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1 Pseudo-Riemannian Geometry

We begin with a brief introduction to pseudo-Riemmanian geometry.

1.1 Manifolds

Let Mn be a smooth n-dimensional manifold. Hence, Mn is a topological space (Haus-
dorff, second countable), together with a collection of coordinate charts (U, xi) =
(U, x1, ..., xn) (U open in M) covering M such that on overlapping charts (U, xi),
(V, yi), U ∩ V 6= ∅, the coordinates are smoothly related

yi = f i(x1, ..., xn), f i ∈ C∞ ,

i = 1, ..., n.
For any p ∈ M , let TpM denote the tangent space of M at p. Thus, TpM is the

collection of tangent vectors to M at p. Formally, each tangent vector X ∈ TpM is a
derivation acting on real valued functions f , defined and smooth in a neighborhood
of p. Hence, for X ∈ TpM , X(f) ∈ R represents the directional deriviative of f at p
in the direction X.

If p is in the chart (U, xi) then the coordinate vectors based at p,

∂

∂x1
|p,

∂

∂x2
|p, ...,

∂

∂xn
|p

form a basis for TpM . I.e., each vector X ∈ TpM can be expressed uniquely as,

X = X i ∂

∂xi
|p , X i ∈ R.

Here we have used the Einstein summation convention: If, in a coordinate chart, an
index appears repeated, once up and once down, then summation over that index is
implied.

Note: We will sometimes use the shorthand: ∂i = ∂
∂xi .

Example. Tangent vectors to curves. Let σ : I →M , t→ σ(t), be a smooth curve in
M .

The tangent vector to σ at p = σ(t0), denoted dσ
dt

(t0) = σ′(t0) ∈ TpM is the
derivation defined by,

σ′(t0)(f) =
d

dt
f ◦ σ(t)|t0
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Suppose p lies in the coordinate chart (U, xi) . Then near p, σ can be expressed
in terms of coordinate functions,

σ : xi = xi(t), i = 1, ..., n.

Then, the chain rule implies,

dσ

dt
(t0) =

dxi

dt
(t0)

∂

∂xi
|p,

i.e., dxi

dt
(t0) are the components of dσ

dt
(t0). In fact every vector X ∈ TpM can be

expressed as the tangent vector to some curve through p.
The tangent bundle of M , denoted TM is, as a set, the collection of all tangent

vectors,

TM =
⋃
p∈M

TpM.

To each vector V ∈ TM , there is a natural way to assign to it 2n coordinates,

V ∼ (x1, ..., xn, V 1, ..., V n),

where (x1, ..., xn) are the coordinates of the point p at which V is based, and
(V 1, ..., V n) are the components of V wrt the coordinate basis vectors ∂

∂x1 |p, ... ∂
∂xn |p.

By this correspondence one sees that TM forms in a natural way a smooth manifold
of dimension 2n. Moreover, with respect to this manifold structure, the natural
projection map π : TM →M , Vp → p, is smooth.

1.2 Vector fields

A vector field X on M is an assignment to each p ∈M of a vector Xp ∈ TpM ,

p ∈M X−→ Xp ∈ TpM.

If (U, xi) is a coordinate chart on M then for each p ∈ U we have

Xp = X i(p)
∂

∂xi
|p.

This defines n functions X i : U → R, i = 1, ..., n, the components of X on (U, xi) . If
for a set of charts (U, xi) covering M the components X i are smooth (X i ∈ C∞(U))
then we say that X is a smooth vector field.

Let X(M) denote the set of smooth vector fields on M . Vector fields can be added
pointwise and multiplied by functions; for X, Y ∈ X(M) and f ∈ C∞(M),

(X + Y )p = Xp + Yp , (fX)p = f(p)Xp.
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From these operations we see that X(M) is a module over C∞(M).
Given X ∈ X(M) and f ∈ C∞(M), X acts on f to produce a function X(f) ∈

C∞(M), defined by,
X(f)(p) = Xp(f).

With respect to a coordinate chart (U, xi) , X(f) is given by,

X(f) = X i ∂f

∂xi
.

Thus, a smooth vector field X ∈ X(M) may be viewed as a map

X : C∞(M)→ C∞(M) , f → X(f)

that satisfies,

(1) X(af + bg) = aX(f) + bX(g) (a, b ∈ R),

(2) X(fg) = X(f)g + fX(g).

Indeed, these properties completely characterize smooth vector fields.
Given X, Y ∈ X(M), the Lie bracket [X, Y ] of X and Y is the vector field defined

by
[X, Y ] : C∞(M)→ C∞(M) , [X, Y ] = XY − Y X,

i.e.
[X, Y ](f) = X(Y (f))− Y (X(f)).

In local coordinates one sees that the second derivatives cancel out.

Exercise. Show that with respect to a coordinate chart, [X, Y ] is given by

[X, Y ] = (X i∂Y
j

∂xi
− Y i∂X

j

∂xi
)
∂

∂xj

= (X(Y j)− Y (Xj))
∂

∂xj
.

It is clear from the definition that the Lie bracket is skew-symmetric,

[X, Y ] = −[Y,X].

In addition, the Lie bracket is linear in each slot over the reals, and satisfies,

(1) For all f, g ∈ C∞(M), X, Y ∈ X(M),

[fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

(2) (Jacobi identity) For all X, Y, Z ∈ X(M),

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Exercise. Prove (1) and (2).
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1.3 Co-vectors and 1-forms

A co-vector ω at p ∈ M is a linear functional ω : TpM → R on the tangent space at
p. A 1-form on M is an assignment to each p ∈ M of a co-vector ωp at p, p → ωp.
A 1-form ω is smooth provided for each X ∈ X(M), the function ω(X), p→ ωp(Xp),
is smooth. Equivalently, ω is smooth provided for each chart (U, xi) in a collection of
charts covering M , the function ω( ∂

∂xi ) is smooth on U , i = 1, ..., n.
Given f ∈ C∞(M), the differential df is the smooth 1-form defined by

df(X) = X(f) , X ∈ X(M).

In a coordinate chart (U, xi) , df is given by,

df =
∂f

∂xi
dxi,

where dxi is the differential of the ithcoordinate function on U .

Note: At each p ∈ U , {dx1, ..., dxn} is the dual basis to the basis of coordinate vectors
{ ∂
∂x1 , ...,

∂
∂xn}.

1.4 Pseudo-Riemannian manifolds

Let V be an n-dimensional vector space over R. A symmetric bilinear form b :
V × V → R is

(1) positive definite provided b(v, v) > 0 for all v 6= 0,

(2) nondegenerate provided for each v 6= 0, there exists w ∈ V such that b(v, w) 6= 0
(i.e., the only vector orthogonal to all vectors is the zero vector).

Note: ‘Positive definite’ implies ‘nondegenerate’.
A scalar product on V is a nondegenerate symmetric bilinear form 〈 , 〉 : V ×V →

R. A scalar product space is a vector space V equipped with a scalar product 〈 , 〉.
Let V be a scalar product space. An orthonormal basis for V is a basis {e1, ..., en}

satisfying,

〈ei, ej〉 =

{
0, i 6= j

±1, i = j ,

or in terms of the Kronecker delta,

〈ei, ej〉 = εiδij (no sum)

where εi = ±1, i = 1, ..., n.

Fact. Every scalar product space (V, 〈 , 〉) admits an orthonormal basis.

The signature of an orthonormal basis is the n-tuple (ε1, ε2, ..., εn). It is customary
to order the basis so that the minus signs come first. The index of the scalar product

6



space is the number of minus signs in the signature. It can be shown that the index
is well-defined, i.e., does not depend on the choice of basis. The cases of most impor-
tance are the case of index 0 and index 1, which lead to Riemannian geometry and
Lorentzian geometry, respectively.

Definition 1.1. Let Mn be a smooth manifold. A pseudo-Riemannian metric 〈 , 〉
on a M is a smooth assignment to each p ∈M of a scalar product 〈 , 〉p on TpM ,

p
〈 , 〉
−→ 〈 , 〉p : TpM × TpM → R.

such that the index of 〈 , 〉p is the same for all p.

By ‘smooth assignment’ we mean that for all X, Y ∈ X(M), the function 〈X, Y 〉,
p→ 〈Xp, Yp〉P , is smooth.

