Ru jul = ∇ jXl − 〈∇u∇ ju, ∂l〉 + X jXl. (2.21)

To see this note that

Ru jul = 〈R(∂ j, u)u, ∂l〉 = 〈∇ j∇uu −∇u∇ ju −∇[∂ j,u]u, ∂l〉, (2.22)

and combine it with

[
∂ j, u

]
=

[
∂ j,φ−1∂t

]
= −∂ jφ

φ
u = −X ju, (2.23)

as well as

−〈∇[∂ j,u]u, ∂l〉 = X j〈∇uu, ∂l〉 = X jXl. (2.24)

It follows that

R jl = R jl + Ru jul − θA jl + A2
jl

= R jl + ∇ jXl + X jXl − 〈∇u∇ ju, ∂l〉 − θA jl + A2
jl.

(2.25)

Next, by evaluating the Einstein equations along tangential direction to the slice we obtain

R jl =
1
2
Rg jl + κT jl − Λg jl. (2.26)

Below it will be shown that

〈∇u∇ ju, ∂l〉 = Ȧ jl + A2
jl, (2.27)
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and therefore

R jl =
1
2
Rg jl + κT jl − Λg jl + ∇ jXl + X jXl − θA jl − Ȧ jl. (2.28)

To con!rm (2.27) observe that

〈∇u∇ ju, ∂l〉= u〈∇ ju, ∂l〉 − 〈∇ ju,∇u∂ l〉
= u〈∇ ju, ∂l〉 − A2

jl − 〈∇ ju, [u, ∂l]〉
= u〈∇ ju, ∂l〉 − A2

jl,

(2.29)

since

〈∇ ju, [u, ∂l]〉 = −Xl〈∇ ju, u〉 = 0. (2.30)

Furthermore direct computation shows that

u〈∇ ju, ∂l〉= uA jl

= (∇uA)(∂ j, ∂l) + A(∇u∂ j, ∂l) + A(∂ j,∇u∂l)

= Ȧ jl + A(∇u∂ j, ∂l) + A(∂ j,∇u∂l),

(2.31)

and

A(∇u∂ j, ∂ l) = ϕ−1A(∇t∂ j, ∂l)

= ϕ−1A(∇ j∂ t, ∂l)

= A(∇ ju, ∂l) − (∂ jϕ
−1)A(∂t, ∂l)

= Ak
jAkl − (∂ jϕ

−1)A(∂t, ∂l),

(2.32)

and

A(∂t, ∂l) = 〈∇tu, ∂l〉 = −〈u,∇t∂ l〉 = −〈u,∇l∂ t〉 = 〈∇lu, ∂t〉 = ϕ〈∇lu, u〉
= 0,

(2.33)

so that

u〈∇ ju, ∂l〉 = Ȧ jl + 2A2
jl. (2.34)

The desired conclusion (2.27) now follows from (2.29) and (2.34).
Consider the trace-free second fundamental form σi j = Ai j − 1

3θgi j. Differentiating pro-
duces

σ̇i j = Ȧi j −
1
3
θ̇gi j, (2.35)

since

ġi j = (∇ug)(∂i, ∂ j) = (∇ug)(∂i, ∂ j) + ∇u(u ⊗ u)(∂i, ∂ j) = 0. (2.36)

9
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Furthermore, recall the decomposition of the stress–energy tensor (2.6) to !nd

Trg κT = −µ + 3p. (2.37)

The Raychaudhuri equation then becomes

θ̇ = −|σ|2 − 1
3
θ2 − 1

2
(µ + 3p) + Λ + div X + |X|2. (2.38)

Combining this with (2.35) gives

Ȧ jl = σ̇ jl +
1
3
θ̇g jl

= σ̇ jl +
1
3

(
−|σ|2 − 1

3
θ2 − 1

2
(µ + 3p) + Λ + div X + |X|2

)
g jl.

(2.39)

Now take a trace of the Einstein equations to compute the spacetime scalar curvature

R = 4Λ− Trg κT = 4Λ + µ − 3p. (2.40)

Use this, and insert (2.39) into (2.28) to produce

R jl = ∇ jXl + X jXl + κT jl − θA jl − σ̇ jl

+
1
3

(
|σ|2 +

1
3
θ2 + 2µ − 3p − div X − |X|2 + 2Λ

)
g jl.

