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I What is the topology of a black hole?

Hawking’s classical theorem on black hole topology states
roughly:

In a (3 + 1)-dimensional spacetime obeying suitable
energy conditions the surface of a steady state
black hole is topologically a 2-sphere.

I What about higher dimensional black holes?



I What is the topology of a black hole?

Hawking’s classical theorem on black hole topology states
roughly:

In a (3 + 1)-dimensional spacetime obeying suitable
energy conditions the surface of a steady state
black hole is topologically a 2-sphere.

I What about higher dimensional black holes?



I What is the topology of a black hole?

Hawking’s classical theorem on black hole topology states
roughly:

In a (3 + 1)-dimensional spacetime obeying suitable
energy conditions the surface of a steady state
black hole is topologically a 2-sphere.

I What about higher dimensional black holes?



Outline of the talk

I Begin with some basic background on General Relativity and black
holes.

I Discuss Hawking’s theorem on the topology of black holes in 3 + 1
dimensions (and its connection to black hole uniqueness)

I Present a generalization of Hawking’s Theorem to higher
dimensions (work with R. Schoen).

I Describe some recent work (with M. Eichmair and D. Pollack)
about the topology of the region of space exterior to black holes.
(This is connected to the notion of topological censorship.)

I These results rely on the theory of marginally outer trapped
surfaces, which are natural spacetime analogues of minimal surfaces
in Riemannian geometry.



Aspects of GR

In GR the space of events is represented by a Lorentzian manifold,
i.e. smooth manifold Mn+1 equipped with a metric g of Lorentzian
signature. Thus, at each p ∈ M,

g : TpM × TpM → R

is a scalar product of signature (−1,+1, ...,+1), With respect to
an o.n. basis {e0, e1, ..., en}, as a matrix,

[g(ei , ej)] = diag(−1,+1, ...,+1) .

Example: Minkowski space, the spacetime of Special Relativity.
Minkowski space is Rn+1, equipped with the Minkowski metric η:
For vectors X = X i ∂

∂x i
, Y = Y i ∂

∂x i
at p,

η(X ,Y ) = −X 0Y 0 +
n∑

i=1

X iY i .

Thus, a Lorentzian manifold is locally modeled on Minkowski
space.



Aspects of GR

At any point p in a Lorentzian manifold M, we have a
classification of vectors X ∈ TpM as follows,

X is





timelike if g(X ,X ) < 0

null if g(X ,X ) = 0

spacelike if g(X ,X ) > 0 .

The set of null vectors at p form a double cone in TpM:

If the assignment of a past and future cone can be made in a
continuous manner, say that M is time-orientable.

spacetime = time-oriented Lorentian manifold



Aspects of GR

Curves.

A curve t → σ(t) is timelike provide each tangent
vector σ′(t) is timelike.

Similarly for null, spacelike, causal curves.

Hypersurfaces.

A spacelike hypersurface is a hypersurface
all of whose tangent vectors are spacelike.

A null hypersurface is a hypersurface such
that the null cone at each of its points is
tangent to it.



Aspects of GR

I Let ∇ be the Levi-Civita connection associated to the Lorentz metric g .
On a coordinate neighborhood M, ∇ is determined by the Christoffel
symbols,

∇∂i ∂j =
∑
k

Γk
ij ∂k , (∂i =

∂

∂x i
, etc.)

I Geodesics. Geodesics are curves t → σ(t) of zero acceleration,

∇σ′(t)σ
′(t) = 0 .

Timelike geodesics correspond to free falling observers.

I The Riemann curvature tensor is defined by,

R(X ,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z

The components R`kij are determined by,

R(∂i , ∂j)∂k =
∑
`

R`kij∂`

I The Ricci tensor Ric and scalar curvature R are obtained by taking traces,

Rij =
∑
`

R` i`j and R =
∑
i,j

g ijRij



Aspects of GR

The Einstein equations are given by:

Rij −
1

2
Rgij = 8πTij ,

where Tij is the energy-momentum tensor.

“Mass tells space-time how to curve, and space-time tells mass how to move”

Comments:
I Einstein equations are a system of second order quasi-linear

equations for the gij ’s. May be viewed as a generalization of
Poisson’s equation in Newtonian gravity.

