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Some Remarks on the C0-(In)Extendibility
of Spacetimes

Gregory J. Galloway and Eric Ling

Abstract. The existence, established over the past number of years and
supporting earlier work of Ori (Phys Rev Lett 68(14):2117–2120, 1992),
of physically relevant black hole spacetimes that admit C0 metric ex-
tensions beyond the future Cauchy horizon, while being C2-inextendible,
has focused attention on fundamental issues concerning the strong cosmic
censorship conjecture. These issues were recently discussed in the work
of Sbierski (The C0-inextendibility of the Schwarzschild spacetime and
the spacelike diameter in Lorentzian geometry. arXiv:1507.00601v2, (to
appear in J. Diff. Geom.), 2015), in which he established the (nonob-
vious) fact that the Schwarzschild solution in global Kruskal–Szekeres
coordinates is C0-inextendible. In this paper, we review aspects of Sbier-
ski’s methodology in a general context and use similar techniques, along
with some new observations, to consider the C0-inextendibility of open
FLRW cosmological models. We find that a certain special class of open
FLRW spacetimes, which we have dubbed ‘Milne-like,’ actually admits
C0 extensions through the big bang. For spacetimes that are not Milne-
like, we prove some inextendibility results within the class of spherically
symmetric spacetimes.

1. Introduction

Ever since the realization, from the Hawking–Penrose singularity theorems,
that singularities in spacetime can develop under generic circumstances, the
question has been considered as to what extent general relativity is a classi-
cally deterministic theory. The essence of Penrose’s strong cosmic censorship
conjecture is that, indeed, GR is deterministic. Put in rough physical terms,
under reasonable physical conditions, spacetime should not develop naked sin-
gularities, that is to say, no singularity (due, e.g., to curvature blowup) should
ever be visible to any observer. Such singularities would undermine the pre-
dictive ability of GR. Penrose formulated the absence of naked singularities
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in terms of terminal indecomposable past sets (TIPs), which are defined com-
pletely in terms of the causal structure of spacetime: Strong cosmic censorship
requires that no singular TIP be contained in the timelike past of some point
in spacetime; see, e.g., [15].

More modern statements of the strong cosmic censorship conjecture fo-
cus on the Cauchy problem for the Einstein equations, along the lines of the
following.

Strong cosmic censorship conjecture The maximal globally hyperbolic devel-
opment of generic compact or asymptotically flat initial data for the Einstein
equations (vacuum or with reasonable matter fields) is inextendible as a suit-
ably regular Lorentzian manifold.

Given the extreme complexity of the cosmic censorship problem, efforts
have been made to investigate the conjecture for restricted classes of space-
times, e.g., classes which admit certain symmetries, or which are perturbations
of exact solutions; see, for example, [8,16] (and references therein) for impor-
tant results in the cosmological setting, and the asymptotically flat setting,
respectively.

The question arises as to what one should take as ‘suitably regular.’
Recent advances in our understanding of the Cauchy problem for the Ein-
stein equations at low regularity suggest that one should perhaps allow lower
than C2 regularity in the statement of the conjecture. Christodoulou [4] es-
tablished a stronger form of inextendibility, namely, that of C0-inextendibility,
for a generic class of spherically symmetric spacetimes satisfying the Einstein-
scalar field equations. However, subsequent work of Dafermos [6,7] demon-
strated the C0-extendibility of the maximal globally hyperbolic development
of solutions to the spherically symmetric Einstein–Maxwell-scalar field system,
arising from small perturbations of Reissner–Nordstrom initial data. Moreover,
more recently, Dafermos and Luk have announced a proof, without symme-
try assumptions, of the C0 stability of the Kerr Cauchy horizon. The current
suggestion for the statement of the strong cosmic censorship conjecture is to re-
quire inextendibility as a Lorentzian manifold with Christoffel symbols locally
in L2.

Prior to recent work of Sbierski [17], very little had been done to ad-
dress the issue of the extendibility (or not) of Lorentzian manifolds at lower
regularity. In [17], Sbierski develops methods for establishing the C0 (met-
ric) inextendibility of Lorentzian manifolds, which he uses to prove the C0-
inextendibility of Minkowski space and the extended Schwarzschild solution.
Among several problems he lists at the end of the introduction to his paper, he
poses the problem of investigating the C0-inextendibility of cosmological space-
times with big bang singularities, such as the FLRW models, for which some of
his methods are not directly applicable. In this paper, we address some aspects
of this problem. In Sect. 2, we review, in a general setting, aspects of Sbier-
ski’s methodology. As an illustration, we demonstrate the C0-inextendibility
of anti-de Sitter space. We also obtain a result concerning the structure of the
past boundary ∂−M of a spacetime (M, g) within a C0-extension. In Sect. 3,
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we introduce a general notion of ‘open FLRW models’ and present several
types of C0-extensions. In the other direction, in Sect. 4, we present results
establishing the nonexistence of spherically symmetric C0 (or C1) extensions
of such models. In the last section, we discuss, in a general framework, some
more detailed structural properties of the past boundary ∂−M of spacetime
within a C0-extension, and some restrictions this imposes on the extension.

2. Sbierski’s Methodology and Related Results

In this section, we review, in a general spacetime setting, Sbierki’s [17] tech-
nique for proving, for example, that Minkowski space is C0-inextendible. As an
illustration, we will establish the C0-inextendibilty of anti-de Sitter space. In
this framework, we will also obtain a result concerning the causal structure of
the boundary of spacetime within a C0 extension, which we then apply to open
FLRW-type spacetimes. This structure will be exhibited in various examples
of extensions of open FLRW-type spacetimes discussed in Sect. 3.

2.1. Boundaries in C0-Extensions

Manifolds will assumed to be C∞, and metrics will be assumed to be at least
C0. Let (Md+1, g) be a spacetime, i.e., a connected time-oriented Lorentzian
manifold. A spacetime (Md+1

ext , gext) with a continuous metric gext is a C0-
extension of (M, g) if (M, g) embeds isometrically as a proper subset of
(Mext, gext). We can assume that the time orientation of (M, g) agrees with
(Mext, gext). (There is no loss in generality in assuming, as we shall henceforth
do, that the extended Lorentzian manifold is time orientable. If a nontime-
orientable extension did exist, then one could find a time-orientable extension
by, for example, restricting the extension to a time-orientable neighborhood
of a boundary point.) If no C0-extension of (M, g) exists, then we say that
(M, g) is C0-inextendible. We denote the embedding map by ι : M → Mext

and henceforth, when convenient, identify points in M with points in ι(M).
Timelike curves will be piecewise smooth with right and left handed sided
derivatives pointing within the same connected component of the lightcone.

