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Abstract: We use existence results for Jang’s equation and marginally outer trapped
surfaces (MOTSs) in 2+1 gravity to obtain nonexistence of geons in 2+1 gravity. In par-
ticular, our results show that any 2 + 1 initial data set, which obeys the dominant energy
condition with cosmological constant � ≥ 0 and which satisfies a mild asymptotic
condition, must have trivial topology. Moreover, any data set obeying these conditions
cannot contain a MOTS. The asymptotic condition involves a cutoff at a finite boundary
at which a null mean convexity condition is assumed to hold; this null mean convexity
condition is satisfied by all the standard asymptotic boundary conditions. The results
presented here strengthen various aspects of previous related results in the literature.
These results not only have implications for classical 2 + 1 gravity but also apply to
quantum 2 + 1 gravity when formulated using Witten’s solution space quantization.

1. Introduction

Solitons, an interesting feature of many nonlinear field theories, are stable solutions that
exhibit the characteristics of particles, including properties such as mass, charge and
spin. When present, they interact with other particles and fields in the nonlinear theory
with important physical consequences. In gravity, the existence of such solutions, termed
geons, was first proposed by Wheeler in both classical and quantum contexts [1]. In the
original framework, geons are asymptotically flat solutions of Einstein-Maxwell theory.
Initial investigations into their existence and properties were carried out in a series of
papers by Wheeler and collaborators [2–6]. It was discovered that geons with trivial
topology were classically unstable on short timescales. In contrast, topological geons
do not disperse classically as their nontrivial spatial topology is preserved by evolution
under the Einstein equations. Their nontrivial topology also can produce electric charge
without the presence of charged matter sources; however, simple types of topological
geons, for example those with the topology of a handle, also produce magnetic charge,
in contradiction to observed properties of matter coupled to electromagnetism.
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An explanation resolving this contradiction and other novel results led to renewed
interest in topological geons as quantum particles in 3 + 1-dimensional quantum gravity.
Sorkin demonstrated that the nonorientable handle produced electric charges without
also producing magnetic monopoles [7]. Additionally, an interesting formal argument in
3 + 1-dimensional quantum gravity demonstrated that certain topological geons produce
spin 1/2 quantum states even though no fermionic matter sources are included [8–10]. A
detailed analysis of the formal existence of spin 1/2 states from quantum geons yielded
interesting ties to the topology of 3-manifolds, as described in the series of papers
[11–14].1 Furthermore, physically reasonable initial data sets for the Einstein equations
can be constructed on all smooth 3-manifolds [15]; consequently, classical topologi-
cal geons exist in 3 + 1-dimensional gravity. Thus, by the correspondence principle, so
should their quantum counterparts in a theory of 3 + 1-dimensional quantum gravity.

Though intriguing, these formal arguments regarding the properties of topological
geons cannot be more rigorously developed in a quantum context as no complete theory
of 3 + 1-dimensional quantum gravity is known. However, the potential for such studies
exists in one lower dimension; as shown by Witten using a solution space quantization,
2 + 1-dimensional quantum gravity is a well defined theory [16]. Though initial work
concentrated on its formulation for spatially closed 2-manifolds [16–18], more recent
investigations have been in the context of 2 + 1-dimensional anti-de Sitter spacetimes
[19] and related 2 + 1-dimensional theories with asymptotic regions such as topologi-
cally massive gravity [20,21] and chiral gravity [22]. Consequently, 2 + 1-dimensional
quantum gravity may provide a natural testbed for rigorously exploring the quantum
properties of topological geons.

A natural first step toward the study of quantum geons in 2 + 1-dimensional gravity
is the identification of classical 2 + 1-dimensional geons. This paper will rigorously
address this issue; are there classical topological geons in 2 + 1 gravity? This ques-
tion was recently considered for asymptotically flat spacetimes obeying the dominant
energy condition in [23]. They proved the nonexistence of asymptotically flat geons
in 2 + 1-dimensional vacuum spacetimes and under the more general assumption that
spacetime is analytic.2 It follows that there are no quantum geons in its corresponding
solution space quantization. The proof of nonexistence of geons given in [23] is based
on a spacetime approach that makes use of topological censorship techniques [24–26],
combined with a refinement of the marginally trapped surface results in 2 + 1 gravity
considered in [27].