Note: We shall also use the letter g to denote the metric, g = 〈 , 〉.

Definition 1.2. A pseudo-Riemannian manifold is a manifold Mn equipped with a
pseudo-Riemannian metric 〈 , 〉. If 〈 , 〉 has index 0 then M is called a Riemannian
manifold. If 〈 , 〉 has index 1 then M is called a Lorentzian manifold.

If (U, xi) is a coordinate chart then the metric components gij are the functions on
U defined by,

gij = 〈 ∂
∂xi

,
∂

∂xj
〉, i, j = 1, ..., n .

If X, Y are vectors at some point in U then, by bilinearity,

〈X, Y 〉 = gijX
iY j .

Thus, the metric components completely determine the metric on U .

Note: The metric 〈 , 〉 is smooth iff for each chart (U, xi) , the gij’s are smooth.
Classically, one displays the metric components as

ds2 = gijdx
idxj .

Ex. Euclidean space En as a Riemannian manifold. We equip Rn with the Euclidean
metric: Let (x1, ..., xn) be Cartesian coordinates on Rn. Then for X, Y ∈ TpRn,

X = X i ∂

∂xi
|p

Y = Y i ∂

∂xi
|p ,
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we have

〈X, Y 〉 = X · Y

=
n∑
i=1

X iY i

= δijX
iY j ,

where δij = 〈 ∂
∂xi ,

∂
∂xj 〉 is the Kronecker delta.

Ex. Minkowski space Mn+1. This is the Lorentzian analogue of Euclidean space. We
equip Rn+1 with the Minkowski metric: Let (x0, x1, ..., xn) be Cartesian coordinates
on Rn+1. Then for X, Y ∈ TpRn+1,

X = X i ∂

∂xi
|p , Y = Y i ∂

∂xi
|p ,

we define,

〈X, Y 〉 = −X0Y 0 +
n∑
i=1

X iY i

= ηijX
iY j ,

where ηij = εiδij, and (ε0, ε1, ..., εn) = (−1, 1, ..., 1).

1.5 Linear connections

We introduce the notion of covariant differentiation, which formalizes the process of
computing the directional derivative of vector fields.

Definition 1.3. A linear connection ∇ on a manifold M is an R-bilinear map,

∇ :X(M)× X(M)→ X(M)

(X, Y )→ ∇XY

satisfying for all X, Y ∈ X(M), f ∈ C∞(M),

(1) ∇fXY = f∇XY ,

(2) ∇XfY = X(f)Y + f∇XY .

∇XY is called the covariant derivative of Y wrt X. It can be shown that for any
p ∈M , ∇XY |p depends only on the values of Y in a neighborhood of p and the value
of X just at p. In particular, it makes sense to write ∇XY |p as ∇XpY . This can be
thought of as the directional derivative of Y at p in the direction of Xp.
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In a coordinate chart (U, xi) we introduce the connection coefficients Γkij, 1 ≤
i, j, k ≤ n, which are smooth functions on U defined by,

∇∂i
∂j = Γkij∂k ,

where, recall, ∂i = ∂
∂xi .

Exercise. Show that with respect to a coordinate chart (U, xi) , ∇XY can be expressed
as,

∇XY = (X(Y k) + ΓkijX
iY j)∂k , (1.1)

where X i, Y i are the components of X and Y , respectively, wrt the coordinate basis
∂i.

Note that this coordinate expression can also be written as,

∇XY = X iY k
;i ∂k

where we have introduced the classical notation,

Y k
;i = ∂iY

k + ΓkijY
j .

1.6 The Levi-Civita connection

Definition 1.4. A linear connection ∇ on M is symmetric provided for all X, Y ∈
X(M),

[X, Y ] = ∇XY −∇YX .

Using the coordinate expression (1.1) for∇XY , one easily checks that a linear con-
nection ∇ is symmetric iff wrt each each coordinate chart, the connection coefficients
satisfy,

Γkij = Γkji , for 1 ≤ i, j, k ≤ n .

Definition 1.5. Let (M, 〈 , 〉) be a pseudo-Riemannian manifold, and let ∇ be a
linear connection on M . We say that ∇ is compatible with the metric provided for all
X, Y ∈ X(M),

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 ,

i.e., the metric product rule holds.

Remark: The standard linear connection on Euclidean space (and on Minkowski
space) is symmetric and compatible with the metric.

Theorem 1.1 (Fundamental theorem of pseudo-Riemannian geometry). On a
pseudo-Riemannian manifold there exists a unique linear connection ∇ that is sym-
metric and compatible with the metric.
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Comment on the proof. Using the symmetry and compatibility with the metric of the
connection, one derives the Kozul formula,

〈∇XY, Z〉 =
1

2
[X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉

− 〈X, [Y, Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X, Y ]〉].

This formula implies uniqueness, and in fact can serve to define a linear connection
that is symmetric and compatible with the metric.

Using the Kozul formula one can show that the connection coefficients of a Levi-
Civita connection are given by,

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij) ,

where [gij] = [gij]
−1.

1.7 Geodesics

Let σ : I → M , t → σ(t), be a smooth curve in a pseudo-Riemannian manifold M .
Let X(σ) denote the collection of smooth vector fields X along σ,

t
X−→ X(t) ∈ Tσ(t)M

In local coordinates (U, xi) , we have

σ : xi = xi(t) , i = 1, ..., n

X(t) = X i(t)∂i|σ(t) ,

where the components X i(t) are smooth.
The Levi-Civita connection ∇ on M induces a covariant differentiation on vector

field along σ,
D

dt
: X(σ)→ X(σ)

Proposition 1.2. Let σ : I →M be a smooth curve in a pseudo-Riemannian mani-
fold M . Then there exists a unique R-linear operator

D

dt
: X(σ)→ X(σ)

satisfying

(1) for X ∈ X(σ), f ∈ C∞(I),

D

dt
fX =

df

dt
X + f

DX

dt
,
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(2) for X ∈ X(M),
D

dt
X|σ(t) = ∇σ′(t)X.

In local coordinates we find that,

DX

dt
= (

dXk

dt
+ Γkij

dxi

dt
Xj)∂k. (1.2)

Also we note that the operator D
dt

obeys the metric product rule,

d

dt
〈X, Y 〉 = 〈DX

dt
, Y 〉+ 〈X, DY

dt
〉.

Given a smooth curve t → σ(t) in M , D
dt
dσ
dt

is the covariant acceleration of σ. In
local coordinates,

D

dt

dσ

dt
= (

d2xk

dt2
+ Γkij

dxi

dt

dxj

dt
)∂k ,

as follows by setting Xk = dxk

dt
in Equation (1.2).

Definition 1.6. A smooth curve t → σ(t) is a geodesic provided it has vanishing
covariant acceleration,

D

dt

dσ

dt
= 0 (Geodesic equation)

The basic existence and uniqueness result for systems of ODE’s guarantees the
following.

Proposition 1.3. Given p ∈M and v ∈ TpM , there exists an interval I about t = 0
and a unique geodesic σ : I →M , t→ σ(t), satisfying,

σ(0) = p ,
dσ

dt
(0) = v .

In fact, by a more refined analysis it can be shown that each p ∈M is contained in
a (geodesically) convex neighborhood U , which has the property that any two points
in U can be joined by a unique geodesic contained in U . In fact U can be chosen so as
to be a normal neighborhood of each of its points; cf. [22], p. 129. (Recall, a normal
neighborhood of p ∈ M is the diffeomorphic image under the exponential map of a
star-shaped domain about 0 ∈ TpM .)

1.8 Riemann curvature tensor

Definition 1.7. Let Mn be a pseudo-Riemannian manifold. The Riemann curvature
tensor of M is the map R : X(M)× X(M)× X(M)→ X(M) given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z . (1.3)
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R so defined is trilinear wrt to C∞(M). That R is R-trilinear is clear. The key
point is the following.

Proposition 1.4. For f ∈ C∞(M),

R(fX, Y )Z = R(X, fY )Z = R(X, Y )fZ = fR(X, Y )Z .

Proof. Exercise.
Proposition 1.4 implies that R is indeed tensorial, i.e., that the value of R(X, Y )Z

at p ∈ M depends only on the value of X, Y, Z at p; hence for (R(X, Y )Z)p we may
write R(Xp, Yp)Zp.

