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Abstract

It is a standard fact that trapped or marginally trapped surfaces are not visible 

from conformal infinity, under the usual set of conditions on matter fields 

and the conformal completion, provided that the cosmological constant is 

non-positive. In this note we show that the situation is more delicate in the 

presence of a positive cosmological constant: we present examples of visible 

marginally trapped surfaces, and we provide a set of natural conditions which 

guarantee non-visibility.
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1. Introduction

A classical result in the theory of black holes asserts that trapped surfaces are, in a suit-

able sense, ‘externally invisible’. Somewhat more precisely, for spacetimes (M , g) which 

are asymptotically flat (in the sense of admitting a suitably regular future null infinity I +) 

and which satisfy appropriate energy and causality conditions, no (future) trapped surface 

(θ± < 0) can be contained in I−(I ,+ M̃ ), where M̃ = M ∪ I +. In fact, this result also 

extends to (future) weakly trapped surfaces (θ± � 0). Indeed, using a suitable notion of global 

hyperbolicity, the following has been shown in [5]:

Theorem 1.1 ([5], theorem 6.1). Let (M , g) be an asymptotically flat spacetime, in the 

sense of admitting a regular future conformal completion M̃ = M ∪ I +, where I + is a 

connected null hypersurface, such that,
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 (1)  D̃ = D ∪ I + is globally hyperbolic, where D = I−(I +, M̃ ), and

 (2)  for any compact set K ⊂ D , J+(K, D̃) does not contain all of I + (‘i0-avoidance’).

If the null energy condition holds on D  then there are no weakly trapped surfaces within 

D .

Since spacetimes with a positive cosmological constant are of considerable current inter-

est (see e.g. [1, 11, 13]), it is useful to have an analogue of theorem 1.1 for asymptotically de 

Sitter spacetimes. We provide such a result in theorem 1.2 below.

To put our result in proper context, it should be kept in mind that weakly trapped surfaces 

occur in the past of I + in asymptotically de Sitter spacetimes. We review some well known 

and not so well known examples in section 3. One sees from these examples that the vis-

ibility of future trapped surfaces in this case is due to the failure of a suitable analogue of 

the i0-avoidance condition in theorem 1.1. When this is taken into account, an analogue of 

theorem 1.1 can be obtained, and under a causality condition imposed only on the physical 

spacetime M .

Indeed, theorem 2.1 and lemma 2.2 below immediately yield our main result (see below for 

definitions and terminology):

Theorem 1.2. Consider a future asymptotically de Sitter spacetime (M , g) which is future 

causally simple and satisfies the null energy condition. Let A ⊂ M  be such that J+(A, M̃ ) 

does not contain all of I +. Then there are no future weakly trapped surfaces contained in 

J+(A, M̃ ) ∩ I−(I +, M̃ ).

2. Invisibility of trapped surfaces in the asymptotically de Sitter setting

Let (M , g) be a spacetime and consider a compact co-dimension two spacelike submanifold 

S ⊂ M . Under appropriate orientability assumptions, there exists a smooth unit spacelike 

vector field ν normal to S. From this one obtains unique future directed null vector fields 

l± normal to S such that g(ν, l±) = ±1. These induce the null second fundamental forms 

χ
± : TpS × TpS → R  given by χ±(X, Y) = g(∇Xl±, Y). Tracing χ±, we obtain the null 

expansion scalars (or null mean curvatures) θ± = trSχ
± = divSl±. S is future trapped if both 

θ± < 0 and weakly future trapped if both θ± � 0. If θ± = 0, then S is marginally future 

trapped.

A spacetime (M , g) will be said to admit a future conformal completion (M̃ , g̃) provided 

(M̃ , g̃) is a spacetime with boundary such that the following properties hold

 (a)  M  is the interior of M̃ ,

 (b)  I + := ∂M̃  is smooth, connected, and lies to the future of M , i.e. I +
⊂ I+(M , M̃ ),

 (c)  There is a smooth function Ω on M̃  such that on M  the metric g̃ is related to g via 

g̃ = Ω
2g where Ω = 0 on I + and dΩ is nowhere vanishing on I +.