(2.41)

Since

κT jl = κT〈 jl〉 +
1
3

(
Trg κT

)
g jl = Π jl + pg jl, (2.42)

we have

R jl = ∇〈iXl〉 + X〈 jXl〉 + Πi j − θA jl − σ̇ jl +
1
3

(
2µ +

1
3
θ2 + |σ|2 + 2Λ

)
g jl. (2.43)

Next note that

θA jl = θσ jl +
θ2

3
g jl, (2.44)

and

σ̇ jl = σ̇〈 jl〉 +
1
3

(
gikσ̇ik

)
g jl = σ̇〈 jl〉, (2.45)

as σ̇ is trace-free. To see this last point, observe that the full spacetime trace of the shear tensor
vanishes, so that

0 = ∂ t(gabσab) = gab∇tσab = gi j∇tσi j = φgi jσ̇i j, (2.46)

where we have used that ∇tσ(∂t, ∂t) = 0. Combining (2.44) and (2.45) with (2.43), yields the
desired Ricci formula (2.5).
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3. Cosmic topology of a closed Universe

In section 2 we saw that positive Bakry–Émery Ricci curvature of spatial slices may be used to
obtain a closure result and diameter bound. This led to a highly restrictive list of possible Uni-
verse topologies consisting of spherical space forms. It is nevertheless possible that this lower
bound could be slightly negative. In this situation the Bonnet–Myers theorem and its gener-
alizations are not applicable. However, the almost splitting theorem [12] is in fact speci!cally
designed for this scenario. As discussed in the introduction, the almost splitting result gives
conditions under which the manifold almost splits-off a Euclidean factor. Here we will be inter-
ested in the topological conclusions that follow from this almost splitting, under the assumption
that the Universe is spatially closed. While the original theorem was established for pure Ricci
curvature, a recent extension [23, theorem 1.3] has been established for Bakry–Émery Ricci
curvature that is applicable to the cosmological context. The next result translates this theorem
to the current setting.

Theorem 3.1. Consider a four-dimensional spacetime satisfying the Einstein equations,
and assume that there exists a smooth unit time-like irrotational vector !eld which represents
the velocity !eld of the average "ow of matter in the Universe. Let M3 be a compact spa-
tial section orthogonal to the average "ow of matter with Hubble scalar H0. There exists a
suf!ciently small δ > 0 dependent on diameter, volume, and size of X, such that if

(Ω− 1 + ε) H2
0 ! −δ, (3.1)

then the fundamental group π1
(
M3

)
is almost abelian. In particular, the spatial slice admits

a !nite cover whose fundamental group is abelian.

The restrictions on the fundamental group imposed by this theorem, together with conse-
quences of the geometrization theorem for three-manifolds, yields a list of possible topologies
for the Universe that are detailed below. An important consequence is that relatively small neg-
ative (Bakry–Émery Ricci) curvature, which is not inconsistent with the range of possibilities
implied by current measurements, does not permit spatial sections to have the topology of a
hyperbolic manifold; here relative smallness is interpreted with respect to diameter. By way of
contrast, in the standard model of cosmology, any amount of negative curvature implies that
spatial sections must have the topology of a hyperbolic manifold.

A primary hypothesis of theorem 3.1 is the smallness requirement of the constant δ. The
degree to which δ must be small for the conclusions to be valid relies on the diameter and
volume of M3, as well as on X. On the other hand, we may obtain a rough estimate of a lower
bound for δ guaranteeing applicability to the observable Universe, in a manner similar to the
diameter estimation. We may assume with some con!dence that H0 > 5 × 10−27 m−1. Planck
CMB spectra combined with lensing and BAO data [3, !gure 26] (see also [15, !gure 1]) imply,
for an FLRW Universe at least (this being an implicit assumption in the data analysis), that

(Ω− 1 + ε) H2
0 ! −1.25 × 10−55 m−2 (3.2)

with about 95% con!dence. This seemingly small value suggests the possible applicability of
theorem 3.1 to the physical Universe. Note, however, that since δ is not dimensionless any
discussion of its ‘smallness’ must come in comparison to something else. The theorem relates
smallness to a diameter upper bound, volume lower bound, and modulus bound for X. Since
the volume of M3 and magnitude of X are well-behaved, it is the diameter that should be used to
interpret the smallness of δ. Although an exact formula for the dependence of δ on the diameter
is not known, a reasonable conjecture is that the dimensionless quantity δ · diam2 should be

11
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bounded above by a universal constant in order for the conclusions of the theorem to hold.
Notice that the inverse squared diameter of the Universe, as discussed in the previous section,
is on par with the value in (3.2). In particular, if the diameter was known de!nitively to be
slightly smaller than the proposed upper bounds, then the almost abelian fundamental group
property would be con!rmed.