Definition 2.1. Given a C0-extension (Mext, gext) of (M, g), we define:
• The future boundary of M , denoted by ∂+M , as the set of points p ∈ ∂M

such that there exists a future directed timelike curve γ : [0, 1] → Mext

with γ(1) = p, γ
(
[0, 1)

) ⊂ M .
• The past boundary of M , denoted by ∂−M , as the set of points p ∈ ∂M

such that there exists a future directed timelike curve γ : [0, 1] → Mext

with γ(0) = p, γ
(
(0, 1]

) ⊂ M .

The following lemma gives us a way to generate points on ∂+M and
∂−M . It will be used multiple times in this section.

Lemma 2.2. Let ι : (M, g) → (Mext, gext) be a C0-extension and let γ : [0, 1] →
Mext be a future directed timelike curve joining p to q.

1. If p ∈ M and q /∈ M , then γ intersects ∂+M .

Author's personal copy



G. J. Galloway, E. Ling Ann. Henri Poincaré

2. If p /∈ M and q ∈ M , then γ intersects ∂−M .

Proof. Suppose p ∈ M and q /∈ M . Define s0 = sup{s ∈ [0, 1] | γ
(
[0, s)

) ⊂ M}.
Since M is open in Mext, we have γ(s0) /∈ M , and since γ is future directed,
it follows that γ(s0) ∈ ∂+M . The second case is similar. �

Let p ∈ Mext and U ⊂ Mext be open. Recall that I±(p, U) are the set
of points in Mext which can be reached by a future (past) directed timelike
curve whose image lies completely in U . If gext is at least C2, then one can use
normal neighborhoods to show that I±(p, U) are open in Mext. If g is merely
C0, then I±(p, U) are still open, but one needs to use a different proof [5,17].
This will be needed in the following proposition which is also proved in [17].

Proposition 2.3. Let ι : (M, g) → (Mext, gext) be a C0-extension. Then ∂+M ∪
∂−M �= ∅.
Proof. Since M is a proper subset of Mext and Mext is connected, ∂M =
Mext\M is nonempty. Fix p ∈ ∂M and let U be an open neighborhood of p.
Fix q ∈ I−(p, U). By definition there exists a future directed timelike curve
γ : [0, 1] → U connecting q to p. We either have q ∈ M or q /∈ M . If q ∈ M ,
then (1) of Lemma 2.2 implies ∂+M �= ∅. If q /∈ M , then there exists an
r ∈ M ∩ I+(q, U) since I+(q, U) is an open set containing p. Therefore, there
exists a future directed timelike curve connecting q /∈ M to r ∈ M , so (2) of
Lemma 2.2 implies ∂−M �= ∅. �

Sbierski found certain sufficient conditions on (M, g) to force ∂+M = ∅.
He used these to show that if Minkowski space had a C0-extension then one
would find ∂+M = ∅. By reversing the time orientation, one concludes that
∂−M = ∅. Thus, the existence of a C0-extension contradicts Proposition 2.3.
Hence, Minkowski space is C0-inextendible. The same conditions are used by
Spierski to show that Schwarzschild spacetime is not C0-extendible ‘beyond
scri.’1 These conditions are summarized in the following definition.

Definition 2.4. Let (M, g) be a spacetime.
1. (M, g) is future one-connected if any two future directed timelike curves

between any two points p, q ∈ M are timelike homotopic with fixed end-
points.

2. (M, g) is future divergent if given any future directed inextendible time-
like curve γ : [0, 1) → M , one has lims→1 d

(
γ(0), γ(s)

)
= ∞ where d is

the Lorentzian distance function.

Theorem 2.5 ([17]). Let ι : (M, g) → (Mext, gext) be a C0-extension. If (M, g)
is future one-connected and future divergent then ∂+M = ∅.
Sketch of the proof. Suppose there exists a point p ∈ ∂+M . Then there exists
a future directed timelike curve γ : [0, 1] → Mext with γ

(
[0, 1)

) ⊂ M and
γ(1) = p. Using the continuity of gext, one can construct a neighborhood U

1In proving the C0-inextendibility of Schwarzschild spacetime beyond the r = 0 singularity,
Sbierski also introduced the notion of ‘spacelike diameter,’ which will not enter into the
present work.
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and a point s0 ∈ [0, 1) such that the diamond D = I+
(
γ(s0), U

) ∩ I−(p, U)
has compact closure in U and finite timelike diameter. By future divergence,
we can find future directed timelike curves joining γ(s0) to γ(s) (s < 1) with
arbitrarily large lengths. Then future one-connectedness along with the fact
that the diamond D has compact closure in U implies that these timelike curves
must lie in the diamond D, so D actually has infinite timelike diameter. �

Theorem 2.5 enables us to obtain an important structural result for ∂−M .
Recall that a set S ⊂ Mext is achronal if for all p, q ∈ S there exists no future
directed timelike curve γ : [0, 1] → Mext joining p to q.

Theorem 2.6. Let ι : (M, g) → (Mext, gext) be a C0-extension. If ∂+M = ∅,
then ∂−M is an achronal topological hypersurface.

Proof. We know ∂−M �= ∅ by Proposition 2.3. Suppose ∂−M is not achronal.
Then there exist points p, q ∈ ∂−M with q ∈ I+(p,Mext). I−(q,Mext) is an
open set containing p ∈ ∂M . Therefore, there is a point r ∈ M ∩ I−(q,Mext)
and so there is a future directed timelike curve connecting r to q. Thus, ∂+M �=
∅ by Lemma 2.2.

To show that ∂−M is a topological hypersurface, it suffices to show
∂−M ∩ edge (∂−M) = ∅ ([10,13]). Fix p ∈ ∂−M . We show p /∈ edge(∂−M).
Let r ∈ I+(p,Mext) and q ∈ I−(p,Mext) and suppose γ : [0, 1] → Mext is any
future directed timelike curve joining q to r. We need to show γ intersects
∂−M . By Lemma 2.2, it suffices to show q /∈ M and r ∈ M . If q ∈ M , then
since q ∈ I−(p) ∈ Mext, Lemma 2.2 implies ∂+M �= ∅. Since I−(r,Mext) is an
open neighborhood of p, there is a point s ∈ M ∩ I−(r,Mext), and so there is
a future directed timelike curve from s to r. If r /∈ M , then Lemma 2.2 implies
that ∂+M �= ∅. �

Remark. In fact ∂−M locally satisfies a Lipschitz condition, so it has regular-
ity C0,1.