From the analytic point of view, the Riemann curvature tensor R may viewed
as a measure of the extent to which covariant differentiation fails to commute. This
failure to commute may be seen as an obstruction to the existence of parallel vector
fields. According to Riemann’s theorem, a pseudo-Riemannian manifold is locally
pseudo-Euclidean iff the Riemann curvature tensor vanishes.

Proposition 1.5. The Riemann curvature tensor has the following symmetry prop-
erties.

(1) R(X, Y )Z +R(Y,X)Z = 0 ,

(2) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (first Bianchi identity) ,

(3) 〈R(X, Y )Z,W 〉+ 〈R(X, Y )W,Z〉 = 0 ,

(4) 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉.

The components Rl
kij of the Riemann curvature tensor R in a coordinate chart

(U, xi) are defined by the following equation,

R(∂i, ∂j)∂k = Rl
kij∂l

All of the above symmetries can be expressed in terms of components.
The Ricci tensor is obtained by contraction,

Rij = Rl
ilj
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Symmetries of the Riemann curvature tensor imply that the Ricci tensor is sym-
metric, Rij = Rji. By tracing the Ricci tensor, we obtain the scalar curvature,

R = gijRij ,

where [gij] = [gij]
−1. The Einstein equation, with cosmological term, is the tensor

equation,

Rij −
1

2
Rgij + Λgij = 8πTij , (1.4)

where Λ is the cosmological constant and Tij is the energy-momentum tensor.

1.9 Sectional curvature

Let (Mn, 〈 , 〉) be a pseudo-Riemannian manifold. A 2-dimensional subspace Π of the
tangent space TpM is called a tangent plane to M at p. Π is said to be nondegenerate
provided 〈 , 〉p restricted to Π is nondegenerate. Suppose the vectors X, Y ∈ TpM
span (i.e., form a basis for) Π. Then the sectional curvature K(Π) of the tangent
plane Π, is defined as

K(Π) =
〈R(X, Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2
.

This expression is easily seen to be independent of the spanning set X, Y . Moreover,
nondegeneracy ensures that the denominator is nonzero.

Sectional curvature has a natural geometric interpretation based on the following
fact. If M2 is a surface in R3 with its induced metric, and Π is the tangent plane to
M at p, then K(Π) = the Gaussian curvature of M at p.

Mn is said to have constant curvature if there exists a constant K0 such that for
all p ∈M , and for all nondegenerate tangent planes Π at p, K(Π) = K0. Minkowski
space, de Sitter space and anti-de Sitter space are Lorentzian manifolds of constant
curvature (zero, positive and negative, respectively).

2 Lorentzian geometry and causal theory

2.1 Lorentzian manifolds

Let (Mn+1, 〈 , 〉) be a Lorentzian manifold. Hence, for each p ∈ M , 〈 , 〉 : TpM ×
TpM → R is a scalar product of signature (−1,+1, ....,+1). Let {e0, e1, ..., en) be an
orthonormal basis for TpM . Set gij = 〈ei, ej〉. Then, as a matrix,

[gij] = [ηij] = diag(−1, 1, ..., 1) .

Hence, for X, Y ∈ TpM ,

〈X, Y 〉 = gijX
iY j = ηijX

iY j

= −X0Y 0 +
n∑
i=1

X iY i .
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For X ∈ TpM ,

X is


timelike if 〈X,X〉 < 0

null if 〈X,X〉 = 0

spacelike if 〈X,X〉 > 0 .

Finally, we say X is causal (or nonspacelike) if it is timelike or null.
We see that the set of null vectors X ∈ TpM ,

〈X,X〉 = −(X0)2 +
n∑
i=1

(X i)2 = 0

forms a double cone Vp in the tangent space TpM , called the null cone at p. Timelike
vectors point inside the null cone and spacelike vectors point outside.

A subspace W of TpM may be assigned a causal character as follows,

(1) W is spacelike if 〈 , 〉|W has index 0, i.e., is positive definite.

(2) W is timelike if 〈 , 〉|W has index 1.

(3) W is null (or lightlike) if 〈 , 〉|W is degenerate.

(see the figure).

For X ∈ TpM , X 6= 0, let [X]⊥ = {Y ∈ TpM : 〈X, Y 〉 = 0}. Note that [X]⊥ is
spacelike, timelike, or null, depending on whether X is timelike, spacelike, or null,
respectively.

For a causal vector X ∈ TpM , define its length as, |X| =
√
−〈X,X〉.

Proposition 2.1. The following basic inequalities hold.

(1) (Reverse Schwarz inequality) For all causal vectors X, Y ∈ TpM ,

|〈X, Y 〉| ≥ |X||Y |
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(2) (Reverse triangle inequality) For all causal vectors X, Y that point into the same
half cone of the null cone at p,

|X + Y | ≥ |X|+ |Y | .

Proof. Exercise.

The Reverse triangle inequality is the source of the twin paradox.

Let γ : I →M be a smooth curve in M . γ is said to be timelike (resp., spacelike,
null, causal) provided γ′(t) is timelike (resp., spacelike, null, causal) for all t ∈ I.
Heuristically, in accordance with relativity, information flows along causal curves,
and so such curves are the focus of our attention. The notion of a causal curve
extends in a natural way to piecewise smooth curves. The only extra requirement
is that when two segments join, at some point p, say, the end point tangent vectors
must point into the same half cone of the null cone Vp at p. We will normally work
within this class of piecewise smooth causal curves. Finally, note since geodesics γ
are constant speed curves (〈γ′, γ′〉 = const.), each geodesic in a Lorentzian manifold
is either timelike, spacelike or null.

The length of a causal curve γ : [a, b]→M , is defined by

L(γ) = Length of γ =

∫ b

a

|γ′(t)|dt =

∫ b

a

√
−〈γ′(t), γ′(t)〉 dt .

If γ is timelike one can introduce arc length parameter along γ. In general relativity,
a timelike curve corresponds to the history of an observer, and arc length parameter,
called proper time, corresponds to time kept by the observer.

Certain geometric and causal features of Minkowski space that may fail to hold in
the large in a general Lorentzian manifold, nontheless hold locally. Let U be a convex
neighborhood in a Lorentzian manifold. Hence for each pair of points p, q ∈ U there
exists a unique geodesic segment from p to q in U , which we denote by pq.

Proposition 2.2 ([22], p. 146). Let U be a convex neighborhood in a Lorentzian
manifold Mn+1.

(1) If there is a timelike (resp., causal) curve in U from p to q then pq is timelike
(causal).

(2) If pq is timelike then L(pq) ≥ L(γ) for all causal curves γ in U from p to q.
Moreover, the inequality is strict unless, when suitable parametrized, γ = pq.

Thus, within a convex neighborhood, null geodesics are achronal, i.e., no two
points can be joined by a timlike curve, and timelike geodesics are maximal, i.e., are
causal curves of greatest length. Both of these features can fail in the large.

Vp, the null cone at p, consists of two half-cones V+
p and V−p (see the figure on the

previous page). We may designate one of the half cones, V+
p , say, as the future null
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cone at p, and the other half cone, V−p , as the past null cone at p. The assignment of a
future cone and past cone to each point of Mn+1 can always be done in a continuous
manner locally. If the assignment can made in a continuous manner over all of M
then we say that M is time-orientable. The following figure illustrates a Lorentzian
manifold that is not time-orientable.

There are various ways to make the phrase “continuous assignment” precise, but
they all result in the following fact.

Fact 2.3. A Lorentzian manifold Mn+1 is time-orientable iff it admits a smooth
timelike vector field U .

If M is time-orientable, the choice of a smooth time-like vector field U fixes a time
orientation on M . For any p ∈ M , a causal vector X ∈ Tp is future directed (resp.
past directed) provided 〈X,U〉 < 0 (resp. 〈X,U〉 > 0). Thus X is future directed if
it points into the same null half cone at p as U .

By a spacetime we mean a connected time-oriented Lorentzian manifold (Mn+1, 〈 , 〉).
Henceforth, we restrict attention to spacetimes.

2.2 Futures and pasts

Let (M, 〈 , 〉) be a spacetime. We introduce the standard causal relations ‘�’ and
‘<’. A timelike (resp. causal) curve γ : I → M is said to be future directed provided
each tangent vector γ′(t), t ∈ I, is future directed. (Past-directed timelike and causal
curves are defined in a time-dual manner.)