The aim of the present work is to strengthen various aspects of the nonexistence result
obtained in [23], which, in the process, involves improvements of results of [27]. Here we
take an initial data set approach, and hence our results are localized in time. Moreover,
we are able to remove the analyticity assumption in [23]; smooth (or sufficiently differ-
entiable, C2, say) initial data sets suffice. Also, in [23] implicit assumptions were made
about the existence of outermost marginally outer trapped surfaces (outermost MOTSs).
Here we make careful use of recently established existence results for outermost MOTSs
[28–32].

The main result of the paper (Theorem 4.1) is presented in Sect. 4. In it, we prove
that bounded domains, satisfying a mild and physically natural boundary convexity con-
dition, in 2 + 1-dimensional initial data sets obeying the dominant energy condition,
with cosmological constant � ≥ 0, are necessarily topological disks and do not contain

1 These results also yielded counter-examples to some conjectures in 3-dimensional topology.
2 Analyticity is used to handle the case of equality in the dominant energy condition. As pointed out in

[23], in 2 + 1 dimensions, analyticity necessarily holds for vacuum spacetimes.

Author's personal copy



Nonexistence of Marginally Trapped Surfaces and Geons in 2 + 1 Gravity 287

MOTSs. (In this work, as will be seen, the cosmological constant is not considered as
a source.) The proof makes use of Jang’s equation with a Dirichlet boundary condition
(as in [33,34]), together with various results about MOTSs. The advantage of using the
Dirichlet boundary condition is that no asymptotic fall-off conditions are needed; the
boundary convexity condition mentioned above suffices.

In Sect. 2, we present some background material on MOTSs and obtain a strengthen-
ing of the results on trapped surfaces in 2+1 gravity given in [27]. This allows the weak-
ening of the regularity condition used in [23]; see especially, Theorem 2.3, which extends
the main rigidity result obtained in [35]. Background material and relevant results on
Jang’s equation are presented in Sect. 3. We emphasize the connection between MOTSs
and Jang’s equation to obtain the so-called Schoen-Yau stability inequality, which plays
a key role in the proof of Theorem 4.1.

While our results rule out the existence of MOTSs and nontrivial topology in 2 + 1-
dimensional asymptotically flat initial data sets obeying the dominant energy condition
with � ≥ 0, they do not do so for � < 0. Indeed, there are well-known examples of
2 + 1-dimensional asymptotically AdS spacetimes which have MOTSs and nontrivial
topology, such as the BTZ black holes and related spacetimes [36–39]. Hence the study
of the quantum properties of 2 + 1-geons in asymptotically AdS spacetimes remains an
intriguing possibility.

2. Marginally Trapped Surfaces

Let � be a co-dimension two spacelike submanifold of a spacetime M . Under suitable
orientation assumptions, there exist two families of future directed null geodesics issuing
orthogonally from �. If one of the families has vanishing expansion along �, then �

is called a marginally outer trapped surface. The notion of a marginally outer trapped
surface (MOTS) was introduced early on in the development of the theory of black holes
[40]. Under suitable circumstances, the occurrence of a MOTS signals the presence of
a black hole [40,41]. For this and other reasons MOTSs have played a fundamental role
in quasi-local descriptions of black holes; see e.g., [42]. MOTSs arose in a more purely
mathematical context in the work of Schoen and Yau [43] concerning the existence of
solutions to Jang’s equation (see Sect. 3), in connection with their proof of positivity of
mass.

In the following subsections we give precise definitions and present some results
about MOTSs relevant to the present work.

2.1. MOTSs in initial data sets. In this paper we are primarily interested in initial data
sets, and MOTSs therein.

Let (Mn+1, g) denote a spacetime, by which we mean a smooth (Hausdorff, para-
compact) manifold M of dimension n + 1, n ≥ 2, equipped with a metric g of Lorentz
signature (− + · · · +), such that, with respect to g, M is time oriented. An initial data
set in (Mn+1, g) is a triple (V n, h, K ), where V is a spacelike hypersurface in M , and
h and K are the induced metric and second fundamental form, respectively, of V . To
set sign conventions, for vectors X, Y ∈ TpV , K is defined as, K (X, Y ) = 〈∇X u, Y 〉,
where ∇ is the Levi-Civita connection of M and u is the future directed timelike unit
vector field to V . Note that a triple (V n, h, K ), where V is a smooth manifold, h is a
Riemannian metric on V , and K is a covariant symmetric 2-tensor on V , is always the
initial data set of some spacetime (e.g., let M ′ be a sufficiently small neighborhood of
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{0} × V in R × V , equipped with the metric, g′ = −dt2 + ht , where ht = h + t K ).
However, we will only be interested in physically relevant initial data sets, i.e., initial
data sets associated with spacetimes that satisfy the Einstein equations (see Sect. 2.2).