Theorems 2.5 and 2.6 motivate the question: Which spacetimes are future
one-connected and future divergent? The following subsection gives sufficient
(but certainly not necessary) answers.

2.2. Sufficient Conditions for Future One-Connectedness and Future
Divergence

In this subsection, the spacetimes (M, g) we will be interested in are warped
products. Specifically, M will have manifold structure M = I ×Σ where I ⊂ R

is an open interval and Σ is a d-dimensional manifold. Let (I,dt2) and (Σ, h)
be Riemannian manifolds. If η : M → I and π : M → Σ denote the projection
maps, then the metric g on M is given by g = −η∗dt2 +a2π∗h where a : M →
(0,∞) is some smooth function which depends only on t. We abuse notation
and write g = −dt2 + a2h and a(t, p) = a(t).

We will show under suitable hypotheses that these spacetimes are future
one-connected and future divergent. We will apply these results to open FLRW
spacetimes in Sect. 3.
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Whether or not (M, g) is future one-connected depends only on its con-
formal class. By making the coordinate change τ =

∫ t

c
1

a(s)ds, with c ∈ I, the
metric becomes

g(τ,p) = a2
(
t(τ)

)
[−dτ2 + hp].

Proposition 2.7. Let γi : [τ0, τf ] → (M,−dτ2 + h), i = 1, 2, be two future
directed timelike curves with coinciding endpoints and each parameterized by
τ : γi(τ) =

(
τ, γi(τ)

)
. If the images of γ1 and γ2 lie completely in a common

normal neighborhood U of (Σ, h) based at γ1(τ0) = γ2(τ0), then γ1 and γ2 are
timelike homotopic.

Proof. The idea of the proof is as follows (cf. also [17]): Using the exponen-
tial map, we construct a homotopy from γ1 to the unique length minimizing
geodesic connecting γ1(τ0) and γ1(τf ). If this homotopy is given by Γ1(s, τ),
then we lift this homotopy to M via Γ1(s, τ) =

(
τ,Γ1(s, τ)

)
and show that Γ1

is a timelike homotopy. We then repeat the same process for γ2 and construct
an analogous timelike homotopy Γ2. The desired timelike homotopy is then
the concatenation of Γ1 and Γ2. Since the procedure is symmetric, we only
construct Γ1 for γ1 and omit the subscript.

Let γ : [τ0, τf ] → (M,−dτ2 + h) be a future directed timelike curve
with γ lying in a normal neighborhood U of (Σ, h) based at γ(τ0). For each
s ∈ [τ0, τf ], let σs : [τ0, s] → Σ be the unique length minimizing geodesic from
γ(τ0) to γ(s) in U . The speed of σs is |σ′

s|h = L(σs)/(s − τ0). Now lift this
curve to M via σs : [τ0, s] → M given by σs(τ) =

(
τ, σs(τ)

)
. To show that σs

is timelike (in fact, a timelike geodesic), it suffices to show |σ′
s|h < 1. Since γ

is a timelike curve, we must have |γ′(τ)|h < 1 for all τ ∈ [τ0, τf ]. Integrating
yields L(γ|[τ0,s]) < s − τ0. Therefore,

|σ′
s|h =

L(σs)
s − τ0

≤ L(γ|[τ0,s])
s − τ0

< 1. (2.1)

Therefore, σs is a future directed timelike curve between γ(τ0) and γ(s). Now
we define the homotopy Γ : [τ0, τf ] × [τ0, τf ] → Σ between γ and στf via

Γ(s, τ) =
(
σs ∗ γ|[s,τf ]

)
(τ) =

{
σs(τ) for τ0 ≤ τ ≤ s
γ|[s,τf ] for s ≤ τ ≤ τf

and define Γ : [τ0, τf ] × [τ0, τf ] → M by Γ(s, τ) =
(
τ,Γ(s, τ)

)
. We have shown

that for each s, Γ(s, ·) is a future directed timelike curve and Γ(τ0, ·) = γ and
Γ(τf , ·) = στf . Thus, Γ is a future directed timelike homotopy between γ and
στf . �

Corollary 2.8. Suppose at every point p ∈ Σ there exists 0 ∈ Up ⊂ TpΣ such
that the exponential map, expp : Up → Σ, is a diffeomorphism onto Σ. Then
any spacetime conformal to (M,−dτ2 + h) is future one-connected. Hence,
(M, g) is future one-connected.

Remark. We note that Corollary 2.8 applies in particular to the case that
Σ is a Hadamard space (i.e., a simply connected Riemannian manifold with
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nonpositive sectional curvature), for which we know that the exponential map
is a global diffeomorphism about every point.

For future divergence, we have the following proposition and corollary.
The ideas in the proofs also appear in Sbierski’s paper [17].

Proposition 2.9. Suppose (Σ, h) is a complete Riemannian manifold and I =
(t1,∞), such that τ(t) → ∞ as t → ∞. Then (M, g = −dτ2 + h) is future
divergent.

Proof. Let γ : [τ0,∞) → (M, g) be a future directed inextendible timelike
curve parameterized by τ :

γ(τ) =
(
τ, γ(τ)

)
.

Fix T ∈ (τ0,∞). Let σ : [τ0, T ] → Σ be a length minimizing geodesic between
γ(τ0) and γ(T ). Since σ is parameterized by τ , the argument which led to (2.1)
also gives

|σ′|h = L(σ)/(T − τ0) < 1.

Define σ : [τ0, T ] → Σ by σ(τ) =
(
τ, σ(τ)

)
. Since |σ′|h < 1, σ is a timelike

curve (in fact timelike geodesic) connecting γ(τ0) to γ(T ). Thus, we have

dg

(
γ(τ0), γ(T )

) ≥ Lg(σ)

=
∫ T

τ0

√
1 − |σ′|2hdτ

=
√

(T − τ0)2 − (T − τ0)2|σ′|2h
=

√
(T − τ0)2 − d2h

(
γ(τ0), γ(T )

)
, (2.2)

where dh is the Riemannian distance function on Σ.
Fix τ1 ∈ [τ0, T ]. Then, since γ is timelike, we have dh

(
γ(τ0), γ(τ1)

)
<

τ1 − τ0 and dh

(
γ(τ1), γ(T )

)
< T − τ1. Therefore, there exists an ε > 0 such

that dh

(
γ(τ0), γ(τ1)

)
= τ1 − τ0 − ε. By the triangle inequality, we have

dh

(
γ(τ0), γ(T )

) ≤ dh

(
γ(τ0), γ(τ1)

)
+ dh

(
γ(τ1), γ(T )

)

< (τ1 − τ0 − ε) + (T − τ1)
= T − τ0 − ε.

