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Abstract: Hawking’s theorem on the topology of black holes asserts that cross sections
of the event horizon in 4-dimensional asymptotically flat stationary black hole spacetimes
obeying the dominant energy condition are topologically 2-spheres. This conclusion
extends to outer apparent horizons in spacetimes that are not necessarily stationary. In
this paper we obtain a natural generalization of Hawking’s results to higher dimensions
by showing that cross sections of the event horizon (in the stationary case) and outer
apparent horizons (in the general case) are of positive Yamabe type, i.e., admit metrics of
positive scalar curvature. This implies many well-known restrictions on the topology, and
is consistent with recent examples of five dimensional stationary black hole spacetimes
with horizon topology S2 × S1. The proof is inspired by previous work of Schoen and
Yau on the existence of solutions to the Jang equation (but does not make direct use of
that equation).

1. Introduction

A basic result in the theory of black holes is Hawking’s theorem [11, 13] on the topology
of black holes, which asserts that cross sections of the event horizon in 4-dimensional
asymptotically flat stationary black hole spacetimes obeying the dominant energy condi-
tion are spherical (i.e., topologically S2). The proof is a beautiful variational argument,
showing that if a cross section has genus ≥ 1 then it can be deformed along a null
hypersurface to an outer trapped surface outside of the event horizon, which is forbid-
den by standard results on black holes [13].1 In [12], Hawking showed that his black
hole topology result extends, by a similar argument, to outer apparent horizons in black
hole spacetimes that are not necessarily stationary. (A related result had been shown
by Gibbons [8] in the time-symmetric case.) Since Hawking’s arguments rely on the
Gauss-Bonnet theorem, these results do not directly extend to higher dimensions.

1 Actually the torus T 2 arises as a borderline case in Hawking’s argument, but can occur only under special
circumstances.



G.J. Galloway, R. Schoen

Given the current interest in higher dimensional black holes, it is of interest to de-
termine which properties of black holes in four spacetime dimensions extend to higher
dimensions. In this note we obtain a natural generalization of Hawking’s theorem on the
topology of black holes to higher dimensions. The conclusion in higher dimensions is
not that the horizon topology is spherical; that would be too strong, as evidenced by the
striking example of Emparan and Reall [7] of a stationary vacuum black hole spacetime
in five dimensions with horizon topology S2 × S1. The natural conclusion in higher
dimensions is that cross sections of the event horizon (in the stationary case), and outer
apparent horizons (in the general case) are of positive Yamabe type, i.e. admit metrics
of positive scalar curvature. As noted in [6], in the time symmetric case this follows
from the minimal surface methodology of Schoen and Yau [18] in their treatment of
manifolds of positive scalar curvature. The main point of the present paper is to show
that this conclusion remains valid without any condition on the extrinsic curvature of
space. That such a result might be expected to hold is suggested by work in [19, Sect. 4],
which implies that the apparent horizons corresponding to the blow-up of solutions of
the Jang equation, as described in [19], are of positive Yamabe type. We emphasize,
however, that we do not need to make use of the Jang equation here.2

Much is now known about the topological obstructions to the existence of metrics of
positive scalar curvature in higher dimensions. While the first major result along these
lines is the famous theorem of Lichnerowicz [16] concerning the vanishing of the Â
genus, a key advance in our understanding was made in the late 70’s and early 80’s
by Schoen and Yau [17, 18], and Gromov and Lawson [9, 10]. A brief review of these
results, relevant to the topology of black holes, was considered in [6]. We shall recall
the situation in five spacetime dimensions in the next section, after the statement of our
main result.

2. The Main Result

Let V n be an n-dimensional, n ≥ 3, spacelike hypersurface in a spacetime
(
Mn+1, g

)
.

Let �n−1 be a closed hypersurface in V n , and assume that �n−1 separates V n into an
“inside” and an “outside”. Let N be the outward unit normal to �n−1 in V n , and let U
be the future directed unit normal to V n in Mn+1. Then K = U + N is an outward null
normal field to �n−1, unique up to scaling.

The null second fundamental form of � with respect to K is, for each p ∈ �, the
bilinear form defined by,

χ : Tp� × Tp� → R, χ(X,Y ) = 〈∇X K ,Y 〉 , (2.1)

where 〈 , 〉 = g and ∇ is the Levi-Civita connection, of Mn+1. Then the null expansion
of � is defined as θ = tr χ = h ABχAB = div �K , where h is the induced metric on �.

We shall say �n−1 is an outer apparent horizon in V n provided, (i) � is marginally
outer trapped, i.e., θ = 0, and (ii) there are no outer trapped surfaces outside of �. The
latter means that there is no (n − 1)-surface �′ contained in the region of V n outside of
� which is homologous to � and which has negative expansion θ < 0 with respect to
its outer null normal (relative to�). Heuristically,� is the “outer limit” of outer trapped
surfaces in V .