Definition 2.1. For p, q ∈M ,

(1) p� q means there exists a future directed timelike curve in M from p to q (we
say that q is in the timelike future of p),

(2) p < q means there exists a future directed causal curve in M from p to q (we
say that q is in the causal future of p),

We shall use the notation p ≤ q to mean p = q or p < q.
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The causal relations � and < are clearly transitive. Also, from variational con-
siderations, it is heuristically clear that the following holds,

if p� q and q < r or if p < q and q << r then p� r .

The above statement is a consequence of the following fundamental causality result;
see [22, p. 294] for a careful proof.

Proposition 2.4. In a spacetime M , if q is in the causal future of p (p < q) but is
not in the timelike future of p (p 6� q) then any future directed causal curve γ from p
to q must be a null geodesic (when suitably parameterized).

Given any point p in a spacetime M , the timelike future and causal future of p,
denoted I+(p) and J+(p), respectively are defined as,

I+(p) = {q ∈M : p� q} and J+(p) = {q ∈M : p ≤ q} .

Hence, I+(p) consists of all points in M that can be reached from p by a future
directed timelike curve, and J+(p) consists of the point p and all points in M that
can be reached from p by a future directed causal curve. The timelike and causal pasts
of p, I−(p) and J−(p), respectively, are defined in a time-dual manner in terms of
past directed timelike and causal curves. Note by Proposition 2.4, if q ∈ J+(p)\I+(p)
(q 6= p) then there exists a future directed null geodesic from p to q.

If p is a point in Minkowski space Mn+1, then I+(p) is open, J+(p) is closed and
∂I+(p) = J+(p) \ I+(p) is just the future null cone at p. I+(p) consists of all points
inside the future null cone, and J+(p) consists of all points on and inside the future
null cone. We note, however, that curvature and topology can drastically change the
structure of ‘null cones’ in spacetime. Consider the example depicted in the following
figure of a flat spacetime cylinder, closed in space. For any point p in this spacetime
the future ‘null cone’ at p, ∂I+(p), is compact and consists of the two future directed
null geodesic segments emanating from p that meet to the future at a point q. By
extending these geodesics beyond q we enter I+(p).
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In some situations it is convenient to restrict the causal relations � and < to
open subsets U of a spacetime M . For example, I+(p, U), the chronological future
of p within U , consists of all points q in U for which there exists a future directed
timelike curve within U from p to q, etc. Note that, in general I+(p, U) 6= I+(p)∩U .

In general the sets I+(p) in a spacetime M are open. This is heuristically rather
clear: A sufficiently small smooth perturbation of a timelike curve is still timelike. A
rigorous proof is based on the causality of convex neighborhoods.

Proposition 2.5. Let U be a convex neighborhood in a spacetime M . Then, for each
p ∈ U ,

(1) I+(p, U) is open in U (and hence M),

(2) J+(p, U) is the closure in U of I+(p, U).

This proposition follows essentially from part (1) of Proposition 2.2.

Exercise: Prove that for each p in a spacetime M , I+(p) is open.

In general, sets of the form J+(p) need not be closed. This can be seen by removing
a point from Minkowski space, as illustrated in the figure below.

Points on the dashed line are not in J+(p), but are in the closure J+(p).
For any subset S ⊂ M , we define the timelike and causal future of S, I+(S) and

J+(S), respectively by

I+(S) =
⋃
p∈S

I+(p) and J+(S) =
⋃
p∈S

J+(p) .

Thus, I+(S) consists of all points in M reached by a future directed timelike curve
starting from S, and J+(S) consists of the points of S, together with the points in
M reached by a future directed causal curve starting from S. Since arbitrary unions
of open sets are open, it follows that I+(S) is always an open set. I−(S) and J−(S)
are defined in a time-dual manner.

Although in general J+(S) 6= I+(S), the following relationships always hold be-
tween I+(S) and J+(S).
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Proposition 2.6. For all subsets S ⊂M ,

(1) int J+(S) = I+(S),

(2) J+(S) ⊂ I+(S).

Proof. Exercise.

Achronal sets play an important role in causal theory. A subset S ⊂M is achronal
provided no two of its points can be joined by a timelike curve. Of particular impor-
tance are achronal boundaries. By definition, an achronal boundary is a set of the
form ∂I+(S) (or ∂I−(S)), for some S ⊂ M . We wish to describe several important
structural properties of achronal boundaries. The following figure illustrates nicely
the properties to be discussed. It depicts the achronal boundary ∂I+(S) in Minkowski
3-space M3, where S is the disjoint union of two spacelike disks; ∂I+(S) consists of
S and the merging of two future light cones.

Proposition 2.7. An achronal boundary ∂I+(S), if nonempty, is a closed achronal
C0 hypersurface in M .

We discuss the proof of this proposition, beginning with the following basic lemma.

Lemma 2.8. If p ∈ ∂I+(S) then I+(p) ⊂ I+(S), and I−(p) ⊂M \ I+(S).

Proof. To prove the first part of the lemma, note that if q ∈ I+(p) then p ∈ I−(q),
and hence I−(q) is a neighborhood of p. Since p is on the boundary of I+(S), it
follows that I−(q)∩ I+(S) 6= ∅, and hence q ∈ I+(S). The second part of the lemma,
which can be proved similarly, is left as an exercise.

Next, we need to introduce the notion of an edge point of an achronal set.

Definition 2.2. Let S ⊂M be achronal. Then p ∈ S is an edge point of S provided
every neighborhood U of p contains a timelike curve γ from I−(p, U) to I+(p, U) that
does not meet S (see the figure).
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We denote by edgeS the set of edge points of S. Note that S \ S ⊂ edgeS ⊂ S.
If edgeS = ∅ we say that S is edgeless.

Claim: An achronal boundary ∂I+(S) is achronal and edgeless.

Proof of the claim: Suppose there exist p, q ∈ ∂I+(S), with q ∈ I+(p). By
Lemma 2.8, q ∈ I+(S). But since I+(S) is open, I+(S) ∩ ∂I+(S) = ∅. Thus,
∂I+(S) is achronal. Moreover, Lemma 2.8 implies that for any p ∈ ∂I+(S), any
timelike curve from I−(p) to I+(p) must meet ∂I+(S). It follows that ∂I+(S) is
edgless.

Proposition 2.7 now follows from the following basic result.

Proposition 2.9. Let S be achronal. Then S \ edgeS, if nonempty, is a C0 hyper-
surface in M .

Proof. We sketch the proof; for details, see [22, p. 413]. It suffices to show that in a
neighborhood of each p ∈ S \ edgeS, S \ edgeS can be expressed as a C0 graph over
a smooth hypersurface.

Fix p ∈ S \ edgeS. Since p is not an edge point there exists a neighborhood U
of p such that every timelike curve from I−(p, U) to I+(p, U) meets S. Let X be a
future directed timelike vector field on M , and let N be a smooth hypersurface in U
transverse to X near p. Then, by choosing N small enough, each integral curve of X
through N will meet S, and meet it exactly once since S is achronal. Using the flow
generated by X, it follows that there is a neighborhood V ≈ (t1, t2) × N of p such
that S ∩ V is given as the graph of a function t = h(x), x ∈ N (see the figure below)

One can now show that a discontinuity of h at some point x0 ∈ N leads to an
achronality violation of S. Hence h must be continuous.

The next result shows that, in general, large portions of achronal boundaries are
ruled by null geodesics. A future (resp., past) directed causal curve γ : (a, b) → M
is said to be future (resp., past) inextendible in M if limt→b− γ(t) does not exist. A
future directed causal curve γ : (a, b)→M is said to be inextendible if γ and −γ are
future and past inextendible, respectively.

Proposition 2.10. Let S ⊂ M be closed. Then each p ∈ ∂I+(S) \ S lies on a null
geodesic contained in ∂I+(S), which either has a past end point on S, or else is past
inextendible in M .
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The proof uses a standard tool in causal theory, namely that of taking a limit of
causal curves. A technical difficulty arises however in that a limit of smooth causal
curves need not be smooth. Thus, we are lead to introduce the notion of a C0 causal
curve.

Definition 2.3. A continuous curve γ : I → M is said to be a future directed C0

causal curve provided for each t0 ∈ I, there is an open subinterval I0 ⊂ I about t0 and
a convex neighborhood U of γ(t0) such that given any t1, t2 ∈ I0 with t1 < t2, there
exists a smooth future directed causal curve in U from γ(t1) to γ(t2).