Using this in (2.2), we have

d
(
γ(τ0), γ(T )

) ≥
√

(T − τ0)2 − (T − τ0 − ε)2

=
√

2ε(T − τ0) − ε2.

Therefore, limT→∞ d
(
γ(τ0), γ(T )

)
= ∞. �

Corollary 2.10. Assume the hypotheses of Proposition 2.9. Then (M, g) is fu-
ture divergent so long as a(t) is bounded away from 0 for all large t.
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Proof. Let γ : [τ0,∞) → M be a timelike curve in (M, g) parameterized by τ .
Then

g
(
γ′(τ), γ′(τ)

)
= −|γ′(τ)|2g = a2

(
t(τ)

)[ − 1 + |γ′(τ)|2h
]
.

Since a(t) is bounded away from 0 for all large t, there exist τ1 ∈ [τ0,∞) and
b > 0 such that a

(
t(τ)

)
> b for all τ ≥ τ1. So for all τ > τ1, we have |γ′(τ)|2g >

b
(
1 − |γ′(τ)|2h

)
, from which it follows that Lg(γ|[τ1,τ ]) > bLg0(γ|[τ1,τ ]), where

g0 = −dτ2 + h. The result then follows from Proposition 2.9. �

2.3. C0-Inextendibility of Anti-de Sitter Space

In this subsection, we illustrate how future one-connectedness and future diver-
gence can be used to show that anti-de Sitter space is C0-inextendible. There
are various equivalent definitions of anti-de Sitter space. The most useful for
us is the one where the metric is conformal to (part) of the Einstein static
universe (cf. Carroll [3]).

Definition 2.11. The d+1-dimensional anti-de Sitter space (adS) is the space-
time (R × Sd

+, g), where g is given by

g =
1

cos2 χ

[ − dt2 + dχ2 + sin2 χdΩ2
d−1

]
,

and (χ, ω) ∈ [0, π
2 ) × Sd−1 are spherical coordinates on the (open) hemisphere

Sd
+.

Theorem 2.12. Anti-de Sitter space is C0-inextendible.

Proof. We show adS space is future one-connected and future divergent so that
Theorem 2.5 implies ∂+M = ∅. Reversing the time orientation then shows that
∂−M = ∅ and so Proposition 2.3 implies that no C0-extension of adS space
exists.

Since the round hemisphere satisfies the exponential map property, Corol-
lary 2.8 implies that anti-de Sitter space is future one-connected. To show that
adS space is future divergent, let γ : [0, tf ) → (Rd+1, g) be a future directed
inextendible timelike curve parameterzed by t (by a time translation we can
assume γ begins at t = 0). For each t ∈ [0, tf ), we have γ(t) = (t, χ(t), ω(t)),
where ω represents coordinates on Sd−1. There are essentially two cases to
consider: There exists tk ↗ tf such that (i) limk→∞ χ(tk) < π/2 or (ii)
limk→∞ χ(tk) = π/2. In either case, for k sufficiently large, there exists a
t-line segment σk from some pk ∈ ∂I+(γ(0)) to γ(tk) Moreover, one has
limk→∞ L(σk) = ∞. In case (i), this follows from the fact that we must have
tf = ∞. In case (ii), this follows from the fact that limk→∞ cos(χ(tk)) = 0, so
that the conformal factor becomes arbitrarily large, and that for k sufficiently
large, tk − t(pk) is uniformly positive. Since for each k there exists a null
geodesic from γ(0) to pk, we conclude that adS space is future divergent. �

Remark. The ideas in this proof can also be used to prove that de Sitter
space is C0-inextendible, as Sbierski points out in his applications and open
questions section [17]. The future one-connectedness of de Sitter space follows
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from Proposition 2.7 since the projection of timelike curves in de Sitter onto
the spacelike spheres cannot contain any antipodal points.

3. Open FLRW Spacetimes and Examples of C0-Extensions

In this section, we define what is meant by an open Friedmann–Lemâıtre–
Robertson–Walker (FLRW) spacetime and apply the results of Sect. 2 to
show that these spacetimes are future one-connected and future divergent.
Therefore, if a C0-extension exists for these spacetimes, then by Theorems 2.5
and 2.6, we have ∂+M = ∅ and ∂−M must be an achronal locally Lipschitz
hypersurface. Then we look at particular examples of open FLRW spacetimes
which admit C0-extensions but not C2-extensions. It will be seen that the
regularity of ∂−M cannot be improved. That is, we should not expect ∂−M
to be a C1-hypersurface.

3.1. Open FLRW Spacetimes

Definition 3.1. An open FLRW spacetime is a spacetime (M, g) where M =
(0,∞) ×R

d with coordinates (t, r, ω) ∈ (0,∞) × (0,∞) × Sd−1 and the metric
g is

g =

⎧
⎨

⎩

−dt2 + a2(t)
[
dr2 + r2dΩ2

d−1

]
(Euclidean)

−dt2 + a2(t)
[
dr2 + sinh2(r)dΩ2

d−1

]
(Hyperbolic).

The function a : (0,∞) → (0,∞) is called the scale factor and for us we
demand that it satisfy the following four requirements

1. a is smooth.
2. a(0) := limt→0+ a(t) = 0.
3. a(t) has sublinear growth (i.e., there exist constants m > 0 and b ≥ 0

such that a(t) ≤ mt + b).
4. a′(t) > 0 for all t.

Remark. The conditions on the scale factor are natural and are satisfied by the
classical open FLRW spacetimes. With only minor modifications to our pre-
sentation, assumption (3) could be replaced by the assumption that (M, g) is a
future asymptotically simple and de Sitter spacetime, as defined, for example,
in [1,9]. This includes FLRW spacetimes with positive cosmological constant.
In the context of the next theorem, such spacetimes are also future divergent.

Theorem 3.2. Let (M, g) be an open FLRW spacetime. If (Mext, gext) is a
C0-extension of (M, g), then ∂+M = ∅ and ∂−M is an achronal topological
hypersurface.

Proof. We need to show (M, g) is future one-connected and future divergent.
Then the result follows from Theorems 2.5 and 2.6. Corollary 2.8 implies (M, g)
is future one-connected. To show that (M, g) is future divergent, define τ =∫ t

1
1

a(s)ds. Then condition (3) of the above definition implies that the range of
τ is an infinite interval. Therefore, (M, g) is future divergent by Corollary 2.10.

�
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Remark. Since t is a time function for an open FLRW spacetime (M, g),
one can reparameterize a future directed timelike curve by t. Therefore, if
(Mext, gext) is a C0-extension of (M, g), then ∂−M is reached by timelike
curves whose t-parameter approaches 0.

