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» What about higher dimensional black holes?



Outline of the talk

> Begin with some basic background on General Relativity and black
holes.

» Discuss Hawking's theorem on the topology of black holes in 3+ 1
dimensions (and its connection to black hole uniqueness)

> Present a generalization of Hawking's Theorem to higher
dimensions (work with R. Schoen).

> Describe some recent work (with M. Eichmair and D. Pollack)
about the topology of the region of space exterior to black holes.
(This is connected to the notion of topological censorship.)

» These results rely on the theory of marginally outer trapped
surfaces, which are natural spacetime analogues of minimal surfaces
in Riemannian geometry.



Aspects of GR

In GR the space of events is represented by a Lorentzian manifold,
i.e. smooth manifold M"*! equipped with a metric g of Lorentzian
signature. Thus, at each p € M,

g: TyMx T,M— R

is a scalar product of signature (—1,+1,...,+1), With respect to
an o.n. basis {ep, €1, ..., €, }, as a matrix,

[g(ei, &)] = diag(—1,+1,...,+1).

Example: Minkowski space, the spacetime of Special Relativity.
Minkowski space is R™?!, equipped with the Minkowski metric 7:

_ yi_ 0 _ vi 0
For vectors X = X', Y = Y'55 at p,

n(X,Y)=-X¥"+ > X'y’
i=1
Thus, a Lorentzian manifold is locally modeled on Minkowski
space.



Aspects of GR

At any point p in a Lorentzian manifold M, we have a
classification of vectors X € T,M as follows,

timelike if g(X,X) <0
X is { null if g(X,X) =0
spacelike if g(X,X)>0.

The set of null vectors at p form a double cone in T, M:

NS

If the assignment of a past and future cone can be made in a
continuous manner, say that M is time-orientable.

spacetime = time-oriented Lorentian manifold




Aspects of GR

Curves.

A curve t — o(t) is timelike provide each tangent
vector o’(t) is timelike.

Similarly for null, spacelike, causal curves.

Hypersurfaces.

A spacelike hypersurface is a hypersurface /’ X
all of whose tangent vectors are spacelike. “

A null hypersurface is a hypersurface such N
that the null cone at each of its points is / NS
tangent to it. g —7

T



Aspects of GR

> Let V be the Levi-Civita connection associated to the Lorentz metric g.
On a coordinate neighborhood M, V is determined by the Christoffel
symbols,

Vo, _Zr o, (8= etc.)

9
ox'’
> Geodesics. Geodesics are curves t — o(t) of zero acceleration,
Voo (t) = 0.
Timelike geodesics correspond to free falling observers.
» The Riemann curvature tensor is defined by,
R(X,Y)Z =VxVyZ -VyVxZ —VxvZ

The components R*y; are determined by,

R(i,8;)0k = ZR‘ZW%

» The Ricci tensor Ric and scalar curvature R are obtained by taking traces,

R,-J-:ZRZMJ' and R:Zginij
y4 ij



Aspects of GR

The Einstein equations are given by:
1
R,'J'—ERg,'J'ZSTI'TU,

where T;; is the energy-momentum tensor.

“Mass tells space-time how to curve, and space-time tells mass how to move”

Comments:

» Einstein equations are a system of second order quasi-linear
equations for the gj;'s. May be viewed as a generalization of
Poisson's equation in Newtonian gravity.

» The vacuum Einstein equations are obtained by setting
T;; = 0. Equivalent to setting R;; = 0.

» A spacetime (M, g) which satisfies the Einstein equations is
said to obey the dominant energy condition provided the
energy-momentum tensor satisfies,

T(X,Y)=) _ T;X'¥/ >0

: iJ
for all future directed causal vectors X, Y.



Black holes

Black holes are certainly one of the most remarkable predictions of
General Relativity.

The following depicts the process of gravitational collapse and
formation of a black hole.

The shaded region is the black hole region. The boundary of this
region is the black hole event horizon.



Black holes

Ex. The Schwarzshild solution (1916) Static (time-independent,
nonrotating) spherically symmetric, vacuum solution to the Einstein
equations.

2m 5 om\ ! 5 9 ;2

The region 0 < r < 2m is the black hole region; r = 2m corresponds
to the event horizon. This metric represents the region outside a
(collapsing) spherically symmetric star.

Singularity (r = 0)

Black Hole
0<r<2m o




Black holes

Ex. The Kerr solution (1963) Stationary (time-independent,
rotating), axisymmetric, vacuum solution.
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The Kerr solution is determined by two parameters: mass m and
angular momentum parameter a.