If in addition to these we also have that I + is spacelike, then we say (M , g) is future 

asymptotically de Sitter. (We will sometimes omit the adjective ‘future’ for conciseness.) In 

this case (b) above implies that I + is acausal. We say that (M , g) is future causally simple 

provided J+(K, M ) is closed for all compact K ⊂ M . Note that we do not assume any further 

causality conditions on (M , g). This agrees with [9] but differs from [2] and [10]. In addi-

tion we say that the conformal completion (M̃ , g̃) is future causally simple with respect to 
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M  provided J+(K, M̃ ) is closed for all compact K ⊂ M . As discussed in [7] (see lemma 

2.3), a spacetime with boundary (M̃ , g̃) admits an extension to a spacetime (M ′, g′) without 

boundary such that I + separates M ′. The existence of such an extension is assumed in what 

follows.

We first prove an invisibility theorem which uniformly covers the cases when I + is either 

a timelike, null, or spacelike hypersurface. In this theorem we assume (M̃ , g̃) is future caus-

ally simple with respect to M . (The main use of the assumption of global hyperbolicity in the 

proof of theorem 6.1 in [5] was to ensure this.)

Theorem 2.1. Suppose (M , g) satisfies the null energy condition and admits a future con-

formal completion (M̃ , g̃) which is future causally simple with respect to M . Suppose I + is 

either timelike, null, or spacelike. Let A ⊂ M  be such that J+(A, M̃ ) does not contain all of 

I +. Then there are no future weakly trapped surfaces in J+(A, M̃ ) ∩ I−(I +, M̃ ).

Proof. Seeking a contradiction, suppose there exists a future weakly trapped surface 

S ⊂ J+(A, M̃ ) ∩ I−(I +, M̃ ) for some set A ⊂ M  such that J+(A, M̃ ) does not contain all 

of I +. In particular this means J+(S, M̃ ) does not contain all of I +. Therefore there exists 

a point

q0 ∈ ∂
(
J+(S, M̃ ) ∩ I

+
)
= ∂J+(S, M̃ ) ∩ I

+
.

Introduce a Riemannian metric h on I +, and let U be a convex normal neighborhood about q0 

in I +. Let q1 be a point in U \ ∂J+(S, M̃ ) (which is open in U), chosen so that some points 

of J+(S, M̃ ) lie within the injectivity radius of q1. Let q ∈ U ∩ ∂J+(S, M̃ ) minimize the h-

distance between ∂J+(S, M̃ ) and q1 in U . Let r  >  0 be this minimizing distance. Let S+ be 

the geodesic ball with radius r centered at q1. Then S+ is a smooth hypersurface in I + which 

contains q and does not meet I+(S, M̃ ).

Since (M̃ , g) is future causally simple with respect to M , the boundary of J+(S, M̃ ) 

satisfies

∂J+(S, M̃ ) = J+(S, M̃ ) \ I+(S, M̃ ).

Thus there exists a null geodesic γ : [a, b] → M̃  such that γ(a) ∈ S, γ(b) = q, and emanat-

ing orthogonally from S. Since I + is either timelike, null, or spacelike, γ must intersect 

I + transversally4, and hence, γ
(
[a, b)

)
⊂ M . Moreover, since γ  does not enter the timelike 

future of S, there are no null focal points to S along γ . Then [12, theorem B.7] implies that 

for all points along γ  the null exponential map has full rank. This allows one to generate a 

smooth null hypersurface N1 ⊂ J+(S, M̃ ) containing the segment of γ
∣

∣

[a,b−ε]
 for ε > 0 ar-

bitrarily small. Since S is future weakly trapped, the null future inwards and outwards mean 

curvatures θ± of S are nonpositive. Let θ1 = θ1(s) be the null mean curvature of N1 along γ . 