Now we present two classes of open FLRW spacetimes where C0 exten-
sions (but not necessarily smooth extensions) can be found.

3.2. C0-Extendable 2-Dimensional Spacetimes

Let (M, g) be a two-dimensional open FLRW spacetime. We will find a C0-
extension (Mext, gext) of (M, g). Since det(g) = −a2(t), the metric is degenerate
at t = 0 (in the case a(0) = 0), so we can’t use the coordinates (t, x) to extend
the metric. Better coordinates to use are

t̃(t, x) =
∫ t

0

a(s)ds

x̃(t, x) = x −
∫ t

1

1
a(s)

ds.

A simple calculation shows that the metric in these coordinates is given by

g = 2dt̃dx̃ + a2
(
t(t̃)

)
dx̃2. (3.1)

In these coordinates, we have det(g) = −1 for all (t̃, x̃), so no degeneracy in
the metric occurs at t = t̃ = 0. This allows us to extend (M, g) into a larger
spacetime. Extend a onto (−∞, 0) while keeping it continuous, so that now t̃
is defined on all of R. Take Mext = R × Σ with coordinates (t̃, x̃) and metric
gext defined by Eq. (3.1). Then (M, g) embeds isometrically as a proper subset
of (Mext, gext). In fact (M, g) is isometric to (Mext, gext)|t̃>0. In this example,
∂−M is given by the null hypersurface t̃ = 0.

The scalar curvature R of (M, g) is given by R = 2a′′(t)
a(t) . This gives us

a plethora of examples where we have a C0-extension but not a C2-extension.
For example, by taking a(t) =

√
t we have R = − 1

2t2 , so R → −∞ as t → 0+,
which is of course, an obstruction to a C2-extension since any C2-extension
would have a continuous, finite-valued scalar curvature at all points of the
extension.

3.3. Milne-Like Spacetimes

The Milne universe is the spacetime M = (0,∞) × R
d with metric

g = −dt2 + t2
[
dr2 + sinh2(r)dΩ2

d−1

]
.

(M, g) admits a smooth extension through t = 0. To see this define T =
t cosh(r) and R = t sinh(r). Then one finds (M, g) is isometric to the future
cone I+(0) = {(T,R, ω) | T > R ≥ 0} in Minkowski space (Rd+1,−dT 2 +
dR2 + R2dΩ2

d−1). Thus, Minkowski space is a smooth extension of the Milne
universe. In this case, ∂−M is the boundary of I+(0), which shows that the
regularity of ∂−M cannot be improved from C0,1.
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Some Remarks on the C0-(In)Extendibility of Spacetimes

We now define a class of spacetimes we call Milne-like. These spacetimes
will admit extensions similar to the Milne universe, but we will find cases where
the extension is C0 but not C2.

Definition 3.3. A hyperbolic FLRW spacetime (M, g) will be called Milne-like
if M = (0,∞) × R

d and

g = −dt2 + a2(t)
[
dr2 + sinh2(r)dΩ2

d−1

]
,

and the scale factor satisfies the following additional conditions:
1. a′(0) := limt→0+ a′(t) = 1.
2.

∫ 1

0
1

a(t)dt = ∞.
Put b(t) = exp

(∫
1
a

)
so that b/b′ = a. Then we also require

3. b′(0) := limt→0+ b′(t) ∈ (0,∞).

Remark. Conditions (1) and (2) are necessary for condition (3). Without (2),
we would have limt→0+ b(t) �= 0 so that b′(0) = limt→0+

b(t)
a(t) = ∞. Given (3),

we can apply L’Hôpital’s rule

b′(0) = lim
t→0+

b(t)
a(t)

= lim
t→0+

b′(t)
a′(t)

,

from which we see that we must have a′(0) = 1.

Theorem 3.4. Let (M, g) be any Milne-like spacetime. Then (M, g) is C0-
extendible.

Proof. Define T = b(t) cosh(r) and R = b(t) sinh(r). Then

g = −dt2 + a2(t)
[
dr2 + sinh2(r)dΩ2

d−1

]

=
1

[
b′(t(T,R)

)]2
[ − dT 2 + dR2 + R2dΩ2

d−1

]
. (3.2)

Note that b → ∞ as t → ∞ since we are assuming a has sublinear growth
(condition (3) in the definition of open FLRW spacetime). Therefore, (M, g)
is isometric to the region {(T,R, ω) | R < T < ∞}. Since b′(0) ∈ (0,∞),
Eq. 3.2 implies that there is no degeneracy in the metric as t → 0+ in the
(T,R, ω) coordinate system, so we can extend the metric through t = 0. There
are of course an infinite number of ways to do this. For specific choices of a(t),
certain extensions are more readily apparent. See the examples below. For our
general scenario, we can extend by keeping b′(0) constant through t = 0. For
this choice, our extended manifold is

Mext = R
d+1 = {(T,R, ω) | R < T < ∞} ∪ {(T,R, ω) | −∞ < T ≤ R}

and the extended metric is

gext =

⎧
⎪⎪⎨

⎪⎪⎩

1[
b′
(
t(T,R)

)]2

[ − dT 2 + dR2 + R2dΩ2
d−1

]
on {(T,R, ω) | R < T < ∞}

1[
b′(0)

]2

[−dT 2+dR2+R2dΩ2
d−1

]
on {(T,R, ω) |−∞<T ≤R}.

Then (Mext, gext) is a C0 extension of (M, g). �
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Let’s look at a couple of examples.

Example 3.5. Consider a(t) = tanh(t). In this case we have b(t) = sinh(t) and
so

g = −dt2 + tanh2(t)
[
dr2 + sinh2 rdΩ2

d−1

]

=
1

cosh2(t)

[ − dT 2 + dR2 + R2dΩ2
d−1

]

=
1

1 + (T 2 − R2)
[ − dT 2 + dR2 + R2dΩ2

d−1

]
. (3.3)

By defining

gext =
1

1 + (T 2 − R2)
[ − dT 2 + dR2 + R2dΩ2

d−1

]
, (3.4)

and Mext = {(T,R, ω) | 1+T 2−R2 > 0}, we find (Mext, gext) is a C∞-extension
of (M, g).