I The vacuum Einstein equations are obtained by setting
Tij = 0. Equivalent to setting Rij = 0.

I A spacetime (M, g) which satisfies the Einstein equations is
said to obey the dominant energy condition provided the
energy-momentum tensor satisfies,

T (X ,Y ) =
∑

i ,j

TijX
iY j ≥ 0

for all future directed causal vectors X ,Y .



Black holes

Black holes are certainly one of the most remarkable predictions of
General Relativity.

The following depicts the process of gravitational collapse and
formation of a black hole.

singularity

collapse

infty

The shaded region is the black hole region. The boundary of this
region is the black hole event horizon.



Black holes

Ex. The Schwarzshild solution (1916) Static (time-independent,
nonrotating) spherically symmetric, vacuum solution to the Einstein
equations.

g = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr 2 + r 2dΩ2

The region 0 < r < 2m is the black hole region; r = 2m corresponds
to the event horizon. This metric represents the region outside a
(collapsing) spherically symmetric star.

r > 2m

0 < r < 2m



Black holes

Ex. The Kerr solution (1963) Stationary (time-independent,
rotating), axisymmetric, vacuum solution.

The Kerr spacetime: A brief introduction Matt Visser 14

Here the second line is again simply flat 3-space in disguise. An advantage
of this coordinate system is that t can naturally be thought of as a time
coordinate — at least at large distances near spatial infinity. There are
however still 3 off-diagonal terms in the metric so this is not yet any great
advance on the original form (3). One can easily consider the limits m → 0,
a → 0, and the decomposition of this metric into Kerr–Schild form, but there
are no real surprises.

Second, it is now extremely useful to perform a furtherm-dependent coor-
dinate transformation, which will put the line element into Boyer–Lindquist
form:

t = tBL + 2m

∫
r dr

r2 − 2mr + a2
; φ = −φBL − a

∫
dr

r2 − 2mr + a2
; (55)

r = rBL; θ = θBL. (56)

Making the transformation, and dropping the BL subscript, the Kerr line-
element now takes the form:

ds2 = −
[
1 − 2mr

r2 + a2 cos2 θ

]
dt2 − 4mra sin2 θ

r2 + a2 cos2 θ
dt dφ (57)

+

[
r2 + a2 cos2 θ

r2 − 2mr + a2

]
dr2 + (r2 + a2 cos2 θ) dθ2

+

[
r2 + a2 +

2mra2 sin2 θ

r2 + a2 cos2 θ

]
sin2 θ dφ2.

• These Boyer–Lindquist coordinates are particularly useful in that they
minimize the number of off-diagonal components of the metric — there
is now only one off-diagonal component. We shall subsequently see
that this helps particularly in analyzing the asymptotic behaviour, and
in trying to understand the key difference between an “event horizon”
and an “ergosphere”.

• Another particularly useful feature is that the asymptotic (r → ∞)
behaviour in Boyer–Lindquist coordinates is

ds2 = −
[
1 − 2m

r
+O

(
1

r3

)]
dt2 −

[
4ma sin2 θ

r
+O

(
1

r3

)]
dφ dt

+

[
1 +

2m

r
+O

(
1

r2

)] [
dr2 + r2(dθ2 + sin2 θ dφ2)

]
. (58)

The Kerr solution is determined by two parameters: mass m and
angular momentum parameter a.

It is believed that “true” astrophysical black holes “settle down” to
a Kerr solution. This belief is largely based on results that establish
the uniqueness of Kerr among all stationary, asymptotically flat
(AF) vacuum solutions of the Einstein equations.



Black holes

A basic step in the proof of the uniqueness of the Kerr solution is
Hawking’s theorem on the topology of black holes in 3 + 1
dimensions.

Theorem (Hawking’s black hole topology theorem)

Suppose (M, g) is a (3 + 1)-dimensional AF stationary black hole
spacetime obeying the DEC. Then cross sections of the event
horizon are topologically 2-spheres.

2S¼§

)+I({@I = H

Comment on the proof: The proof is variational in nature. Using the
Gauss-Bonnet theorem, it is shown that if Σ has genus ≥ 1 then Σ
can be deformed outward to an outer trapped surface.