It is believed that “true” astrophysical black holes “settle down" to
a Kerr solution. This belief is largely based on results that establish
the uniqueness of Kerr among all stationary, asymptotically flat
(AF) vacuum solutions of the Einstein equations.



Black holes

A basic step in the proof of the uniqueness of the Kerr solution is
Hawking's theorem on the topology of black holes in 3 +1
dimensions.

Theorem (Hawking's black hole topology theorem)

Suppose (M, g) is a (3 + 1)-dimensional AF stationary black hole
spacetime obeying the DEC. Then cross sections of the event
horizon are topologically 2-spheres.

Comment on the proof: The proof is variational in nature. Using the
Gauss-Bonnet theorem, it is shown that if & has genus > 1 then
can be deformed outward to an outer trapped surface.




Black holes in higher dimensional spacetimes

» String theory, and various related developments (e.g., the
AdS/CFT correspondence, braneword scenarios, entropy
calculations) have generated a great deal of interest in gravity
in higher dimensions, and in particular, in higher dimensional
black holes.

> One of the first questions to arise was:

Does black hole uniqueness hold in higher
dimensions?

» With impetus coming from the development of string theory,
in 1986, Myers and Perry constructed natural higher
dimensional generalizations of the Kerr solution, which, in
particular, have spherical horizon topology.



Black holes in higher dimensional spacetimes

» But in 2002, Emparan and Reall discovered a remarkable
example of a 4 + 1 dimensional AF stationary vacuum black
hole spacetime with horizon topology S? x St (the black ring):
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Thus in higher dimensions, black hole uniqueness does not
hold and horizon topology need not be spherical.

This caused a great surge of activity in the study of higher
dimensional black holes.

» Question: What horizon topologies are allowed in higher
dimensions? What restrictions are there?



Marginally Outer Trapped Surfaces

Want to describe a generalization of Hawking's theorem to higher
dimensions. This will be based on properties of marginally outer
trapped surfaces (MOTSs).

(M™1 g) = spacetime of dimension n+1, n >3
(V", h, K) = initial data set in (M"*1 g)
Y"1 = closed 2-sided hypersurface in V"

> admits a smooth unit normal field v in V.

o 1 ¢ u Z+ v
v

li=u+v f.d. outward null normal

{_=u—v f.d. inward null normal



Null second fundamental forms: x4, x—

X+(X,Y)=g(Vxly,Y) X,YeT,x

Null expansion scalars: 60, 0_

Qi = trVXi = ’yAB(Xi)AB = diV):gi

Physically, 8, measures the divergence of the outgoing light rays
from X.

In terms of initial data (V" h, K),
0y =try,K+H

where H = mean curvature of ¥ within V.



For round spheres in Euclidean slices in Minkowski space (and,
more generally, large “radial” spheres in AF spacelike
hypersurfaces),

However, in a strong gravitational field one can have both,
0_ <0 and 0L <0,

in which case ¥ is called a trapped surface.

Under appropriate energy and causality conditions, the occurrence
of a trapped surface signals the onset of gravitational collapse and
the formation of a black hole (Penrose, Hawking).



Focusing attention on the outward null normal only,
> If 6, < 0 - we say ¥ is outer trapped
> If 6. =0 - we say X is a marginally outer trapped surface
(MOTYS)
MOTSs arise naturally in several situations.
> In stationary black hole spacetimes - cross sections of the

» In dynamical black hole spacetimes - MOTS typically occur
inside the event horizon:




Generalization of Hawking's theorem

» Definition A MOTS X in (V, h, K) is said to be outermost
provided there are no outer trapped (6, < 0) or marginally
outer trapped (A4 = 0) surfaces outside of and homologous
to X.

» Fact: Cross sections of the event horizon in AF stationary
black hole spacetimes obeying the DEC are outermost
MOTSs.

» More generally, outermost MOTSs can arise as the boundary
of the “trapped region” (Andersson and Metzger, Eichmair).



Generalization of Hawking's theorem

Theorem (G. and Schoen, 2006)

Let (V",g,K), n > 3, be an initial data set in a spacetime obeying
the DEC. If X"~ is an outermost MOTS in V" then (apart from
certain exceptional circumstances) ¥"~! must be of positive
Yamabe type.

Comments:

» Y is of positive Yamabe type means that ¥ admits a metric of
positive scalar curvature.

» Exceptional circumstances: Various geometric quantities
vanish, e.g. x4+ =0, T(u,¢4)|x =0, Ricy =0.

Thus, apart from these exceptional circumstances, ¥ is of positive
Yamabe type.