2 In any case, the parametric estimates of [19] which are used to construct solutions of the Jang equation
asymptotic to vertical cylinders over apparent horizons are generally true only in low dimensions.
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Finally, a spacetime
(
Mn+1, g

)
satisfying the Einstein equations

Rab − 1

2
Rgab = Tab (2.2)

is said to obey the dominant energy condition provided the energy-momentum tensor T
satisfies T (X,Y ) = Tab XaY b ≥ 0 for all future pointing causal vectors X,Y .

We are now ready to state the main theorem.

Theorem 2.1. Let
(
Mn+1, g

)
, n ≥ 3, be a spacetime satisfying the dominant energy

condition. If �n−1 is an outer apparent horizon in V n then �n−1 is of positive Yamabe
type, unless �n−1 is Ricci flat (flat if n = 3, 4) in the induced metric, and both χ and
T (U, K ) = TabU a K b vanish on �.

Thus, except under special circumstances, �n−1 is of positive Yamabe type. As
noted in the introduction, this implies various restrictions on the topology of �. Let
us focus on the case dim M = 5, and hence dim � = 3, and assume, by taking a
double cover if necessary, that � is orientable. Then by well-known results of Schoen-
Yau [18] and Gromov-Lawson [10], topologically, � must be a finite connected sum
of spherical spaces (homotopy 3-spheres, perhaps with identifications) and S2 × S1’s.
Indeed, by the prime decomposition theorem,� can be expressed as a connected sum of
spherical spaces, S2 × S1’s, and K (π, 1) manifolds (manifolds whose universal covers
are contractible). But as� admits a metric of positive scalar curvature, it cannot have any
K (π, 1)’s in its prime decomposition. Thus, the basic horizon topologies in dim M = 5
are S3 and S2 × S1, both of which are realized by nontrivial black hole spacetimes.
Under stringent geometric assumptions on the horizon, a related conclusion is arrived
at in [14].

Proof of the theorem. We consider normal variations of � in V , i.e., variations t → �t
of � = �0, −ε < t < ε, with variation vector field V = ∂

∂t

∣∣
t=0 = φN , φ ∈ C∞(�).

Let θ(t) denote the null expansion of �t with respect to Kt = U + Nt , where Nt is the
outer unit normal field to �t in V . A computation shows [6, 3],

∂θ

∂t

∣∣∣∣
t=0

= −	φ + 2〈X,∇φ〉 +
(

Q + div X − |X |2
)
φ , (2.3)

where,

Q = 1

2
S − T (U, K )− 1

2
|χ |2 , (2.4)

S is the scalar curvature of �, X is the vector field on � defined by X = tan (∇N U ),
and 〈 , 〉 now denotes the induced metric h on �.

Introducing as in [3] the operator L = −	+〈X,∇( )〉+
(
Q + div X − |X |2), Eq. (2.3)

may be expressed as,

∂θ

∂t

∣∣∣∣
t=0

= L(φ) . (2.5)

L is the stability operator associated with variations in the null expansion θ . In the
time symmetric case the vector field X vanishes, and L reduces to the classical stability
operator of minimal surface theory, as expected [6].
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As discussed in [3], although L is not in general self adjoint, its principal eigenvalue
λ1 is real, and one can choose a principal eigenfunction φ which is strictly positive,
φ > 0. Using the eigenfunction φ to define our variation, we have from (2.5),

∂θ

∂t

∣
∣∣∣
t=0

= λ1φ . (2.6)

The eigenvalue λ1 cannot be negative, for otherwise (2.6) would imply that ∂θ
∂t < 0 on

�. Since θ = 0 on �, this would mean that for t > 0 sufficiently small, �t would be
outer trapped, contrary to our assumptions.

Hence, λ1 ≥ 0, and we conclude for the variation determined by the positive eigen-
function φ that ∂θ

∂t

∣∣
t=0 ≥ 0. By completing the square on the right hand side of Eq. (2.3),

this implies that the following inequality holds:

−	φ + (Q + div X) φ + φ|∇ ln φ|2 − φ|X − ∇ ln φ|2 ≥ 0. (2.7)

Setting u = ln φ, we obtain,

−	u + Q + div X − |X − ∇u|2 ≥ 0 . (2.8)

As a side remark, note that substituting the expression for Q into (2.8) and inte-
grating gives that the total scalar curvature of � is nonnegative, and in fact is positive,
except under special circumstances. In four spacetime dimensions one may then ap-
ply the Gauss-Bonnet theorem to recover Hawking’s theorem; in fact this is essentially
Hawking’s original argument. However, in higher dimensions the positivity of the total
scalar curvature, in and of itself, does not provide any topological information.