Example 3.6. Now let’s consider an example where we have a C0-extension
but not a C2-extension. Let a(t) be a function satisfying the conditions of
Definition 3.1 such that a(t) = t + t2 for t ≤ 100 and extend it past t ≥ 100,
so that it has sublinear growth and satisfies a′ > 0 (this is so that we satisfy
the conditions of open FLRW spacetimes). For t < 100, let b(t) = t/(1 + t) so
b/b′ = a. Since b =

√
T 2 − R2, we have t =

√
T 2−R2

1−√
T 2−R2 We find

g = −dt2 + (t + t2)2
[
dr2 + sinh2 rdΩ2

d−1

]

=
1

[
b′(t)

]2
[−dT 2 + dR2 + R2dΩ2

d−1

]

= (1 + t)4
[−dT 2 + dR2 + R2dΩ2

d−1

]

=
(

1
1 − √

T 2 − R2

)4 [−dT 2 + dR2 + R2dΩ2
d−1

]
. (3.5)

To extend (M, g), we can take

gext =

(
1

1 − √|T 2 − R2|

)4
[ − dT 2 + dR2 + R2dΩ2

d−1

]
(3.6)

and

Mext = {(T,R, ω) | |T 2 − R2| < 1} .

Then (Mext, gext) is a C0-extension of (M, g). There can be no C2-extension
of (M, g) since the scalar curvature of (M, g) is (see [2, p. 116])

R =
−d(d − 1)

a2(t)
+ 2d

(
a′(t)
a(t)

)2

+ 2d
a′′(t)
a(t)

+ (d2 − 3d)
(

a′(t)
a(t)

)2

(3.7)

and so we find

lim
t→0+

R = lim
t→0+

2d
a′′(t)
a(t)

= lim
t→0+

4d

t + t2
= ∞.
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Some Remarks on the C0-(In)Extendibility of Spacetimes

Remark. This example satisfies the weak energy condition for small t. There
are also Milne-like examples that satisfy the strong energy condition. However,
it can be seen that no Milne-like spacetime can satisfy both the weak and strong
energy conditions unless it is exactly the Milne spacetime.

4. Spherical Symmetry

The open FLRW spacetimes possess spherical symmetry, so we wish to de-
scribe this spherical symmetry in the class of C0 spacetimes. The definition
of spherical symmetry given in [12, Box 23.3] makes sense at the C0 level.
Here, it is assumed that the group of isometries of spacetime (Md+1, g) con-
tains SO(d) as a subgroup, such that the orbits of this action are spacelike
(d − 1)-spheres (d = 3 in their discussion). It is further assume that there
exists a timelike vector field u invariant under the SO(d) group action. Then,
under these assumptions, their arguments lead (in the case d = 3; in fact any
d odd would suffice) to the existence about every point of M local coordinates
(x, y, ω ∈ Sd−1) such that with respect to these coordinates the metric takes
the form

g = A(x, y)dx2 + 2B(x, y)dxdy + C(x, y)dy2 + R2(x, y)dΩ2
d−1. (4.1)

If coordinates (x, y, ω) can be introduced so that the metric takes this form,
we will say that spacetime is spherically symmetric and will refer to the co-
ordinates (x, y, ω) as spherically symmetric coordinates. The choice of radial
function R is unique in the following sense: If (x, y, ω) and (x̄, ȳ, ω) are spheri-
cally symmetric coordinates, such that x and y are solely functions of x̄ and ȳ,
then both coordinate systems induce the same radial function on the overlap.
It should be noted that the usual procedure one uses to eliminate the cross-
term cannot be applied in the C0 setting because this requires a Lipschitz
condition on A, B, and C.

We will say that (M, g) is strongly spherically symmetric if about every
point there are coordinates (T,R, ω) such that in this coordinate neighborhood
the metric takes the form

g = −F (T,R)dT 2 + G(T,R)dR2 + R2dΩ2
d−1, (4.2)

and we call (T,R, ω) strongly spherically symmetric coordinates. To achieve
the metric form (4.2) via a change of coordinates from (4.1) requires greater
regularity on the metric, at least C1, and, in addition, a C1 genericity condition
on R. We note that Milne-like spacetimes are strongly spherically symmetric
if one defines the radial function to be R̃ = R/b′.

We were able to find C0-extensions for a Milne-like spacetime (M, g)
by writing (M, g) in strongly spherically symmetric coordinates. A natural
question to ask is: Can strongly spherically symmetric coordinates be used
to find a C0-extension for Euclidean FLRW spacetimes? What about hyper-
bolic FLRW spacetimes that are not Milne-like? The results in the following
subsections answer in the negative.
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4.1. No Strongly Spherically Symmetric Extensions for Euclidean FLRW
Spacetimes

Theorem 4.1. Let (M, g) be a Euclidean FLRW spacetime where the scale factor
a(t) satisfies a′(0) := limt→0+ a′(t) ∈ (0,∞]. Then, subject to a suitable initial
condition, there exists a unique transformation of the form,

T = T (t, r) R = R(t, r) (4.3)

such that g takes the strongly spherically symmetric form

g = −F (T,R)dT 2 + G(T,R)dR2 + R2dΩ2
d−1,

where F and G are regular (away from a curve in the r-t plane along which
the Jacobian determinant J(r, t) = ∂(T,R)

∂(t,r) vanishes).
Now suppose that M admits a C0-extension Mext, and consider the behav-

ior of the metric in these coordinates on approach to ∂−M (cf. Theorem 3.2).
Let γ : [0, 1] → Mext be a future directed timelike curve with past end point
γ(0) ∈ ∂−M , and suppose R has a finite positive limit along γ as t → 0+.
(Note, by the achronality of ∂−M , γ((0, 1]) ⊂ M .) Then the following hold
along γ.

a. limt→0+ G = 0.
b. If F has a finite nonzero limit as t → 0+, then T → ±∞ as t → 0+.

Remark. By a ‘suitable initial condition,’ we mean the following: The trans-
formation 4.3 is unique up to a function f which is determined by specifying
T along a certain curve in the first quadrant of the (r, t)-plane. This is shown
in the proof below.

Proof. We begin by solving explicitly for R, T , G, and F in terms of t, and
r. Immediately, we find R = ra(t). To see this, consider a codimension 2
surface of constant T and R. Since T and R are functions of t and r only, a
surface of constant T and R corresponds to a surface of constant t and r. By
restricting the metric to this surface, we have R2dΩ2

d−1 = r2a2(t)dΩ2
d−1 and

hence R = ra(t).
Let Tt = ∂T/∂t and Tr = ∂T/∂r. Then

dT 2 = T 2
t dt2 + 2TtTrdtdr + T 2

r dr2

dR2 = r2a′2dt2 + 2raa′dtdr + a2dr2.