3.1. Consequences of geometrization

The geometrization theorem [11, 26, 29, 30] gives a classi!cation of compact three-manifolds.
Here we will work under the conclusion of theorem 3.1, that the spatial slice M3 has almost
abelian fundamental group, and derive the possible topologies from the classi!cation. The !rst
observation [25, theorem 6] is that this assumption implies that M3 cannot be expressed as a
connected sum M1#M2, where M1 and M2 are compact manifolds having nontrivial fundamen-
tal groups, except possibly in the case that π1(M1) = π1(M2) = Z2. Thus either M3 is prime,
or M3 = RP3#RP3 is the connected sum of two copies of real projective space.

Let N3 be a !nite cover of M3 with abelian fundamental group. Since M3 is compact, N3 is
compact as well. Moreover, it may be assumed without loss of generality that N3 is orientable,
since we may take the orientable double cover if necessary. Geometrization may be used to pro-
vide a list [4, table 1.2] of the possible abelian fundamental groups associated with orientable
compact three-manifolds. Namely, π1(N3) may be one of the following groups: Z, Z3, and Zp

the !nite cyclic group of order p. Note that examples of three-manifolds realizing these groups,
respectively, are the ring S1 × S2, the torus T3, and the lens space L(p, q) where q is coprime
to p. In fact, we claim that N3 must be one of these three types of manifolds. To see this, !rst
observe that due to the restriction on the fundamental group N3 must be prime. According to [4,
theorem 2.1.2], if N1 and N2 are two closed orientable prime three-manifolds with isomorphic
fundamental groups, and they are not lens spaces, then they must be homeomorphic. It follows
that if π1

(
N3

)
= Z then N3 is homeomorphic to S1 × S2, whereas if π1

(
N3

)
= Z3 then N3

is homeomorphic to T3. The only other possibility is that π1
(
N3

)
= Zp. Since this is a !nite

group, we may use the elliptization portion of the geometrization theorem to conclude that N3

is homeomorphic to a lens space L(p, q).
The above arguments show that, when the conclusion of theorem 3.1 holds, M3 must be

covered by S3, S1 × S2, or T3. In the second case, more can be said. In particular, if M3 is
covered by S1 × S2 then it is also covered by the universal cover R × S2. By [34, theorem 1],
this implies that M3 must be either: S1 × S2, the non-orientable two-sphere bundle over the
circle S1 ×̃ S2, S1 × RP2, or RP3#RP3.

3.2. Conclusions

We have analyzed the topology and other aspects of highly general cosmological models, which
are completely divorced from the typical symmetry assumptions of homogeneity and isotropy.
Conditions that guarantee a closed Universe have been given, along with a bound for its diame-
ter, using an extended version of the Bonnet–Myers theorem. Further analysis of the topology
under weaker hypotheses involving the interplay between curvature and diameter, derived from
a generalized almost splitting theorem combined with geometrization of three-manifolds, has
provided a list of possible topologies for a closed Universe. Speci!cally, the spatial sections
allowed under theorem 3.1 must be either covered by S3 or T3, or are one of S1 × S2, S1 ×̃ S2,
S1 × RP2, or RP3#RP3. In particular, this eliminates connected sums (except for one) as well
as the vast array of hyperbolic topologies.

Finally, we consider the estimate for δ. The almost splitting theorem states that the critical
value for δ, below which topological conclusions can be drawn, is a function of parameters
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such as the diameter of the Universe. However, the theorem does not construct this function,
or provide an obvious way to directly analyze its properties. It is therefore an intriguing open
problem to determine estimates for this critical value. Nevertheless, the fact that this value is
nonzero implies that even with negative Ricci curvature of spatial sections, strong topologi-
cal restrictions for the Universe are still very much possible depending on the size of δ. This
is in sharp contrast to the standard model of cosmology, where only nonnegative scalar cur-
vature of spatial slices induces such topological rigidity. Moreover, in further contrast to the
standard model, these conclusions hold in highly general settings without the assumptions of
homogeneity and isotropy, or in fact without any symmetry hypotheses at all.
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