Black holes in higher dimensional spacetimes

I String theory, and various related developments (e.g., the
AdS/CFT correspondence, braneword scenarios, entropy
calculations) have generated a great deal of interest in gravity
in higher dimensions, and in particular, in higher dimensional
black holes.

I One of the first questions to arise was:

Does black hole uniqueness hold in higher
dimensions?

I With impetus coming from the development of string theory,
in 1986, Myers and Perry constructed natural higher
dimensional generalizations of the Kerr solution, which, in
particular, have spherical horizon topology.



Black holes in higher dimensional spacetimes

I But in 2002, Emparan and Reall discovered a remarkable
example of a 4 + 1 dimensional AF stationary vacuum black
hole spacetime with horizon topology S2×S1 (the black ring):
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Black holes in four spacetime dimensions are highly
constrained objects. A number of classical theorems show
that a stationary, asymptotically flat, vacuum black hole
is completely characterized by its mass and spin [1], and
event horizons of nonspherical topology are forbidden [2].

In this Letter we show explicitly that in five dimen-
sions the situation cannot be so simple by exhibiting an
asymptotically flat, stationary, vacuum solution with a
horizon of topology S1 3 S2: a black ring. The ring
rotates along the S1 and this balances its gravitational
self-attraction. The solution is characterized by its mass
M and spin J. The black hole of [3] with rotation in
a single plane (and horizon of topology S3) can be ob-
tained as a branch of the same family of solutions. We
show that there exist black holes and black rings with
the same values of M and J. They can be distinguished

by their topology and by their mass dipole measured
at infinity. This shows that there is no obvious five-
dimensional analog of the uniqueness theorems.

S1 3 S2 is one of the few possible topologies for the
event horizon in five dimensions that was not ruled out by
the analysis in [4] (although this argument does not apply
directly to our black ring because it assumes time symme-
try). An explicit solution with a regular (but degenerate)
horizon of topology S1 3 S2 and spacelike infinity with
S3 topology has been built recently in [5]. An uncharged
static black ring solution is presented in [6], but it contains
conical singularities. Our solution is the first asymptot-
ically flat vacuum solution that is completely regular on
and outside an event horizon of nonspherical topology.

Our starting point is the following metric, constructed
as a Wick-rotated version of a solution in [7]:

ds2 � 2
F�x�
F�y�

µ
dt 1

r
n

j1

j2 2 y

A
dc

∂2

1
1

A2�x 2 y�2

∑
2F�x�

µ
G� y�dc2 1

F� y�
G� y�

dy2
∂

1 F� y�2
µ

dx2

G�x�
1

G�x�
F�x�

df2
∂∏

, (1)

where j2 is defined below and

F�j� � 1 2 j�j1, G�j� � 1 2 j2 1 nj3. (2)

The solution of [7] was obtained as the electric dual of
the magnetically charged Kaluza-Klein C metric of [8].
Our metric can be related directly to the latter solution by
analytic continuation. When n � 0 we recover the static
black ring solution of [6].

We assume that 0 , n , n� � 2��3
p

3�, which en-
sures that the roots of G�j� are all distinct and real. They
will be ordered as j2 , j3 , j4. It is easy to establish
that 21 , j2 , 0 , 1 , j3 , j4 ,

1
n . A double root

j3 � j4 appears when n � n�. Without loss of generality,
we take A . 0. Taking A , 0 simply reverses the sense
of rotation.

We take x to lie in the range j2 # x # j3 and require
that j1 $ j3, which ensures that gxx , gff $ 0. In order

to avoid a conical singularity at x � j2 we identify f with
period

Df �
4p

p
F�j2�

G0�j2�
�

4p
p

j1 2 j2

n
p

j1 �j3 2 j2� �j4 2 j2�
.

(3)

A metric of Lorentzian signature is obtained by taking
y , j2. Examining the behavior of the constant t slices of
(1), one finds that c must be identified with period Dc �
Df in order to avoid a conical singularity at y � j2 fi x.
Regularity of the full metric here can be demonstrated by
converting from the polar coordinates � y, c � to Cartesian
coordinates — the dtdc term can then be seen to vanish
smoothly at the origin y � j2.