Let (V n, h, K ) be an initial data set, and let �n−1 be a closed (compact without
boundary) two-sided hypersurface in V n . Then � admits a smooth unit normal field ν

in V , unique up to sign. By convention, refer to such a choice as outward pointing. Then
l+ = u + ν (resp. l− = u − ν) is a future directed outward (resp., future directed inward)
pointing null normal vector field along �, unique up to positive scaling.

The second fundamental form of � can be decomposed into two scalar valued null
second fundamental forms χ+ and χ−, associated to l+ and l−, respectively. For each
p ∈ �, χ± is the bilinear form defined by

χ± : Tp� × Tp� → R, χ±(X, Y ) = g(∇Xl±, Y ). (2.1)

The null expansion scalars θ± of � are obtained by tracing χ± with respect to the induced
metric γ on �,

θ± = trγ χ± = γ ABχ±AB = div �l± , (2.2)

where γ is the induced metric on �. It is well known that the sign of θ± is invariant
under positive scaling of the null vector field l±. Physically, θ+ (resp., θ−) measures the
divergence of the outgoing (resp., ingoing) light rays emanating from �. In terms of the
initial data (V n, h, K ),

θ± = trγ K ± H , (2.3)

where H is the mean curvature of � within V (given by the divergence of ν along �).
We say that � is an outer trapped surface (resp., weakly outer trapped surface) if

θ+ < 0 (resp., θ+ ≤ 0). If θ+ vanishes, we say that � is a marginally outer trapped
surface, or MOTS for short. Geometrically, MOTSs may be viewed as spacetime ana-
logues of minimal surfaces in Riemannian manifolds. In fact, in the time-symmetric
case (K = 0), a MOTS � is just a minimal surface in V . In recent years MOTSs have
been shown to share a number of properties in common with minimal surfaces. In par-
ticular MOTSs admit a notion of stability analogous to that of minimal surfaces [44,45].
Here, stability is associated with variations of the null expansion under deformations of
a MOTS.

2.2. Variation of the null expansion. Let (V n, h, K ) be an initial data set in a spacetime
(Mn+1, g) that obeys the Einstein equation with cosmological term,

Ric − 1

2
Rg + �g = T , (2.4)

where T is the energy-momentum tensor. The Gauss-Codazzi equations imply the Ein-
stein constraint equations,

1

2

(
SV + (tr K )2 − |K |2

)
= ρ + � (2.5)

divK − d(tr K ) = J, (2.6)

where ρ = T (u, u), J = T (u, ·), and SV is the scalar curvature of V . For a given choice
of �, ρ and J are completely determined by the initial data.
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The energy-momentum tensor T is said to obey the dominant energy condition (DEC)
provided, T (X, Y ) = Ti j Xi Y j ≥ 0 for all future directed causal vectors X and Y .
One verifies that T obeys the DEC if and only it for all initial data sets (V n, h, K ) in
(Mn+1, g), ρ ≥ |J |.

We now want to consider variations in the null expansion due to deformations of a
MOTS. Hawking [40,47] introduced such variational techniques to obtain results about
the topology of black holes in 3 + 1 dimensions. These results were more recently
generalized to higher dimensions [35,46]. Ida [27] adapted Hawking’s argument to 2 + 1
dimensions to obtain restrictions on the existence of certain types of MOTSs.

Let (V n, h, K ), n ≥ 2, be an initial data set in a spacetime obeying the Einstein equa-
tions. Let � be a connected MOTS in V with outward unit normal ν. We consider vari-
ations t → �t of � = �0, −ε < t < ε, with variation vector field V = ∂

∂t

∣∣
t=0 = φν,

φ ∈ C∞(�). Let θ(t) denote the null expansion of �t with respect to lt = u + νt , where
u is the future directed timelike unit normal to V and νt is the outer unit normal to �t
in V . A computation [45] shows,

∂θ

∂t

∣∣∣∣
t=0

= L(φ) (2.7)

where L : C∞(�) → C∞(�) is the operator,

L(φ) = −�φ + 〈X,∇φ〉 +

(
1

2
S − P + div X − |X |2

)
φ , (2.8)

where,

S =
{

0 , if n = 2
the scalar curvature of � , if n ≥ 3 ,

(2.9)

P = ρ + J (ν) + � +
1

2
|χ |2 (2.10)

(χ = the outward null second fundamental form of �), and where X is the vector field
on � metrically dual to the one-form, K (ν, ·), and 〈·, ·〉 = γ is the induced metric on �.