So we want

− dt2 + a2(t)
[
dr2 + r2dΩ2

d−1

]
= −FdT 2 + GdR2 + R2dΩ2

d−1. (4.4)

From Eq. (4.4), we find

−1 = −FT 2
t + Gr2a′2 =⇒ FT 2

t = 1 + Gr2a′2 (4.5)

0 = −FTtTr + Graa′ =⇒ F 2T 2
t T 2

r = G2r2a2a′2 (4.6)

a2 = −FT 2
r + Ga2 =⇒ FT 2

r = a2(G − 1). (4.7)
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By substituting (4.5) and (4.7) into (4.6), we find

G(r, t) =
1

1 − r2a′2 (4.8)

Substituting this into (4.5) and (4.7), we find

FT 2
t =

1
1 − r2a′2 and FT 2

r =
r2a2a′2

1 − r2a′2 . (4.9)

Therefore, (Tr/Tt)2 = (raa′)2. Since we require the metric to be Lorentzian,
the leftmost equation in (4.6) implies that we must have Tr/Tt = raa′. A
solution to this PDE must be constant along the integral curves of dt/dr =
−raa′ in the (t, r)-plane, so a general solution for T is

T (r, t) = f

(
r2

2
+

∫
1

aa′

)
, (4.10)

where f is some smooth function. f is uniquely determined by specifying T on
a curve which is transversal to the curves r2

2 +
∫

1
aa′ = const. Thus, there is a

degree of freedom when choosing strongly spherically symmetric coordinates.
In summary, we have

• R = ra(t)
• T = f

(
r2

2 +
∫

1
aa′

)

• G = 1
1−r2a′2

• F = GT−2
t = G

(
aa′
f ′

)2

.

The Jacobian of the transformation is

J = TrRt − TtRr = f ′[r2a′ − 1/a′].

Therefore, F and G are regular everywhere except where the Jacobian vanishes,
namely along the curve r2a′(t)2 = 1 (since, from (4.9) and (4.10), f ′ �= 0). Also,
note that T and R change causal character here.

We can write the metric as

g = −FdT 2 + GdR2 + R2dΩ2

=
1

1 − r2a′2

[

−
(

aa′

f ′

)2

dT 2 + dR2

]

+ R2dΩ2. (4.11)

In Eq. (4.11), r and t are smooth implicit functions of R and T away from
r2a′(t)2 = 1.

Now restrict to γ. Along γ we see G → 0 as t → 0+ since r = R/a. This
establishes (a). To prove (b), let us use s to denote the argument of f . Then

s(R, t) =
R2

2a2
+

∫
1

aa′

=
1
2R2 + a2

∫
1

aa′

a2
. (4.12)
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F is given by

F (t) =
1

1 − R2(a′/a)2

(
aa′

f ′(s(t)
)

)2

=
(

a4

(a/a′)2 − R2

)
1

[
f ′(s(t)

)
]2

. (4.13)

Rearranging (4.12) and (4.13) gives us

s2
[
f ′(s)

]2 =
( 1

2R2 + a2
∫

1
aa′

a2

)2
(

a4

F
[
(a/a′)2 − R2

]

)

=

[
1
2R2 + a2

∫
1

aa′
]2

F
[
(a/a′)2 − R2

] . (4.14)

Now assume F has a finite nonzero limit as t → 0+. Since (a/a′) → 0 and
a2

∫
1

aa′ → 0 (by L’Hôpital’s rule) as t → 0+ along γ, there is a constant
0 < c < ∞ such that

lim
t→0+

s2
[
f ′(s)

]2 = c2.

Note that t → 0+ implies s → ∞ along γ. Therefore, the above limit is
equivalent to lims→∞ s2

[
f ′(s)

]2 = c2. As noted above, f ′ �= 0, so it follows
that lims→∞ sf ′(s) = ±c. Fix 0 < ε < c/2. Then there exists an S such that
s > S implies |sf ′(s) ∓ c| < c/2 so f ′(s) > ± c

2s . By integrating over all s > S,
we find that f(s) → ±∞ as s → ∞. Hence, T → ±∞ as t → 0+ along γ. �

Corollary 4.2. Let (M, g) be a Euclidean FLRW spacetime where the scale
factor satisfies the condition in Theorem 4.1. Then there is no C0 strongly
spherically symmetric extension of (M, g).

Remark. By the conclusion, we mean precisely the following: There is no point
p ∈ ∂−M for which there exist strongly spherically symmetric coordinates
(T,R, ω) defined on a neighborhood U of p such that on U ∩ M , T and R
are functions of t and r only and g = ψ∗gext, where ψ is the transformation:
(t, r) → (T,R).

Proof. Suppose there is such an extension. Then there is a point p ∈ ∂−M
and a neighborhood U of p with strongly spherically symmetric coordinates
(T,R, ω) such that T and R are as in the remark. But then the conclusions
(a) and (b) of Theorem 4.1 apply. In particular, Theorem 4.1 implies that
G(p) = 0, so the extended metric is degenerate at p. �

4.2. No Strongly Spherically Symmetric Extensions for Non-Milne-like
Hyperbolic FLRW Spacetimes

We have analogous statements of Theorem 4.1 and Corollary 4.2 for hyperbolic
FLRW spacetimes. However, we have to rule out the Milne-like spacetimes
since we know these admit C0 extensions by Theorem 3.4.
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Theorem 4.3. Let (M, g) be a hyperbolic FLRW spacetime where the scale
factor a(t) satisfies

a′(0) := lim
t→0+

a′(t) ∈ [0,∞], a′(0) �= 1.

Then, subject to a suitable initial condition, there exists a unique transforma-
tion of the form,

T = T (t, r) R = R(t, r)

such that g takes the strongly spherically symmetric form

g = −F (T,R)dT 2 + G(T,R)dR2 + R2dΩ2
d−1,

where F and G are regular (away from a curve in the r-t plane along which
the Jacobian determinant J(r, t) = ∂(T,R)

∂(t,r) vanishes). Suppose M admits a
C0-extension Mext. Let γ be a timelike curve in Mext with past end point on
∂−M , such that R has a finite positive limit along γ as t → 0+. Then we have
limt→0+ G = 0 along γ.

Proof. The proof is hardly different from the proof of Theorem 4.1. The same
analysis leads to the following expressions for R, T , G, and F

• R = sinh(r)a(t)

• T = f

(
ln

(
cosh(r)

)
+

∫
1

aa′

)

• G =
[
cosh2(r) − sinh2(r)a′2(t)

]−1

• F = cosh2(r)GT−2
t = cosh2(r)G

(
aa′
f ′

)2

,

where f is some differentiable function which is uniquely determined by spec-
ifying T on a curve which is transversal to the curves ln

(
cosh(r)

)
+

∫
1

aa′ =
const.