Thus, a C0 causal curve is a continuous curve that can be approximated with
arbitrary precision by a piecewise smooth causal curve.

We now give a version of the limit curve lemma (cf., [3, p. 511]). For its statement
it is convenient to introduce a background complete Riemannian (positive definite)
metric h on M . Observe that any future inextendible causal γ will have infinite length
to the future, as measured in the metric h. Hence, if parameterized with respect to
h-arc length, γ will be defined on the interval [0,∞).

Lemma 2.11 (Limit curve lemma). Let γn : [0,∞) → M be a sequence of future
inextendible causal curves, parameterized with respect to h-arc length, and suppose
that p ∈ M is an accumulation point of the sequence {γn(0)}. Then there exists
a future inextendible C0 causal curve γ : [0,∞) → M such that γ(0) = p and a
subsequence {γm} which converges to γ uniformly with respect to h on compact subsets
of [0,∞).

The proof of this lemma is an application of Arzela’s theorem; see especially the
proof of Proposition 3.31 in [3]. There are analogous versions of the limit curve lemma
for past inextendible, and (past and future) inextendible causal curves.

Remark: We note that C0 causal curves obey a local Lipschitz condition, and hence
are rectifiable. Thus, in the limit curve lemma, the γn’s could be taken to be C0

causal curves. We also note that the “limit” parameter acquired by the limit curve γ
need not in general be the h-arc length parameter.

Proof of Proposition 2.10. Fix p ∈ ∂I+(S) \ S. Since p ∈ ∂I+(S), there exists a
sequence of points pn ∈ I+(S), such that pn → p. For each n, let γn : [0, an] → M
be a past directed timelike curve from pn to qn ∈ S, parameterized with respect to
h-arc length. Extend each γn to a past inextendible timelike curve γ̃n : [0,∞)→ M ,
parameterized with respect to h-arc length. By the limit curve lemma, there exists a
subsequence γ̃m : [0,∞)→ M that converges to a past inextendible C0 causal curve
γ : [0,∞) → M such that γ(0) = p. By taking a further subsequence if necessary
we can assume am ↑ a, a ∈ (0,∞]. We claim that γ|[0,a] (or γ|[0,a) if a = ∞) is the
desired null geodesic (see the figure).
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Fix t ∈ (0, a). Eventually am > t, and so for large m we have γ̃m(t) = γm(t) ∈
I+(S). Hence, since γ(t) = limm→∞ γm(t), it follows that γ(t) ∈ I+(S). Suppose
γ(t) ∈ I+(S). Then there exists x ∈ S such that x � γ(t) < p. This implies
p ∈ I+(S), contradicting that it is on the boundary. It follows that γ(t) ∈ ∂I+(S).
Thus we have shown that γ|[0,a) ⊂ ∂I+(S). Suppose for the moment γ|[0,a) is piecewise
smooth. Since ∂I+(S) is achronal, no two points of γ can be joined by a timelike
curve. It then follows from Proposition 2.4 that γ is a null geodesic. But using the
fact that C0 causal curves can be approximated by piecewise smooth causal curves,
one can show in the general case that γ|[0,a) is a null geodesic. (Exercise: Show this.)

Finally, we consider the two cases a < ∞ and a = ∞. If a < ∞, then by the
uniform convergence, γ(a) = limm→∞ γm(am) = limm→∞ qm ∈ S, since S is closed.
Thus, we have a null geodesic from p contained in ∂I+(S) that ends on S. If a =∞
then we have a null geodesic from p in ∂I+(S) that is past inextendible in M .

2.3 Causality conditions

A number of results in Lorentzian geometry and general relativity require some sort
of causality condition. It is perhaps natural on physical grounds to rule out the
occurrence of closed timelike curves. Physically, the existence of such a curve signifies
the existence of an observer who is able to travel into his/her own past, which leads
to variety of paradoxical situations. A spacetime M satisfies the chronology condition
provided there are no closed timelike curves in M . Compact spacetimes have limited
interest in general relativity since they all violate the chronology condition.

Proposition 2.12. Every compact spacetime contains a closed timelike curve.

Proof. The sets {I+(p); p ∈M} form an open cover of M from which we can abstract
a finite subcover: I+(p1), I+(p2), ..., I+(pk). We may assume that this is the minimal
number of such sets covering M . Since these sets cover M , p1 ∈ I+(pi) for some i.
It follows that I+(p1) ⊂ I+(pi). Hence, if i 6= 1, we could reduce the number of sets
in the cover. Thus, p1 ∈ I+(p1) which implies that there is a closed timelike curve
through p1.

A somewhat stronger condition than the chronology condition is the causality
condition. A spacetime M satisfies the causality condition provided there are no
closed (nontrivial) causal curves in M .
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Exercise: Construct a spacetime that satisfies the chronology condition but not the
causality condition.

A spacetime that satisfies the causality condition can nontheless be on the verge
of failing it, in the sense that there exist causal curves that are “almost closed”, as
illustrated by the following figure.

Strong causality is a condition that rules out almost closed causal curves. An open
set U in spacetime M is said to be causally convex provided no causal curve in M
meets U in a disconnected sets. Given p ∈ M , strong causality is said to hold at p
provided p has arbitrarily small convex neighborhoods, i.e., for each neighborhood V
of p there exists a causally neighborhood U of p such that U ⊂ V . Note that strong
causality fails at the point p in the figure above. In fact strong causality fails at all
points along the dashed null geodesic. It can be shown that the set of points at which
strong causality holds is open.

M is said to be strongly causal if strong causality holds at all of its points. This
is the “standard” causality condition in spacetime geometry, and, although there are
even stronger causality conditions, it is sufficient for most applications. There is an
interesting connection between strong causality and the so-called Alexandrov topology.
The sets of the form I+(p) ∩ I−(q) form the base for a topology on M , which is the
Alexandrov topology. This topology is in general more coarse than the manifold
topology of M . However it can be shown that the Alexandrov topology agrees with
the manifold topology iff M is strongly causal.

The following lemma is often useful.

Lemma 2.13. Suppose strong causality holds at each point of a compact set K in a
spacetime M . If γ : [0, b)→M is a future inextendible causal curve that starts in K
then eventually it leaves K and does not return, i.e., there exists t0 ∈ [0, b) such that
γ(t) /∈ K for all t ∈ [t0, b).

Proof. Exercise.
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In referring to the property described by this lemma, we say that a future inex-
tendible causal curve cannot be “imprisoned” or “partially imprisoned” in a compact
set on which strong causality holds.

We now come to a fundamental condition in spacetime geometry, that of global
hyperbolicity. Mathematically, global hyperbolicity is a basic ‘niceness’ condition that
often plays a role analogous to geodesic completeness in Riemannian geometry. Phys-
ically, global hyperbolicity is connected to the notion of (strong) cosmic censorship
introduced by Roger Penrose. This is the conjecture that, generically, spacetime solu-
tions to the Einstein equations do not admit naked singularities (singularities visible
to some observer).

Definition 2.4. A spacetime M is said to be globally hyperbolic provided

(1) M is strongly causal.

(2) (Internal Compactness) The sets J+(p) ∩ J−(q) are compact for all p, q ∈M .

Condition (2) says roughly that M has no holes or gaps. For example Minkowski
space Mn+1 is globally hyperbolic but the spacetime obtained by removing one point
from it is not.

We consider a few basic consequences of global hyperbolicity.

Proposition 2.14. Let M be a globally hyperbolic spacetime. Then,

(1) The sets J±(A) are closed, for all compact A ⊂M .

(2) The sets J+(A) ∩ J−(B) are compact, for all compact A,B ⊂M .

Proof. We prove J±(p) are compact for all p ∈M, and leave the rest as an exercise.
Suppose q ∈ J+(p) \ J+(p) for some p ∈ M . Choose r ∈ I+(q), and {qn} ⊂ J+(p),
with qn → q. Since I−(r) is an open neighborhood of q, {qn} ⊂ J−(r) for n large. It
follows that q ∈ J+(p) ∩ J−(r) = J+(p) ∩ J−(r), since J+(p) ∩ J−(r) is compact and
hence closed. But this contradicts q /∈ J+(p) . Thus, J+(p) is closed, and similarly
so is J−(p).