In the time-symmetric case (K = 0), θ becomes the mean curvature H , the vector
field X vanishes and L reduces to the classical stability operator of minimal surface
theory. In analogy with the minimal surface case, we refer to L in (2.8) as the stability
operator associated with variations in the null expansion θ . Although in general L is
not self-adjoint, its principal eigenvalue (eigenvalue with smallest real part) λ1(L) is
real. Moreover there exists an associated eigenfunction φ ∈ C∞(�) which is strictly
positive.

As an application of the variational formula (2.7–2.8), we consider the following
result, which summarizes several results in the literature [27,46–48].

Theorem 2.1 Let (V n, h, K ), n ≥ 2, be an initial data set in a spacetime satisfying the
Einstein equations, with � ≥ 0. Let � be a connected MOTS in V such that either (1)
� = 0, and ρ > |J | along �, or (2) � > 0, and ρ ≥ |J | along �. Suppose, further,
that one of the following conditions holds:

(i) n = 2.
(ii) n ≥ 3 and

∫
�

Sdμ ≤ 0.

Author's personal copy



290 G. J. Galloway, K. Schleich, D. M. Witt

(iii) n ≥ 3 and � is not of positive Yamabe type, i.e., � does not admit a metric of
positive scalar curvature.

Then � can be deformed outward to a strictly outer trapped surface.

Ida’s [27] main observation is the case n = 2. Note that in this case � is one-dimen-
sional and hence is topologically a circle.

Proof. We present here a fairly uniform proof of Theorem 2.1, which is relevant to the
proof of Theorem 2.3 below. Note that, by the energy conditions, the scalar quantity P
in (2.8) is strictly positive.

Consider the “symmetrized” operator L0 : C∞(�) → C∞(�),

L0(φ) = −�φ + (
1

2
S − P)φ , (2.11)

obtained from (2.8) by formally setting X = 0. The main argument in [46] establishes
the following (see also [35,45]).

Proposition 2.2 λ1(L) ≤ λ1(L0).

For self-adjoint operators of the form (2.11), the Rayleigh formula [49] and an inte-
gration by parts give the following standard characterization of the principle eigenvalue,

λ1(L0) = inf
φ �≡0

∫
�

|∇φ|2 + ( 1
2 S − P)φ2 dμ∫

�
φ2 dμ

. (2.12)

In the cases (i) and (ii), we have
∫
�

Sdμ ≤ 0. Hence, by setting φ = 1 in the expression
on the right hand side of (2.12), and using the fact that P > 0, we see that λ1(L0) < 0.
Thus, by Proposition 2.2, λ1(L) < 0.

Now let φ be an eigenfunction associated to λ1(L), L(φ) = λ1(L)φ; φ can be chosen
to be strictly positive. Using this φ to define our variation t → �t , we have from (2.7),

∂θ

∂t

∣∣∣∣
t=0

= λ1(L)φ < 0. (2.13)

Together with the fact that θ = 0 on �, this implies that for t > 0 sufficiently small, �t
is outer trapped, as desired.

Now consider case (iii). First suppose n = 3. Then � is 2-dimensional, and by the
Gauss-Bonnet theorem, the assumption that � does not carry a metric of positive cur-
vature implies

∫
�

Sdμ ≤ 0. Thus, the argument is the same as in cases (i) and (ii). For
n ≥ 4, consider the conformal Laplacian, Lcf : C∞(�n−1) → C∞(�n−1),

Lcf (φ) = −4
n − 2

n − 3
�φ + Sφ. (2.14)

If � does not carry a metric of positive scalar curvature then we must have, λ1(Lcf ) ≤ 0
[50]. The Rayleigh formula applied to Lcf gives,

λ1(Lcf ) = inf
φ �≡0

∫
�

4(n−2)
n−3 |∇φ|2 + Sφ2 dμ∫

�
φ2 dμ

. (2.15)

Comparing (2.12) and (2.15), and using the positivity of P , one easily obtains, λ1(L0) <
1
2λ1(Lcf ). Hence, λ1(L0) < 0, and so by Proposition 2.2, we again arrive at λ1(L) < 0.
We may then proceed as before. ��
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One can see, by a simple modification of the proof, that in the case � = 0, it is
sufficient to require ρ ≥ |J | on �, with strict inequality somewhere.