> being positive Yamabe implies many well-known restrictions on
the topology.



Some topological restrictions

» dimX¥ =2 (dim M =3+ 1): Then ¥ ~ S? by Gauss-Bonnet,
and one recovers Hawking's theorem.

» dimX =3 (dimM =4+ 1): We have,

Theorem (Gromov-Lawson, Schoen-Yau) If X is a closed
orientable 3-manifold of positive Yamabe type then ¥ must be
diffeomorphic to:

» a spherical space, or
» S2x St or
» a connected sum of the above two types.

Comment on the proof: Apply the prime decomposition theorem, and use
the fact that since X is positive Yamabe, it cannot contain any K(m,1)’s

in its prime decomposition.

Thus, the basic horizon topologies in dim ¥ = 3 case are S3
and S2 x St



Generalization of Hawking's theorem

Meta-comments on the proof:

>

MOTSs admit a notion of stability (Andersson, Mars, Simon)
somewhat analogous to that for minimal surfaces.

Variations 660 of 64 can be expressed in terms of the MOTS
stability operator L : C*°(X) — C*°(X) (2nd order linear
elliptic)

¥ outermost = X is stable i.e., A;(L) > 0.

Key step: A\1(Lo) > A1(L), where Ly is a certain simplified
“symmetric version” of L. Thus, A1(Lo) > 0.

This, in essence, reduces the situation to the time-symmetric
(Riemannian) case where known methods apply (Schoen-Yau,
1979).

Make the conformal change: h= qb% h, where ¢ is a positive
eigenfunction corresponding to A1(Lo). A computation shows
S(h) > 0.



The borderline case

A drawback of the theorem is that it allows certain possibilities
that one would like to rule out. E.g., the theorem does not rule out
the possibility of a vacuum black hole spacetime with toroidal
horizon topology.

In subsequent work | was able to rule out such possibilities.

Theorem (G., 2008)

Let (V" g,K), n > 3, be an initial data set in a spacetime obeying
the DEC. If a MOTS ¥"~1 is not of positive Yamabe type then it
cannot be outermost.

We actually prove a rigidity result: An outer neighborhood of X
must be foliated by MOTSs.



The topology of the region exterior to black holes

According to the Principle of Topological Censorship, the region
exterior to black holes (and white holes) should be simple.

An aim in our recent work with M. Eichmair and D. Pollack was to
establish a result supportive of this principle at the initial data level.

» Should think of the initial data manifold V as representing an
asymptotically flat spacelike slice in the DOC whose boundary
OV corresponds to a cross section of the event horizon.

> At the initial data level, we represent this cross section by a
MOTS.

» We assume there are no (immersed) MOTSs in V' \ OV.



The topology of the region exterior to black holes

Theorem (Eichmair, G., Pollack)

Let (V, h, K) be a 3-dimensional asymptotically flat initial data set
such that V is a manifold-with-boundary, whose boundary OV is a
compact MOTS. If there are no immersed MOTS in V' \ OV, then V
is diffeomorphic to R3 minus a finite number of open balls.

Remarks

» The proof makes use of powerful existence results for MOTSs
(Schoen, Andersson and Metzger, Eichmair).

» The proof also makes use of an important consequence of
geometrization, namely that the fundamental group of every
closed 3-manifold is residually finite.

» Dominant energy condition not required!

» MOTSs detect nontrivial topology (somewhat reminiscent of
how minimal surfaces are used in Riemannian geometry to
detect nontrivial topology, cf., Meeks-Simon-Yau).



Some references

A G. J. Galloway, Constraints on the topology of higher
dimensional black holes, Black holes in higher dimensions, ed.
G. Horowitz, Cambridge Univ. Press, 2012, pp. 159-179.

@ L. Andersson, M. Eichmair, and J. Metzger, Jang's equation
and its applications to marginally trapped surfaces, in: Complex
Analysis and Dynamical Systems IV: Part 2. General Relativity,
Geometry, and PDE, Contemporary Mathematics, vol. 554,
(AMS and Bar-llan), 2011.

[@ G. J. Galloway and R. Schoen, A generalization of Hawking's
black hole topology theorem to higher dimensions, Comm.
Math. Phys. 266 (2006), no. 2, 571-576.

[ G. J. Galloway, Rigidity of marginally trapped surfaces and the
topology of black holes, Comm. Anal. Geom. 16 (2008), no. 1,
217-229.

[ M. Eichmair, G. J. Galloway, and D. Pollack, Topological
censorship from the initial data point of view, 2012,
arXiv:1204.0278, to appear in JDG.