Hence θ1(a) � 0, then by the Raychaudhuri equation and the null energy condition, θ1(s) � 0 

for all s ∈ [a, b − ε].
There exists a future directed outward pointing null vector K̃  at q orthogonal to S+ in the 

unphysical metric ̃g = Ω
2g. Since Ω → 0 as one approaches I +, we see that—irregardless of 

the causal character of ∇̃Ω at q—we can normalize K̃  so that along γ near q, we have

4 Without some control on the causal character of I +, this in general may fail.
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K̃(Ω) = g̃(K̃, ∇̃Ω) = −1.

Since S+ does not meet I+(S, M̃ ), we see that γ  intersects S+ orthogonally. Let N2 be a 

smooth null hypersurface which is a subset of ∂J−(S+, M̃ ) and contains γ
(
[a, b)

)
 near q. K̃  

extends to a smooth null vector field on S2 near q. The null mean curvature θ2  of N2 with re-

spect to the physical metric g is related to the null mean curvature θ̃2  in the unphysical metric 

g̃ by

θ2 = −(n − 1)K̃(Ω) + Ωθ̃2. (2.1)

Our construction of N2 from S+ shows that θ̃2  is bounded on N2. Therefore close to q on N2, 

we have θ2 > 0. However, since S+ does not meet I+(S, M̃ ), we know that N1 lies to the fu-

ture side of N2 on points of γ  near q. This contradicts the maximum principle for smooth null 

hypersurfaces. □ 

In the asymptotically de Sitter setting, the causal simplicity of (M , g) implies (M̃ , g̃) is 

causally simple with respect to M .

Lemma 2.2. Suppose (M , g) is future asymptotically de Sitter with conformal completion 

(M̃ , g̃). If (M , g) is future causally simple, then (M̃ , g̃) is future causally simple with respect 

to M .

Example 2.3. It is easy to give an example of a 2D space-time with a null I + which is 

causally simple but the conformal completion is not. On the other hand, it is rather clear that 

there are no 2D examples with ‘causally simple’ replaced by ‘future causally simple’ in the 

last sentence. But a 3D example can be given, as follows: Let p be the point in 3D Minkowski 

space-time R1,2 with coordinates (t, x, y) = (−1,−1, 0), Let (M , g) ⊂ R
1,2 be obtained by 

removing the set J+( p) ∩ {t � 1} from R1,2. Then (M , g) is causally simple. Let (M̃ , g̃) be 

obtained by adding to M  the null hypersurface

I
+

:= {t > 1, (x + 1)2 + y2 = (t + 1)2} ≡ {t > 1} ∩ J̇( p,R
1,2),

with g̃ obtained by restriction of g; thus (M̃ , g̃) has a boundary I + := ∂M̃  which is that 

part of the Minkowskian light-cone of p which lies to the timelike future of {t  =  1}. (One 

can multiply the flat metric on M̃  by a suitable conformal factor to comply with the usual 

definition of conformal completion af infinity, but this is clearly irrelevant for the problem at 

hand.) Let

K = {t = 0, x = 0, y ∈ [−1, 0]}.

Then K is compact, and the null generator

{t > 1 x = t, y = 0}

of I + is in the closure of J+(K, M̃ ) but is not in J+(K, M̃ ); see figure 1. Thus (M , g) is 

future causally simple but (M̃ , g̃) is not.
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Example 2.4. The following example shows that lemma 2.2 is wrong when I + is 

timelike: Let (M , g) ⊂ R
1,2 be the 3D Minkowski space-time from which the quadrant 

{t � 1, x � 0} × R has been removed. Then (M , g) is again causally simple. Let (M̃ , g̃) be 

obtained by adding to M  a timelike future boundary I + := {t > 1, x = 0} × R. (We ignore 

again the conformal factor.) Let p = (0, 0, 0). The null lines {t > 1, x = 0, y = ±t} are in the 

closure of J+( p, M̃ ) but are not in J+( p, M̃ ).

Proof of lemma 2.2. Let K ⊂ M  be a compact set. Let q be a limit point of J+(K, M̃ ). 