Analogously to the case of Riemannian geometry, one can learn much about
the global structure of spacetime by studying its causal geodesics. Locally, causal
geodesics maximize Lorentzian arc length (cf., Proposition 2.2). Given p, q ∈ M ,
with p < q, we wish to consider conditions under which there exists a maximal future
directed causal geodesic γ from p to q, where by maximal we mean that for any future
directed causal curve σ from p to q, L(γ) ≥ L(σ).

For this purpose it is convenient to introduce the Lorentzian distance function,
d : M ×M → [0,∞]. For p < q, let Ωp,q denote the collection of future directed
causal curves from p to q. Then, for any p, q ∈M , define

d(p, q) =

{
sup{L(σ) : σ ∈ Ωp,q}, if p < q

0, if p 6< q
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While the Lorentzian distance function is not a distance function in the usual
sense of metric spaces, and may not even be finite valued, it does have a few nice
properties. For one, it obeys a reverse triangle inequality,

if p < r < q then d(p, q) ≥ d(p, r) + d(r, q) .

Exercise: Prove this.

We have the following basic fact.

Proposition 2.15. The Lorentzian distance function is lower semi-continuous.

Proof. Fix p, q ∈M . Given ε > 0 we need to find neighborhhoods U and V of p and
q, respectively, such that for all x ∈ U and all y ∈ V , d(x, y) > d(p, q)− ε.

If d(p, q) = 0 there is nothing to prove. Thus, we assume p < q and 0 < d(p, q) <
∞. We leave the case d(p, q) =∞ as an exercise. Let σ be a future directed timelike
curve from p to q such that L(σ) = d(p, q)−ε/3. Let U and V be convex neighborhoods
of p and q, respectively. Choose p′ on σ close to p and q′ on σ close to q. Then U ′ =
I−(p′, U) and V ′ = I+(q′, V ) are neighborhoods of p and q, respectively. Moreover,
by choosing p′ sufficiently close to p and q′ sufficiently close to q, one verifies that for
all x ∈ U ′ and y ∈ V ′, there exists a future directed timelike curve α from x to y,
containing the portion of σ from p′ to q′, having length L(α) > d(p, q)− ε/2.

Though the Lorentzian distance function is not continuous in general , it is con-
tinuous (and finite valued) for globally hyperbolic spacetimes; cf., [22, p. 412].

Given p < q, note that a causal geodesic segment γ having length L(γ) = d(p, q)
is maximal. Global hyperbolicity is the standard condition to ensure the existence of
maximal causal geodesic segments.

Proposition 2.16. Let M be a globally hyperbolic spacetime. Given p, q ∈ M , with
p < q, there exists a maximal future directed causal geodesic γ from p to q (L(γ) =
d(p, q)).

Proof. The proof involves a standard limit curve argument, together with the fact
that the Lorentzian arc length functional is upper semi-continuous; see [25, p. 54].

As usual, let h be a background complete Riemannian metric on M . For each n,
let γn : [0, an] → M be a future directed causal curve from p = γn(0) to q = γn(an),
parameterized with respect to h-arc length, such that L(γn)→ d(p, q). Extend each γn
to a future inextendible causal curve γ̃n : [0,∞)→M , parameterized with respect to
h-arc length. By the limit curve lemma, there exists a subsequence γ̃m : [0,∞)→M
that converges to a future inextendible C0 causal curve γ : [0,∞) → M such that
γ(0) = p. By taking a further subsequence if necessary we can assume am ↑ a.
Since each γm is contained in the compact set J+(p) ∩ J−(q), it follows that γ|[0,a) ⊂
J+(p) ∩ J−(q) = J+(p) ∩ J−(q). Since M is strongly causal, it must be that a <∞,
otherwise, γ would be imprisoned in J+(p)∩J−(q), contradicting Lemma 2.13. Then,
γ(a) = limm→∞ γm(am) = q.
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Let γ̄ = γ|[0,a]. γ̄ is a future directed C0 causal curve from p to q. Moreover, by
the upper semi-continuity of L,

L(γ̄) ≥ lim sup
m→∞

L(γm) = d(p, q) ,

and so L(γ̄) = d(p, q). Hence, γ̄ has maximal length among all future directed causal
curves from p to q. This forces each sub-segment of γ̄ to have maximal length.
Using Proposition 2.2 (part (2) of which remains valid for C0 causal curves) and
Proposition 2.4, one can then argue that each sufficiently small segment of γ̄ is a
causal geodesic. (Exercise: Argue this.)

Remarks: There are simple examples showing that if either of the conditions (1) or
(2) fail to hold in the definition of global hyperbolicity then maximal segments may
fail to exist. Moreover, contrary to the situation in Riemannian geometry, geodesic
completeness does not guarantee the existence of maximal segments, as is well il-
lustrated by anti-de Sitter space which is geodesically complete. The figure below
depicts 2-dimensional anti-de Sitter space. It be can be represented as the strip
M = {(t, x) : −π/2 < x < π/2}, equipped with the metric ds2 = sec2 x(−dt2 + dx2).
Because the anti-de Sitter metric is conformal to the Minkowski metric on the strip,
pasts and futures of both space times are the same. It can be shown that all future
directed timelike geodesics emanating from p refocus at r. The points p and q are
timelike related, but there is no timelike geodesic segment from p to q.

Global hyperbolicity is closely related to the existence of certain ‘ideal initial value
hypersurfaces’, called Cauchy surfaces. There are slight variations in the literature
in the definition of a Cauchy surface. Here we adopt the following definition.

Definition 2.5. A Cauchy surface for a spacetime M is an achronal subset S of M
which is met by every inextendible causal curve in M .
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From the definition it is easy to see that if S is a Cauchy surface for M then
S = ∂I+(S) = ∂I−(S). It follows from Proposition 2.7 that a Cauchy surface S is a
closed achronal C0 hypersurface in M .

Theorem 2.17. Consider a spacetime M .

(1) If M is globally hyperbolic then M has a Cauchy surface S (Geroch, [17]).

(2) If S is a Cauchy surface for M then M is homeomorphic to R× S.

Proof. We make a couple of comments about the proof. To prove (1), one introduces
a measure µ on M such that µ(M) = 1. Consider the function f : M → R defined
by

f(p) =
µ(J−(p))

µ(J+(p))
.

Internal compactness is used to show that f is continuous, and strong causality is used
to show that f is strictly increasing along future directed causal curves. Moreover,
if γ : (a, b) → M is a future directed inextendible causal curve in M , one shows
f(γ(t)) → 0 as t → a+, and f(γ(t)) → ∞ as t → b−. It follows that S = {p ∈ M :
f(p) = 1} is a Cauchy surface for M . To prove (2), one introduces a future directed
timelike vector field X on M . X can be scaled so that the time parameter t of each
integral curve of X extends from −∞ to ∞, with t = 0 at points of S. Each p ∈ M
is on an integral curve of X that meets S in exactly one point q. This sets up a
correspondence p↔ (t, q), which gives the desired homeomorphism.

As we discuss in the next subsection, the converse to (1) above holds. Thus, a
spacetime M is globally hyperbolic iff it admits a Cauchy surface S. Along similar
lines to (2) above, one has that any two Cauchy surfaces in a given globally hyper-
bolic spacetime are homeomorphic. Hence, in view of Theorem 2.17, any nontrivial
topology in a globally hyperbolic spacetime must reside in its Cauchy surfaces.

The following fact is often useful.

Proposition 2.18. If S is a compact achronal C0 hypersurface in a globally hyperbolic
spacetime M then S must be a Cauchy surface for M .

The proof will be discussed in the next subsection.

2.4 Domains of dependence

Definition 2.6. Let S be an achronal set in a spacetime M . We define the future
and past domains of dependence of S, D+(S) and D−(S), respectively, as follows,

D+(S) = {p ∈M : every past inextendible causal curve from p meets S},
D−(S) = {p ∈M : every future inextendible causal curve from p meets S}.

The (total) domain of dependence of S is the union, D(S) = D+(S) ∪D−(S).
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In physical terms, since information travels along causal curves, a point in D+(S)
only receives information from S. Thus if physical laws are suitably causal, initial
data on S should determine the physics on D+(S) (in fact on all of D(S)).