There are now two cases of interest depending on the
value of j1. One of these will correspond to a black ring
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Thus in higher dimensions, black hole uniqueness does not
hold and horizon topology need not be spherical.

This caused a great surge of activity in the study of higher
dimensional black holes.

I Question: What horizon topologies are allowed in higher
dimensions? What restrictions are there?



Marginally Outer Trapped Surfaces

Want to describe a generalization of Hawking’s theorem to higher
dimensions. This will be based on properties of marginally outer
trapped surfaces (MOTSs).

(Mn+1, g) = spacetime of dimension n+1, n ≥ 3

(V n, h,K ) = initial data set in (Mn+1, g)

Σn−1 = closed 2-sided hypersurface in V n

Σ admits a smooth unit normal field ν in V .

+`{`{1n§
nVu

º

`+ = u + ν f.d. outward null normal

`− = u − ν f.d. inward null normal



MOTSs

Null second fundamental forms: χ+, χ−

χ±(X ,Y ) = g(∇X `±,Y ) X ,Y ∈ TpΣ

Null expansion scalars: θ+, θ−

θ± = trγχ± = γAB(χ±)AB = divΣ`±

Physically, θ+ measures the divergence of the outgoing light rays
from Σ.

In terms of initial data (V n, h,K ),

θ± = trγK ± H

where H = mean curvature of Σ within V .



MOTSs

For round spheres in Euclidean slices in Minkowski space (and,
more generally, large “radial” spheres in AF spacelike
hypersurfaces),

§

 0> +µ 0< {µ

However, in a strong gravitational field one can have both,

θ− < 0 and θ+ < 0 ,

in which case Σ is called a trapped surface.

Under appropriate energy and causality conditions, the occurrence
of a trapped surface signals the onset of gravitational collapse and
the formation of a black hole (Penrose, Hawking).



MOTSs

Focusing attention on the outward null normal only,

I If θ+ < 0 - we say Σ is outer trapped

I If θ+ = 0 - we say Σ is a marginally outer trapped surface
(MOTS)

MOTSs arise naturally in several situations.

I In stationary black hole spacetimes - cross sections of the
event horizon are MOTS.

 = 0+µ

§

H

I In dynamical black hole spacetimes - MOTS typically occur
inside the event horizon:

 = 0
+
µ

H



Generalization of Hawking’s theorem

I Definition A MOTS Σ in (V , h,K ) is said to be outermost
provided there are no outer trapped (θ+ < 0) or marginally
outer trapped (θ+ = 0) surfaces outside of and homologous
to Σ.

I Fact: Cross sections of the event horizon in AF stationary
black hole spacetimes obeying the DEC are outermost
MOTSs.

0· +µCan't have 

H

§

I More generally, outermost MOTSs can arise as the boundary
of the “trapped region” (Andersson and Metzger, Eichmair).



Generalization of Hawking’s theorem

Theorem (G. and Schoen, 2006)

Let (V n, g ,K ), n ≥ 3, be an initial data set in a spacetime obeying
the DEC. If Σn−1 is an outermost MOTS in V n then (apart from
certain exceptional circumstances) Σn−1 must be of positive
Yamabe type.

Comments:

I Σ is of positive Yamabe type means that Σ admits a metric of
positive scalar curvature.

I Exceptional circumstances: Various geometric quantities
vanish, e.g. χ+ = 0, T (u, `+)|Σ = 0, RicΣ = 0.

Thus, apart from these exceptional circumstances, Σ is of positive
Yamabe type.

Σ being positive Yamabe implies many well-known restrictions on
the topology.



Some topological restrictions

I dim Σ = 2 (dim M = 3 + 1): Then Σ ≈ S2 by Gauss-Bonnet,
and one recovers Hawking’s theorem.

I dim Σ = 3 (dim M = 4 + 1): We have,

Theorem (Gromov-Lawson, Schoen-Yau) If Σ is a closed
orientable 3-manifold of positive Yamabe type then Σ must be
diffeomorphic to:

I a spherical space, or
I S2 × S1, or
I a connected sum of the above two types.