With somewhat more effort, one can obtain the following refinement of Theorem 2.1
which does not require any strictness in the energy conditions.

Theorem 2.3 Let (V n, h, K ), n ≥ 2, be an initial data set in a spacetime satisfying
the Einstein equations (2.4) with � ≥ 0, such that T satisfies the DEC. Suppose �

is a connected MOTS in V such that in some neighborhood U ⊂ V of � there are no
(strictly) outer trapped surfaces outside of, and homologous, to �. Suppose, further, that
one of the following conditions holds.

(i) n = 2.
(ii) n = 3 and

∫
�

Sdμ ≤ 0.
(iii) n ≥ 3 and � is not of positive Yamabe type, i.e., � does not admit a metric of

positive scalar curvature.

Then there exists an outer half-neighborhood U + of � foliated by MOTSs, i.e., U + ≈
[0, ε) × �, such that each slice �t = {t} × �, t ∈ [0, ε) is a MOTS.

Remarks on the proof. Case (iii) of Theorem 2.3 is proved in [35]. The proof in this case
consists of two steps. In the first step, one obtains an outer foliation t → �t , 0 ≤ t ≤ ε,
of surfaces �t of constant outer null expansion, θ(t) = ct . The second step involves
showing that the constants ct = 0. This latter step requires a reduction to the case that V
has nonpositive mean curvature, τ ≤ 0 near �. For this it is necessary to know that the
DEC holds in a spacetime neighborhood of �. The proof makes use of the formula for
the t-derivative, ∂θ

∂t , not just at t = 0, where θ = 0, but all along the foliation t → �t ,
where, a priori, θ(t) need not be zero. Thus, additional terms appear in the expression
for ∂θ

∂t beyond those in (2.7), including a term involving the mean curvature of V , which
need to be accounted for. The proof of case (iii) given in [35] can be easily modified to
give a proof of Theorem 2.3 in the cases (i) and (ii), by using arguments like those used in
the proof of the cases (i) and (ii) in Theorem 2.1 above. For Theorem 2.3, it is necessary
to restrict the dimension in case (ii) to n = 3 in order to control, via Gauss-Bonnet, the
total scalar curvature of each �t . ��

Let us say that a connected MOTS � in an initial data set is locally outermost if, with
respect to some neighborhood of U ⊂ V of �, there are no weakly outer trapped surfaces
outside of, and homologous, to � in U . Theorem 2.3(i) shows that for initial data sets in
2 + 1-dimensional spacetimes satisfying the Einstein equations (2.4) with � ≥ 0, such
that T satisfies the DEC, there can be no locally outermost MOTSs. This strengthens
Ida’s results and those of [23] by removing any strictness in the energy inequalities,
restriction to the vacuum case or assumption of analyticity. Theorem 2.3(i) rules out, in
particular, the existence of 2 + 1-dimensional stationary black hole spacetimes obeying
the stated energy conditions.

In Sect. 4, we obtain a more comprehensive result which rules out MOTSs altogether,
locally outermost or otherwise.

2.3. Existence of MOTSs. Substantial progress has been made in recent years concerning
the existence of MOTSs. Following an approach suggested by Schoen [51], Andersson
and Metzger [29] established for 3-dimensional initial data sets the existence of MOTSs
under natural barrier conditions. Combining this existence result with the compactness
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result established in [28] and an interesting surgery technique, they were able to estab-
lish the existence of outermost MOTSs in 3-dimensional initial data sets [29]. Such an
outermost MOTS was realized as the boundary of the so-called trapped region, suitably
defined. Using insights from geometric measure theory, Eichmair [30,31] was able to
extend the results of Andersson and Metzger to dimensions n, 2 ≤ n ≤ 7. We refer
the reader to the recent survey article [32] for an excellent discussion of these existence
results.

The results concerning the existence of outermost MOTSs (see [32, Th. 4.6]) may be
formulated as follows.

Theorem 2.4 Let (V n, h, K ) be an initial data set, 2 ≤ n ≤ 7, and let W n be a con-
nected compact n-manifold-with-boundary in V n. Suppose that the boundary ∂W can
be expressed as a disjoint union, ∂W = �inn ∪ �out , such that θ+ < 0 along �inn with
respect to the null normal whose projection points into W , and θ+ > 0 along �out with
respect to the null normal whose projection points out of W . Then there exists a smooth
compact outermost MOTS � in the interior of W homologous to �out .

Some remarks are in order.