Below we show a few examples of future and past domains of dependence.

The figure in the top right shows the effect of removing a point from M . The bottom
figure shows the future domain of dependence of the spacelike hyperboloid t2−x2 = 1,
t < 0, in the Minkowski plane.

If S is achronal, the future Cauchy horizon H+(S) of S is the future boundary of
D+(S). This is made precise in the following definition.

Definition 2.7. Let S ⊂ M be achronal. The future Cauchy horizon H+(S) of S is
defined as follows

H+(S) = {p ∈ D+(S) : I+(p) ∩D+(S) = ∅}
= D+(S) \ I−(D+(S)) .

The past Cauchy horizon H−(S) is defined time-dually. The (total) Cauchy horizon
of S is defined as the union, H(S) = H+(S) = H−(S).

We record some basic facts about domains of dependence and Cauchy horizons.
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Proposition 2.19. Let S be an achronal subset of M . Then the following hold.

(1) S ⊂ D+(S).

(2) If p ∈ D+(S) then I−(p) ∩ I+(S) ⊂ D+(S).

(3) ∂D+(S) = H+(S) ∪ S, and ∂D(S) = H(S).

(4) H+(S) is achronal.

(5) edgeH+(S) ⊂ edge S, with equality holding if S is closed.

The achronality ofH+(S) follows almost immediately from the definition: Suppose
p, q ∈ H+(S) with p� q. Since q ∈ D+(S), and I+(p) is a neighborhood of q, I+(p)
meets D+(S), contradicting the definition of H+(S).

Cauchy horizons have structural properties similar to achronal boundaries, as
indicated in the next two results. From Proposition 2.9 and Parts (4) and (5) of
Proposition 2.19, we obtain the following.

Proposition 2.20. Let S ⊂ M be achronal. Then H+(S) \ edgeS, if nonempty, is
an achronal C0 hypersurface in M .

In a similar vein to Proposition 2.10, we have the following.

Proposition 2.21. Let S be an achronal subset of M . Then H+(S) is ruled by null
geodesics, i.e., every point of H+(S) \ edgeS is the future endpoint of a null geodesic
in H+(S) which is either past inextendible in M or else has a past end point on
edgeS.

Comments on the proof. The proof uses a limit curve argument. Consider the case
p ∈ H+(S)\S. Since I+(p)∩D+(S) = ∅, we can find a sequence of points pn /∈ D+(S),
such that pn → p. For each n, there exists a past inextendible causal curve γn that
does not meet S. By the limit curve lemma there exists a subsequence γm that
converges to a past inextendible C0 causal curve γ starting at p. Near p this defines
the desired null geodesic (see the figure).

The case p ∈ S\edgeS is handled somewhat differently; for details see [28, p. 203].
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The following basic result ties domains of dependence to global hyperbolicity.

Proposition 2.22. Let S ⊂M be achronal.

(1) Strong causality holds on intD(S).

(2) Internal compactness holds on intD(S), i.e., for all p, q ∈ D(S), J+(p)∩J−(p)
is compact.

Comments on the proof. With regard to (1), first observe that the chronology con-
dition holds on D(S). For instance, suppose there exists a timelike curve γ passing
through p ∈ D+(S), and take γ to be past directed. By repeating loops we ob-
tain a past inextendible timelike curve γ̃, which hence must meet S. In fact, it will
meet S infinitely often, thereby violating the achronality of S. A similar argument
shows that the causality condition holds on intD(S). Suppose for example that γ
is a past directed closed causal curve through p ∈ intD+(S). By repeating loops
we obtain a past inextendible causal curve γ̃ starting at p. Thus γ̃ meets S, and
since p ∈ intD+(S), will enter I−(S). This again leads to an achronality violation.
By more refined arguments, using the limit curve lemma, one can show that strong
causality holds on intD(S). With regard to (2), suppose there exist p, q ∈ intD(S),
such that J+(p) ∩ J−(p) is noncompact. We want to show that every sequence qn
in J+(p) ∩ J−(p) has a convergent subsequence. Without loss of generality we may
assume {qn} ⊂ D−(S). For each n, let γn be a future directed causal curve from p
to q passing through qn. As usual, extend each γn to a future inextendible causal
curve γ̃n. By the limit curve lemma, there exists a subsequence γ̃m that converges to
a future inextendible C0 causal curve γ starting at p. One can then show that either
the sequence of points qm converges or γ does not enter I+(S).

Putting several previous results together we obtain the following.

Proposition 2.23. Let S be an achronal subset of a spacetime M . Then, S is a
Cauchy surface for M iff D(S) = M iff H(S) = ∅. Hence, if S is a Cauchy surface
for M then M is globally hyperbolic.

Proof. Exercise.

We now give a proof of Proposition 2.18 from the previous subsection.

Proof of Proposition 2.18. It suffices to show that H(S) = H+(S) ∪ H−(S) = ∅.
Suppose there exists p ∈ H+(S). Since S is edgeless, it follows from Proposition 2.21
that p is the future endpoint of a past inextendible null geodesic γ ⊂ H+(S). Then
since γ ⊂ D+(S) ∩ J−(p) (exercise: show this), we have that γ is contained in the
set J+(S) ∩ J−(p), which is compact by Proposition 2.14). By Lemma 2.13 strong
causality must be violated at some point of J+(S) ∩ J−(p). Thus H+(S) = ∅, and
time-dually, H−(S) = ∅.
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We conclude this subsection by stating several lemmas that are useful in proving
some of the results described here, as well as other results concerning domains of
dependence.

Lemma 2.24 ([22], p. 416). Let γ be a past inextendible causal curve starting at p
that does not meet a closed set C. If p0 ∈ I+(p,M \C), there exists a past inextendible
timelike curve starting at p0 that does not meet C.

Proof. Exercise.

Lemma 2.25. Let S be achronal. If p ∈ intD+(S) then every past inextendible causal
curve from p enters I−(S).

Proof. This follows from the proof of the preceding lemma.

Lemma 2.26. Let S be achronal. Then p ∈ D+(S) iff every past inextendible timelike
curve meets S.

Proof. Exercise.

3 The geometry of null hypersurfaces

A smooth submanifold V of a spacetime (M, 〈 , 〉) is said to be spacelike (resp, time-
like, null) if each of its tangent spaces TpV , p ∈ V , is spacelike (resp., timelike,
null). Hence if V is spacelike (resp., timelike) then, with respect to its induced met-
ric, i.e., the metric 〈 , 〉 restricted to the tangent spaces of V , V is a Riemannian
(resp., Lorentzian) manifold. On the other hand, if V is a null submanifold then 〈 , 〉
is degenerate when restricted to the tangent spaces of V , and so does not define a
pseudo-Riemannian metric on V . Nontheless, null hypersurfaces have an interesting
geometry, and play an important role general relativity, as they represent horizons of
various sorts.

Let S be a smooth null hypersurface in a spacetime (M, 〈 , 〉). Thus, S is a smooth
co-dimension one submanifold of M , such that at each p ∈M , 〈 , 〉 : TpS × TpS → R
is degenerate. This means that there exists a nonzero vector Kp ∈ TpS such that

〈Kp, X〉 = 0 for all X ∈ TpS

In particular,

(1) Kp is a null vector, 〈Kp, Kp〉 = 0, which we can choose to be future pointing,
and

(2) [Kp]
⊥ = TpS.

(3) Moreover, every vector X ∈ TpS that is not a multiple of Kp is spacelike.
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Thus, every null hypersurface S gives rise to a future directed null vector field K,

p ∈ S K−→ Kp ∈ TpS,

which will be smooth, K ∈ X(S), provided it is normalized in a suitably uniform way.
Furthermore, the null vector field K is unique up to a positive pointwise scale factor.

As simple examples, in Minkowski space Mn+1, the past and future cones, ∂I−(p)
and ∂I+(p), respectively, are smooth null hypersurfaces away from the vertex p. Each
nonzero null vector X ∈ TpMn+1 determines a null hyperplane Π = {q ∈ Mn+1 :
〈pq,X〉 = 0.

The following fact is fundamental.

Proposition 3.1. Let S be a smooth null hypersurface and let K ∈ X(S) be a smooth
future directed null vector field on S. Then the integral curves of K are null geodesics
(when suitably parameterized),

Remark: The integral curves of K are called the null generators of S. Apart from
parameterziations, the null generators are intrinsic to the null hypersurface.