Then there is a sequence of points {qn} ⊂ J+(K, M̃ ) such that qn → q, and so there is a se-

quence of future causal curves γn : [0, 1] → M̃  with γn(0) = pn and γn(1) = qn. By restrict-

ing to a subsequence, we can assume that pn → p ∈ K. Using a normal neighborhood centered 

at q in I +, we construct a compact spacelike hypersurface (with boundary) Σ ⊂ M  by push-

ing this neighborhood a small amount to the past along the past directed normal geodesics to 

I +. Take Σ large enough so that, by passing to another subsequence if necessary, there exist 

unique points rn where γn and Σ intersect. Since Σ is compact, there is a point r ∈ Σ such that 

r is a limit point of rn. So, since (M , g) is causally simple, there is a future causal curve λ from 

p to r. By choosing Σ sufficiently close to I +, we may assume r is in D(I +), the domain of 

dependence of I +. Then by applying [4, proposition 2.8.1] in D(I +), there is a future causal 

curve σ from r to q. Concatenating λ and σ yields a future causal curve from p to q. □ 

We can form analogous statements for trapped regions with assumptions only on the out-

ward expansion θ+. To be precise let (M , g) be a spacetime, and let T be a compact connected 

spacelike hypersurface with boundary S in M . If S has null expansion θ+ � 0 with respect to 

the outward null normal vector field �+ along S, then we say that T is a future weakly trapped 

region and S is a future weakly outer trapped surface. Analogous statements for future weakly 

outer trapped surfaces hold for theorems 2.1 and 1.2. For brevity we only state and prove the 

analogous version of theorem 1.2.

Theorem 2.5. Consider a future asymptotically de Sitter spacetime (M , g) which is future 

causally simple and satisfies the null energy condition. Let A ⊂ M  be such that J+(A, M̃ ) 

does not contain all of I +. Then there are no future weakly trapped regions contained in 

J+(A, M̃ ) ∩ I−(I +, M̃ ).

Figure 1. (M , g) is causally simple but (M̃ , g̃) is not.
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Proof. Suppose there is a future trapped region T, with boundary S, contained in 

J+(A, M̃ ) ∩ I−(I +, M̃ ). As in the proof of theorem 2.1, construct a null geodesic 

γ : [a, b] → M̃  whose image is contained in

∂J+(T , M̃ ) = J+(T , M̃ ) \ I+(T , M̃ ),

with γ(a) ∈ T  and γ(b) ∈ ∂J+(T , M̃ ) ∩ I +. Since γ  does not enter the timelike future of T 

we have γ(a) ∈ S and γ′(a) points in the outward direction. Let θ+(s) be the null expansion 

along γ(s) of the null hypersurface constructed as in the proof of theorem 2.1. Since S is future 

weakly outer trapped and (M , g) satisfies the null energy condition, we have θ+(s) � 0 for all 

s. The rest of the proof is the same. □ 

3. Examples

3.1. De Sitter Space

Consider de Sitter space,

M = (−π/2,π/2)× Sn
, g = cos−2(t)(−dt2 + dω2),

where dω2 is the usual round metric on the sphere Sn. It conformally embeds into the Einstein 

static universe (M ′, g′) = (R× Sn,−dt2 + dω2). The future conformal completion is 

M̃ = (−π/2,π/2]× Sn with I + = {π/2} × Sn. Note that for any p ∈ M , J+( p, M̃ ) does 

not cover all of I +. Hence, by theorem 1.2 there are no future weakly trapped surfaces in 

J+( p, M ).
Now consider any t-slice Σt = {t} × Sn. Let K be the second fundamental form of Σt  

within M . Let S be any hypersurface in Σt  and H the mean curvature of S within Σt . Then

θ
± = trSK ± H. (3.1)

(With the notation as in the beginning of section 2, here �± are scaled with respect to the unit 

normal ν tangent to the time slice.) If 0 < t < π/2, then trSK > 0 and so either θ+ or θ− is 

positive. Consequently there are no future weakly trapped surfaces in Σt  for t  >  05. On the 

other hand, there are many future weakly trapped surfaces in Σ0. For example take S  =  E to 

be the equator. Since Σ0 is totally geodesic within M  and E is a minimal surface within Σ0, 

we have K  =  H  =  0. Thus, by (3.1), θ± = 0, and so E is future weakly (in fact, marginally) 

trapped. This is consistent with theorem 1.2 since J+(E, M̃ ) contains all of I +; see figure 2. 