1. If, as the notation suggests, we think of �inn as an inner boundary and �out as an
outer boundary, then we are assuming that �inn is outer trapped and �out is outer
untrapped.

2. By � being homologous to �out , we mean explicitly that there exists an open set
U ⊂ W such that ∂U = � ∪�out . Then θ+ is defined with respect to the null normal
whose projection points into U .

3. By � being outermost in W we mean that if �′ is a weakly outer trapped (θ+ ≤ 0)
surface in U homologous to �out , then �′ = �. In other words, � must enclose all
weakly outer trapped surfaces in W homologous to �out .

4. It is important to note for applications that �inn and �out need not be con-
nected. Also the MOTS � will not in general be connected (even if �inn and �out
are).

5. Finally, Andersson and Metzger [29, Sect. 5] have shown, by a technique of mod-
ifying the initial data near the inner boundary to get a strict barrier, that it is suf-
ficient in Theorem 2.4 to require that �inn be only weakly outer trapped, θ+ ≤ 0.
Then the outermost MOTS � may have components that agree with components
of �inn .

Note the tension between Theorem 2.3(i) and Theorem 2.4, the former implying that
there are no locally outermost MOTSs under appropriate energy conditions, and the
latter providing conditions for the existence of outermost MOTSs. We will exploit this
tension in the proof of the main result in Sect. 4.

The proof of the basic existence result for MOTSs alluded to at the beginning of
this subsection is based on Jang’s equation [52], which we discuss in the next section.
Schoen and Yau [43] established existence and regularity for Jang’s equation with respect
to asymptotically flat initial sets, as part of their approach to proving the positive mass
theorem for general, nonmaximal, initial data sets. In the process they discovered an
obstruction to global existence: Solutions to Jang’s equation tend to blow-up in the pres-
ence of MOTSs in the initial data (V n, h, K ). Turning the situation around, this behavior
was exploited in [29,31] to establish the existence of MOTSs by inducing blow-up of
Jang’s; see [32] for further discussion.
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3. Jang’s Equation and the Schoen-Yau Stability Inequality

Let (V n, h, K ) be an initial data set. Then Jang’s equation is the equation,

γ i j

(
Di D j f√
1 + |D f |2 − Ki j

)
= 0 , (3.1)

where f is a function on V , D is the Levi-Civita connection of h, and γ i j = hi j − f i f j

1+|D f |2 .

Introducing the Riemannian product manifold, V̄ = V ×R, h̄ = h + dz2 , we notice that
the γ i j ’s are the contravariant components of the induced metric γ f on � f = graph f
in V̄ , and, moreover, that,

H( f ) := − γ i j Di D j f√
1 + |D f |2

is the mean curvature of � f , computed with respect to the upward pointing3 unit normal
ν. Thus, Jang’s equation becomes,

H( f ) + tr γ f K̄ = 0 , (3.2)

where K̄ is the pullback, via projection along the z-factor, of K to V̄ . Comparing with
Eq. (2.3), we see that, geometrically, Jang’s equation is the requirement that the graph � f

has vanishing null expansion, θ+ = 0, i.e., is a MOTS, in the initial data set (V̄ n, h̄, K̄ ).
Given a solution f to Jang’s equation, we can use Eqs. (2.7–2.8) to obtain a formula

for the scalar curvature S f of � f . Consider the variation t → �(t) of � f obtained by
shifting � f up and down the z-axis, i.e., �(t) = the graph of f + t . This may be viewed
as a normal variation, with variation vector field,

V = φν , φ = h̄(ν, ∂z) , (3.3)

where ν is the upward pointing unit normal along � f .
Let θ(t) denote the null expansion of �(t). Because Jang’s equation is translation

invariant, in the sense that if f is a solution, then f + t is also a solution, we have that
θ(t) = 0 for all t . Hence, ∂θ

∂t

∣∣
t=0 = 0, and Eqs. (2.7–2.8) give along � f ,

− �φ + 〈X̄ ,∇φ〉 +

(
1

2
S f − P + div X̄ − |X̄ |2

)
φ = 0 , (3.4)

where X̄ is the vector field on � f metrically dual to the one-form, K̄ (ν, ·), and

P = ρ̄ + J̄ (ν) + � +
1

2
|χ̄ |2 , (3.5)

where ρ̄ and J̄ are the pullback of ρ and J , respectively, via projection along the z-factor.
By setting φ = eu in (3.4) and completing the square, we obtain,