To proceed with the higher dimensional case, we first absorb the Laplacian term
	u = div (∇u) in (2.8) into the divergence term to obtain,

Q + div (X − ∇u)− |X − ∇u|2 ≥ 0 . (2.9)

Setting Y = X − ∇u, we arrive at the inequality,

−Q + |Y |2 ≤ div Y . (2.10)

Given any ψ ∈ C∞(�), we multiply through by ψ2 and derive,

−ψ2 Q + ψ2|Y |2 ≤ ψ2div Y

= div
(
ψ2Y

)
− 2ψ〈∇ψ,Y 〉

≤ div
(
ψ2Y

)
+ 2|ψ ||∇ψ ||Y |

≤ div
(
ψ2Y

)
+ |∇ψ |2 + ψ2|Y |2 . (2.11)

Integrating the above inequality yields,
∫

�

|∇ψ |2 + Qψ2 ≥ 0 for all ψ ∈ C∞(�) , (2.12)

where Q is given in (2.4).
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At this point rather standard arguments become applicable [19, 6]. Consider the
eigenvalue problem,

−	ψ + Qψ = µψ . (2.13)

Inequality (2.12) implies that the first eigenvalue µ1 of (2.13) is nonnegative, µ1 ≥ 0.
Let f ∈ C∞(�) be an associated eigenfunction; f can be chosen to be strictly positive.

Now consider� in the conformally related metric h̃ = f 2/n−2h. The scalar curvature
S̃ of � in the metric h̃ is given by,

S̃ = f −n/(n−2)
(

−2
 f + S f +
n − 1

n − 2

|∇ f |2
f

)

= f −2/(n−2)
(

2µ1 + 2T (U, K ) + |χ |2 +
n − 1

n − 2

|∇ f |2
f 2

)
, (2.14)

where, for the second equation, we have used (2.13), with ψ = f , and (2.4).
Since, by the dominant energy condition, T (U, K ) ≥ 0, Eq. (2.14) implies that

S̃ ≥ 0. If S̃ > 0 at some point, then by well known results [15] one can conformally
change h̃ to a metric of strictly positive scalar curvature, and the theorem follows. If S̃
vanishes identically then, by Eq. (2.14),µ1 = 0, T (U, K ) ≡ 0, χ ≡ 0 and f is constant.
Eq. (2.13), with ψ = f and Eq. (2.4) then imply that S ≡ 0. By a result of Bourguinon
(see [15]), it follows that� carries a metric of positive scalar curvature unless it is Ricci
flat. The theorem now follows. �

Concluding Remarks

1. Let�n−1 be a closed 2-sided hypersurface in the spacelike hypersurface V n ⊂ Mn+1.
Then there exists a neighborhood W of �n−1 in V n such that � separates W into an
“inside” and an “outside”. Suppose � is marginally outer trapped, i.e., θ = 0 with
respect to the outer null normal to�. Following the terminology introduced in [3], we
say that � is stably outermost (respectively, strictly stably outermost) provided the
principal eigenvalue λ1 of the stability operator L introduced in 2.5 satisfies λ1 ≥ 0
(resp., λ1 > 0). It is clear from the proof that the conclusion of Theorem 2.1 remains
valid for marginally outer trapped surfaces� that are stably outermost. Moreover the
conclusion that � is positive Yamabe holds without any caveat if � is strictly stably
outermost. To see this, note that Eq. (2.6) then implies that there exists ε > 0 such
that ∂θ

∂t

∣∣
t=0 ≥ ε. Tracing through the proof using this inequality shows that (2.12)

holds with Q replaced by Q − ε. Then the parenthetical expression in Eq. (2.14) will
include a +ε term, and so S̃ will be strictly positive.

2. Theorem 2.1 applies, in particular, to the marginally trapped surfaces SR of a dy-
namical horizon H (see [2] for definitions). Indeed, by the maximum principle for
marginally trapped surfaces [1], there can be no outer trapped surfaces in H outside
of any SR . Alternatively, it is easily checked that each SR is stably outermost in the
sense described in the previous paragraph.

3. As discussed in [6], the exceptional case in Theorem 2.1 can in effect be eliminated
in the time symmetric case. In this case V n becomes a manifold of nonnegative scalar
curvature, and �n−1 is minimal. By the results in [5, 4], if � is locally outer area
minimizing and does not carry a metric of positive scalar curvature then an outer
neighborhood of � in V splits isometrically as a product [0, ε) × �. In physical
terms, this means that there would be marginally outer trapped surfaces outside of�,
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which, by a slight strengthening of our definition of ‘outer apparent horizon’, could
not occur. (In fact, marginally outer trapped surfaces cannot occur outside the event
horizon.) Under mild physical assumptions, but with dim M ≤ 8, one can show that
� is locally outer area minimizing; see [6, Theorem 3] for further discussion. Finally,
in the asymptotically flat, but not necessarily time symmetric case, it is possible to
perturb the initial data to make the dominant energy inequality strict, see [19, p. 240].
Hence, the exceptional case is unstable in this sense.

Note added in proof: We are now able to eliminate the exceptional case in the general
non-time symmetric setting under conditions analogous to those referred to in remark 3
above, e.g. assuming a mild asymptotic condition and assuming there are no outer trapped
or marginally outer trapped surfaces outside of �. Details will appear in a forthcoming
paper.
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