Let us also recognize that theorem 1.2 cannot be weakened by replacing ‘causal future’ with 

‘timelike future’ because I+(E, M̃ ) does not contain all of I +, since it misses the north pole 

and south pole associated with the equator.

The above example shows that any compact embedded minimal surface in Σ0 is a future 

weakly trapped surface (see [6] for some related discussion). But there are infinitely many such 

examples in the 3-sphere, of arbitrary genus; see e.g. [3]. (The maximum principle implies 

that any such example cannot be contained in an open hemisphere; somewhat amusingly, this 

also follows from theorem 1.2.) An interesting example in this case, where dim M = 4, is the 

Clifford torus C ⊂ Σ0. Expressing S3 as the sphere in R4,

5 In fact, it can be shown that there are no future weakly trapped surfaces in the spacetime region t  >  0.
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x2
1 + x2

2 + x2
3 + x2

4 = 1,

the Clifford torus is defined by the equations  x2
1 + x2

2 = 1/2 = x2
3 + x2

4. The Clifford torus is 

a minimal surface, so one again has θ± = 0, and C is a weakly trapped surface in M . This is 

consistent with theorem 1.2 since the causal future of C covers all of I +. In fact, the causal 

future of C already covers the time slice {π

4
} × S3; see figure 3.

3.2. Schwarzschild–de Sitter space

Schwarzschild–de Sitter space is the spacetime M = R× R× S2
 with metric in static form,

g = −

(

1 −
2m

r
−

Λ

3
r2

)

dt2
+

(

1 −
2m

r
−

Λ

3
r2

)

−1

dr2
+ dω

2
, (3.2)

Figure 2. Left: an equator in the sphere Sn. Right: a spacetime diagram of de-Sitter 
space. Here the equator is represented by the two blue points. The causal future of E 

covers all of I + = {t = π/2}, but the timelike future of E misses the north and south 

pole points on I +.

Figure 3. Left: a slice of the Clifford torus in the x4  =  0 plane. Right: a spacetime 
diagram of de-Sitter space with x2 = x4 = 0. The Clifford torus is represented by the 

four blue points located at (x1, x3) = (±1/
√

2,±1/
√

2). The causal future of C already 

covers the time slice {π

4
} × S3.
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with m  >  0, Λ > 0, and 9Λm2 < 1. The Penrose diagram for (M , g) is given in figure 4; see 

[8]. I + has topology R× S2. (Here we consider a conformal compactification consisting of a 

single component of future null infinity.) The gtt-component of (3.2) has positive roots r1 < r2, 

corresponding to a black hole event horizon and a cosmological horizon, respectively. Regular 

Kruskal–Szekeres type coordinates can be defined near r  =  r1 and r  =  r2.

Consider the totally geodesic time slice V = {0} × R× S2 . Let A be the subset of V  consisting 

of the union of all rotationally symmetric 2-spheres Sr, for r1 < r � r0. Provided r0 < r2, theo-

rem 1.2 implies that there are no future weakly trapped surfaces in J+(A, M̃ ) ∩ I−(I +, M̃ ). 

In particular, we note that the 2-spheres Sr have positive null expansion with respect to the null 

normal pointing to the right. However, when we allow r0 = r2, then J+(A, M̃ ) ∩ I−(I +, M̃ ) 

contains the 2-sphere at r  =  r2, which is future weakly trapped, since it is minimal. Again this 

is consistent with theorem 1.2, since now J+ (A) contains all of I +.
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