1

2
S f + div(X̄ − ∇u) − |X̄ − ∇u|2 = ρ̄ + J̄ (ν) + � +

1

2
|χ̄ |2 ≥ 0 , (3.6)

3 We note that in [43] the mean curvature of � f is considered with respect to the downward pointing
normal. Our choice results in some minor sign differences.
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where the inequality holds provided � ≥ 0 and the DEC, ρ ≥ |J |, holds with respect
to the original initial data set (V n, h, K ). This inequality is equivalent to the “on shell”
Schoen-Yau stability inequality4 obtained in [43]; cf., (2.29) on p. 240. Hence, assuming
� ≥ 0 and the DEC holds, we arrive at

S f ≥ −2 div(X̄ − ∇u) , (3.7)

where u = ln h̄(ν, ∂z) and X̄ is the vector field on � f metrically dual to the one-form
K̄ (ν, ·).

In [43] Schoen and Yau studied extensively the existence and regularity of solutions
f to Jang’s equations over complete asymptotically flat 3-dimensional initial data sets
(V 3, h, K ), with suitable decay on the asymptotically Euclidean ends. As noted in [33]
(see also [34]), by standard considerations one obtains similar existence results for Jang’s
equation with Dirichlet boundary data, f = 0, on compact manifolds W with null convex
boundaries ∂W (as defined in the next section). It follows as an immediate consequence
of their main existence result [43, Prop. 4] (see also [32, Th. 3.2]) that if there are no
MOTSs in W then there exists a globally regular solution f of Jang’s equation on W
with Dirichlet boundary data f = 0. This result remains valid for 2-dimensional initial
data sets, and will be used in the proof of the main result.

4. Main Result

Let W n , n ≥ 2, be a connected compact manifold-with-boundary in an initial data set
(V n, h, K ). We say that the boundary ∂W n is null mean convex provided it has positive
outward null expansion, θ+ > 0, and negative inward null expansion, θ− < 0. Note
that round spheres in Euclidean slices of Minkowski space, and, more generally, large
“radial” spheres in asymptotically flat initial data sets are null mean convex.

The aim of this section is to prove the following result about 2-dimensional initial
data sets.

Theorem 4.1 Let (V 2, h, K ) be a 2-dimensional initial data set in a spacetime satisfy-
ing the Einstein equations (2.4) with � ≥ 0, such that T satisfies the DEC. If W 2 is a
connected compact 2-manifold with null mean convex boundary ∂W 2 in V 2, then W 2

is diffeomorphic to a disk, and there are no MOTSs in W 2.

The theorem follows from two claims.

Claim 1. If there are no MOTSs in W then W is diffeomorphic to a disk.

Proof. As per the comments at the end of the previous section, if there are no MOTSs
in W then there exists a globally regular solution f : W → R to Jang’s equation, with
f = 0 on ∂W . As in Sect. 3, we consider � f = graph f in the metric γ f induced from
the product metric 〈·, ·〉 = h + dz2. We introduce an orthonormal frame e1, e2, e3 along
� f near ∂� f = ∂W . Take e3 = ν, and let e1 and e2 be tangent to � f , such that e1 is
tangent to ∂� f and e2 is normal to ∂� f and outward pointing.

Let S2
d denote the 2-sphere with d ≥ 1 disjoint open disks removed. By the classifi-

cation of surfaces, if W is orientable then it is diffeomorphic to a connected sum of S2
d

4 Here stability relates to the fact that with respect to the variation being considered, the null expansion is
nondecreasing in the “outward” direction.
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and g tori, g ≥ 0, while if it is nonorientable it is a connected sum of S2
d and k projective

planes, k ≥ 0. Then by the Gauss-Bonnet formula applied to (� f , γ f ), we have,

∫∫

� f

Kd A +
∫

∂� f

κds = 2πχ(� f ) = 2πχ(W )

= 2π (2 − a − d), (4.1)

where a = 2g or k, depending on whether W is orientable or nonorientable.
To show that a = 0 and d = 1, and hence that W is a disk, it is sufficient to

show that the left hand side of (4.1) is strictly positive. From (3.7), the Gaussian cur-
vature K satisfies, K ≥ −div(X̄ − ∇u), where u = ln〈e3, ∂z〉 and X̄ is the vector field
on � f metrically dual to the one-form K̄ (ν, ·). The geodesic curvature κ is given by
κ = −〈∇e1 e1, e2〉 = H̄∂W , the mean curvature of ∂W in (� f , γ f ) with respect to the
outward unit normal e2. Then, applying the divergence theorem,

∫∫

� f

Kd A +
∫

∂� f

κds ≥
∫

∂W
H̄∂W − 〈X̄ , e2〉 + 〈∇u, e2〉 ds

=
∫

∂W
H̄∂W − K̄ (e3, e2) + e2(u) ds. (4.2)

By analyzing each term in the integrand in a manner similar to what is done in [34, p.
9f], we show that the integrand is strictly positive.