Comment on the proof: Apply the prime decomposition theorem, and use

the fact that since Σ is positive Yamabe, it cannot contain any K(π, 1)’s

in its prime decomposition.

Thus, the basic horizon topologies in dim Σ = 3 case are S3

and S2 × S1.



Generalization of Hawking’s theorem

Meta-comments on the proof:

I MOTSs admit a notion of stability (Andersson, Mars, Simon)
somewhat analogous to that for minimal surfaces.

I Variations δθ+ of θ+ can be expressed in terms of the MOTS
stability operator L : C∞(Σ)→ C∞(Σ) (2nd order linear
elliptic)

I Σ outermost =⇒ Σ is stable i.e., λ1(L) ≥ 0.

I Key step: λ1(L0) ≥ λ1(L), where L0 is a certain simplified
“symmetric version” of L. Thus, λ1(L0) ≥ 0.

I This, in essence, reduces the situation to the time-symmetric
(Riemannian) case where known methods apply (Schoen-Yau,
1979).

I Make the conformal change: h̃ = φ
2

n−2 h, where φ is a positive
eigenfunction corresponding to λ1(L0). A computation shows
S(h̃) ≥ 0.



The borderline case

A drawback of the theorem is that it allows certain possibilities
that one would like to rule out. E.g., the theorem does not rule out
the possibility of a vacuum black hole spacetime with toroidal
horizon topology.

In subsequent work I was able to rule out such possibilities.

Theorem (G., 2008)

Let (V n, g ,K ), n ≥ 3, be an initial data set in a spacetime obeying
the DEC. If a MOTS Σn−1 is not of positive Yamabe type then it
cannot be outermost.

We actually prove a rigidity result: An outer neighborhood of Σ
must be foliated by MOTSs.



The topology of the region exterior to black holes

According to the Principle of Topological Censorship, the region
exterior to black holes (and white holes) should be simple.

An aim in our recent work with M. Eichmair and D. Pollack was to
establish a result supportive of this principle at the initial data level.

I+

I−

H

V
No immersed MOTSs

I Should think of the initial data manifold V as representing an
asymptotically flat spacelike slice in the DOC whose boundary
∂V corresponds to a cross section of the event horizon.

I At the initial data level, we represent this cross section by a
MOTS.

I We assume there are no (immersed) MOTSs in V \ ∂V .



The topology of the region exterior to black holes

Theorem (Eichmair, G., Pollack)

Let (V , h,K ) be a 3-dimensional asymptotically flat initial data set
such that V is a manifold-with-boundary, whose boundary ∂V is a
compact MOTS. If there are no immersed MOTS in V \ ∂V , then V
is diffeomorphic to R3 minus a finite number of open balls.

Remarks

I The proof makes use of powerful existence results for MOTSs
(Schoen, Andersson and Metzger, Eichmair).

I The proof also makes use of an important consequence of
geometrization, namely that the fundamental group of every
closed 3-manifold is residually finite.

I Dominant energy condition not required!
I MOTSs detect nontrivial topology (somewhat reminiscent of

how minimal surfaces are used in Riemannian geometry to
detect nontrivial topology, cf., Meeks-Simon-Yau).



Some references

G. J. Galloway, Constraints on the topology of higher
dimensional black holes, Black holes in higher dimensions, ed.
G. Horowitz, Cambridge Univ. Press, 2012, pp. 159–179.

L. Andersson, M. Eichmair, and J. Metzger, Jang’s equation
and its applications to marginally trapped surfaces, in: Complex
Analysis and Dynamical Systems IV: Part 2. General Relativity,
Geometry, and PDE, Contemporary Mathematics, vol. 554,
(AMS and Bar-Ilan), 2011.

G. J. Galloway and R. Schoen, A generalization of Hawking’s
black hole topology theorem to higher dimensions, Comm.
Math. Phys. 266 (2006), no. 2, 571–576.

G. J. Galloway, Rigidity of marginally trapped surfaces and the
topology of black holes, Comm. Anal. Geom. 16 (2008), no. 1,
217–229.

M. Eichmair, G. J. Galloway, and D. Pollack, Topological
censorship from the initial data point of view, 2012,
arXiv:1204.0278, to appear in JDG.