We have

G =
[
cosh2

(
sinh−1(R/a)

) − sinh2
(
sinh−1(R/a)

)
a′2]−1

=
[
(R/a)2 + 1 − R2a′2/a2

]−1

=
a2

R2(1 − a′2) + a2
. (4.15)

Since a′(0) �= 1, it follows that G → 0 as t → 0+ along γ. �

Corollary 4.4. Let (M, g) be a hyperbolic FLRW spacetime where the scale
factor satisfies the condition in Theorem 4.3. Then there is no C0 strongly
spherically symmetric extension of (M, g).

Proof. The remark following Corollary 4.2 still applies. The proof is then es-
sentially the same as the proof of Corollary 4.2. �

The theorems and corollaries in this and the previous subsection show
that if C0 extensions exist for open FLRW spacetimes (which are not Milne-
like), then the extensions are likely not to be spherically symmetric. However,
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one might speculate that if an extension exists, then a spherically symmet-
ric extension should exist as well. Thus, we propose, with rather limited ev-
idence, the following two conjectures. If these two conjectures are true, they
would prove that open FLRW spacetimes (which are not Milne-like) are C0-
inextendible.

Conjecture 1. If an open FLRW spacetime admits a C0 extension, then it
admits a spherically symmetric C0 extension.

Conjecture 2. An open FLRW spacetime (which is not Milne-like) admits no
spherically symmetric C0 extensions.

For a quite different analysis of FLRW models near the big bang, we
mention the paper [11]. The 3 + 1-dimensional models considered there ex-
hibit degeneracy of the metric at the big bang in the Fermi coordinates of
a co-moving observer considered by the authors and thus do not lead to C0

extensions in the sense of the present paper.

5. Further Remarks on ∂−M

In this section, we make some brief remarks on the structure of ∂−M . For
d > 1, we will see that the structure of ∂−M limits the possible extensions
one can find. We will also show that these limitations do not exist when d = 1
(i.e., two-dimensional spacetimes).

Consider a spacetime M = (0,∞) × Σ, g = −dt2 + a2(t)h, with (Σ, h)
a Riemannian manifold of dimension d > 1, such that (M, g) is future diver-
gent and future one-connected (an FLRW spacetime, for example). Suppose
(Mext, gext) is a C0 extension of (M, g). By Theorem 2.6, ∂−M is an achronal
C0 hypersurface. It can be represented locally as a graph over a smooth hyper-
surface, where the graphing function satisfies a Lipschitz condition. Hence, as
a consequence of Rademacher’s theorem, ∂−M is differentiable almost every-
where, in the sense of having a well-defined tangent plane at almost all points.
Using the continuity of gext and the achronality of ∂−M , one can show that
these tangent planes cannot be timelike; tangent vectors to ∂−M , when they
exist are spacelike or null.

Consider a point p ∈ ∂−M and let {y0, y1, . . . , yd} be coordinates for a
neighborhood U of p with ∂/∂y0 timelike and future directed. We can find a
line σ : [0, 1] → R

d,

σ(s) =
(
a1s, . . . , ads

)
, where a1, . . . , ad are constants,

such that the timelike surface

T =
{(

y0, σ(s)
) | s ∈ [0, 1]

} ∩ U

intersects ∂−M in a curve c : [0, 1] → ∂−M , s → c(s), which is necessarily
achronal in T . Hence, c is differentiable a.e., with tangent vectors that are
spacelike or null. By suitably adjusting T , one can ensure that c is differentiable
and spacelike at some point. Let’s assume in fact that we can choose c to be
spacelike on a set of positive of measure.
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We define cn : [0, 1] → T by intersecting T with {t = 1/n}. We have
cn(s) =

(
n−1, cn(s)

) ∈ (0,∞) × Σ, where cn is a spacelike curve in (Σ, h).
By Dini’s theorem cn converges uniformly to c. Let us make the assumption
that c′

n converges to c′ a.e. This would be true (for a subsequence) by Arzelá–
Ascoli if {c′

n} satisfied a Hölder condition. This, of course, cannot be expected
to hold in general, but does hold in our two-dimensional examples. If we make
this assumption, then basic analysis implies that the length of cn converges to
that of c, which itself has positive length,

lim
n→∞

∫ 1

0

√
gext

(
c′
n(s), c′

n(s)
)
ds =

∫ 1

0

√
gext

(
c′(s), c′(s)

)
ds > 0. (5.1)

Now note that
∫ 1

0

√
gext

(
c′
n(s), c′

n(s)
)
ds = a(n−1)

∫ 1

0

√
h
(
c′
n(s), c′

n(s)
)
ds. (5.2)

Let (x1, . . . , xd) be coordinates for Σ and set xi
n = xi ◦ cn. Then we have

h
(
c′
n(s), c′

n(s)
)

= hij
dxi

n

ds

dxj
n

ds
i, j = 1, . . . , d. (5.3)

However, we can induce coordinates (y1
n, . . . , yd

n) on {n−1}×Σ by the graphing
function y0 = y0(y1, . . . , yd). Then the chain rule gives

dxi
n

ds
=

∂xi

∂yk
n

dyk
n

ds
= ak ∂xi

∂yk
i, k = 1, . . . , d. (5.4)

Therefore, Eq. (5.3) gives

h
(
c′
n(s), c′

n(s)
)

= hija
kal ∂xi

∂yk
n

∂xj

∂yl
n

. (5.5)

The right hand side of (5.2) then becomes,

a(n−1)akal

∫ 1

0

√

hij
∂xi

∂yk
n

∂xj

∂yl
n

ds. (5.6)

Let’s suppose we are dealing with a Euclidean FLRW model so that
hij = δij . Then a contradiction to Eq. (5.1) will result if the following condition
holds:

lim
n→∞ a(n−1) sup

s∈[0,1],i,k

{∣
∣
∣
∣
∂xi

∂yk
n

(
cn(s)

)
∣
∣
∣
∣

}
= 0. (5.7)

Hence, this is telling us that, in order for an extension to exist, the coordinates
on Σ and the coordinates about p ∈ ∂−M must behave in a certain asymp-
totic manner as one approaches ∂−M : Roughly speaking, some of the partial
derivatives appearing in (5.7) must become unboundedly large on approach to
∂−M , at a rate based on the rate at which a(t) → 0.

We don’t see this asymptotic behavior in our two-dimensional spacetimes
which admitted C0 extensions that we explored in Sect. 3.2. Indeed, in those
spacetimes we have ∂x/∂x̃ = 1. A contradiction is avoided in this case because
∂−M is a one-dimensional null hypersurface and hence does not admit any
spacelike directions.
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