Let w be the unit normal field to ∂W tangent to V . Then note, since ∂z is parallel,

H̄∂W = −〈∇e1 e1, e2〉 = −〈e2, w〉〈∇e1 e1, w〉 = 〈e2, w〉H∂W , (4.3)

where H∂W is the mean curvature of ∂W in (V, h). Also, since K̄ (∂z, ·) = 0,

K̄ (e3, e2) = 〈e3, w〉K̄ (w, e2) = 〈e3, w〉
〈e2, w〉 K̄ (e2, e2). (4.4)

For the term e2(u), we have,

e2(u) = 1

〈e3, ∂z〉 e2〈e3, ∂z〉 = 1

〈e3, ∂z〉 〈∇e2 e3, ∂z〉

= 〈e2, ∂z〉
〈e3, ∂z〉 〈∇e2 e3, e2〉 = −〈e2, ∂z〉

〈e3, ∂z〉 〈∇e2 e2, e3〉

= 〈e3, w〉
〈e2, w〉 〈∇e2 e2, e3〉. (4.5)

Using the following:

− tr K̄ = H( f ) = −〈∇e1 e1, e3〉 − 〈∇e2 e2, e3〉
= 〈e3, w〉H∂W − 〈∇e2 e2, e3〉 , (4.6)

we can write Eq. (4.5) as

e2(u) = 〈e3, w〉
〈e2, w〉

(〈e3, w〉H∂W + tr K̄
)
. (4.7)
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Combining (4.3), (4.4), and (4.7), we obtain,

H̄∂W − K̄ (e3, e2) + e2(u) =
(

〈e2, w〉 +
〈e3, w〉2

〈e2, w〉
)

H∂W +
〈e3, w〉
〈e2, w〉

(
tr K̄ − K̄ (e2, e2)

)

= 〈e2, w〉−1 (H∂W − 〈e3, w〉 tr∂W K )

≥ 〈e2, w〉−1 (H∂W − |tr∂W K |) . (4.8)

But observe that the quantity H∂W − |tr∂W K | is positive if and only if ∂W is null mean
convex, and moreover that H∂W − |tr∂W K | ≥ min(θ+,−θ−).

Hence, using (4.8) in (4.2) we obtain,
∫∫

� f

Kd A +
∫

∂� f

κds ≥
∫

∂W
H∂W − |tr∂W K | ds > 0, (4.9)

from which we conclude that W 2 is diffeomorphic to a disk. ��
Claim 2. There are no MOTSs in W .

Proof. Suppose � is a (connected) MOTS in W . Then � is two-sided and θ+ = 0 with
respect to the null normal l+ = u + ν, where ν is a smooth unit normal to � in W .

Suppose that � separates W . Then � is homologous to �′, where �′ is a nonempty
disjoint union of some (perhaps all) of the components of ∂W . That is, there exists an
open set U ⊂ W with ∂U = � ∪ �′. Moreover, by considering the time-dual of space-
time if necessary, we can assume that ν points into U . We may now apply Theorem 2.4,
together with Remark 5, with �inn = � and �out = �′, to conclude that there exists
an outermost MOTS �̂ in U ∪�. On the other hand, by applying Theorem 2.3(i) to one
of the components of �̂ we see that �̂ cannot be outermost.

Now suppose that � does not separate W . In this case we modify W by making
a “cut” along �; as MOTSs are two-sided, this produces a compact surface W ′ with
boundary ∂W ′ = ∂W ∪ �− ∪ �+, where �− and �+ are copies of � such that �+ is
a MOTS with respect to the normal pointing into W ′ and �− is a MOTS with respect
to the normal pointing out of W ′. Now apply Theorem 2.4, together with Remark 5,
with �inn = �+ and �out = ∂W ∪ �− to obtain an outermost MOTS in W ′.5 We note
that since �− is not homologous to �+, this outermost MOTS must have at least one
component distinct from �−. Applying Theorem 2.3(i) to this component again leads to
a contradiction. Thus, there can be no MOTS in W . This completes the proof of Claim
2 and hence Theorem 4.1. ��
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