Proof. It suffices to show that ∇KK = λK, for then the integral curves are in general
pre-geodesics (i.e., are geodesics after a suitable reparameterization). To show this it
suffice to show that at each p ∈ S, ∇KK ⊥ TpS, i.e., 〈∇KK,X〉 = 0 for all X ∈ TpS.

Extend X ∈ TpS by making it invariant under the flow generated by K,

[K,X] = ∇KX −∇XK = 0

X remains tangent to S, so along the flow line through p, 〈K,X〉 = 0. Differentiating
we obtain,

0 = K〈K,X〉 = 〈∇KK,X〉+ 〈K,∇KX〉 ,

and hence,

〈∇KK,X〉 = −〈K,∇KX〉 = −〈K,∇XK〉 = −1

2
X〈K,K〉 = 0 .

To study the ‘shape’ of the null hypersurface S we study how the null vector field
K varies along S. Since K is actually orthogonal to S, this is somewhat analogous
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to how we study the shape of a hypersurface in a Riemannian manifold, or spacelike
hypersurface in a Lorentzian manifold, by introducing the shape operator (or Wein-
garten map) and associated second fundamental form. We proceed to introduce null
analogues of these objects. For technical reasons one works “mod K”, as described
below.

We introduce the following equivalence relation on tangent vectors: For X,X ′ ∈
TpS,

X ′ = X mod K if and only if X ′ −X = λK for some λ ∈ R .

Let X denote the equivalence class of X. Let TpS/K = {X : X ∈ TpS}, and
TS/K = ∪p∈STpS/K. TS/K, the mod K tangent bundle of S, is a smooth rank
n − 1 vector bundle over S. This vector bundle does not depend on the particular
choice of null vector field K.

There is a natural positive definite metric h on TS/K induced from 〈 , 〉: For each
p ∈ S, define h : TpS/K × TpS/K → R by h(X,Y ) = 〈X, Y 〉. A simple computation
shows that h is well-defined: If X ′ = X mod K, Y ′ = Y mod K then

〈X ′, Y ′〉 = 〈X + αK, Y + βK〉
= 〈X, Y 〉+ β〈X,K〉+ α〈K,Y 〉+ αβ〈K,K〉
= 〈X, Y 〉 .

The null Weingarten map b = bK of S with respect to K is, for each point p ∈ S,
a linear map b : TpS/K → TpS/K defined by b(X) = ∇XK.

Exercise: Show that b is well-defined. Show also that that if K̃ = fK, f ∈ C∞(S), is
any other future directed null vector field on S, then bK̃ = fbK . It follows that the

Weingarten map b = bK at a point p is uniquely determined by the value of K at p.

Proposition 3.2. b is self adjoint with respect to h, i.e., h(b(X), Y ) = h(X, b(Y )),
for all X,Y ∈ TpS/K.

Proof. Extend X, Y ∈ TpS to vector fields tangent to S near p. Using X〈K,Y 〉 = 0
and Y 〈K,X〉 = 0, we obtain,

h(b(X), Y ) = 〈∇XK,Y 〉 = −〈K,∇XY 〉 = −〈K,∇YX〉+ 〈K, [X, Y ]〉
= 〈∇YK,X〉 = h(X, b(Y )) .

The null second fundamental form B = BK of S with respect to K is the bilinear
form associated to b via h: For each p ∈ S, B : TpS/K × TpS/K → R is defined by,

B(X,Y ) = h(b(X), Y ) = 〈∇XK,Y 〉 .

Since b is self-adjoint, B is symmetric. We say that S is totally geodesic iff B ≡ 0.
This has the usual geometric meaning: If S is totally geodesic then any geodesic
in M starting tangent to S stays in S. This follows from the fact that, when S is
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totally geodesic, the restriction to S of the Levi-Civita connection of M defines a
linear connection on S. Null hyperplanes in Minkowski space are totally geodesic, as
is the event horizon in Schwarzschild spacetime.

The null mean curvature (or null expansion scalar) of S with respect to K is the
smooth scalar field θ on S defined by, θ = tr b. θ has a natural geometric interpreta-
tion. Let Σ be the intersection of S with a hypersurface in M which is transverse to
K near p ∈ S; Σ will be a co-dimension two spacelike submanifold of M , along which
K is orthogonal.

Let {e1, e2, · · · , en−1} be an orthonormal basis for TpΣ in the induced metric. Then
{e1, e2, · · · , en−1} is an orthonormal basis for TpS/K. Hence at p,

θ = tr b =
n−1∑
i=1

h(b(ei), ei) =
n−1∑
i=1

〈∇ei
K, ei〉.

= divΣK . (3.5)

where divΣK is the divergence of K along Σ. Thus, θ measures the overall expansion
of the null generators of S towards the future.

It follows from the exercise on the preceeding page that if K̃ = fK then θ̃ = fθ.
Thus the null mean curvature inequalities θ > 0, θ < 0, etc., are invariant under
positive rescaling of K. In Minkowski space, a future null cone S = ∂I+(p) \ {p}
(resp., past null cone S = ∂I−(p) \ {p}) has positive null mean curvature, θ > 0
(resp., negative null mean curvature, θ < 0).

We now study how the null Weingarten map propagates along the null geodesic
generators of S. Let η : I →M , s→ η(s), be a future directed affinely parameterized
null geodesic generator of S. For each s ∈ I, let

b(s) = bη′(s) : Tη(s)S/η
′(s)→ Tη(s)S/η

′(s) (3.6)

be the Weingarten map based at η(s) with respect to the null vector K = η′(s). We
show that the one parameter family of Weingarten maps s → b(s), obeys a certain
Ricatti equation.

We first need to make a few definitions. Let s → Y(s) be a TS/K vector field
along η, i.e., for each s ∈ I, Y(s) ∈ Tη(s)S/K. We say that s → Y(s) is smooth if,
at least locally, there is a smooth (in the usual sense) vector field s → Y (s) along
η, tangent to S, such that Y(s) = Y (s). Then define the covariant derivative of
s→ Y(s) along η by, Y ′(s) = Y ′(s), where Y ′ is the usual covariant differentiation.

Exercise: Show that Y ′ is independent of the choice of Y .
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Then the covariant derivative of b along η is defined by requiring a natural product
rule to hold. If s→ X(s) is a vector field along η tangent to S, b′ is defined by,

b′(X) = b(X)′ − b(X ′) . (3.7)

Proposition 3.3. The one parameter family of Weingarten maps s → b(s), obeys
the following Ricatti equation,

b′ + b2 +R = 0 , (3.8)

where R : Tη(s)S/η
′(s) → Tη(s)S/η

′(s) is the curvature endomorphism defined by

R(X) = R(X, η′(s))η′(s).

Proof. Fix a point p = η(s0), s0 ∈ (a, b), on η. On a neighborhood U of p in S we
can scale the null vector field K so that K is a geodesic vector field, ∇KK = 0, and
so that K, restricted to η, is the velocity vector field to η, i.e., for each s near s0,
Kη(s) = η′(s). Let X ∈ TpM . Shrinking U if necessary, we can extend X to a smooth
vector field on U so that [X,K] = ∇XK −∇KX = 0. Then,

R(X,K)K = ∇X∇KK −∇K∇XK −∇[X,K]K = −∇K∇KX .

Hence along η we have, X ′′ = −R(X, η′)η′ (which implies that X, restricted to η, is
a Jacobi field along η). Thus, from Equation 3.7, at the point p we have,

b′(X) = ∇XK
′ − b(∇KX) = ∇KX

′ − b(∇XK)

= X ′′ − b(b(X)) = −R(X, η′)η′ − b2(X)

= −R(X)− b2(X),

which establishes Equation 3.8.
By taking the trace of (3.8) we obtain the following formula for the derivative of

the null mean curvature θ = θ(s) along η,

θ′ = −Ric(η′, η′)− σ2 − 1

n− 1
θ2, (3.9)

where σ := (tr b̂2)1/2 is the shear scalar, b̂ := b− 1
n−1

θ · id is the trace free part of the

Weingarten map, and Ric(η′, η′) = Rij(η
i)′(ηj)′ is the Ricci tensor contracted on the

tangent vector η′. Equation 3.9 is known in relativity as the Raychaudhuri equation
(for an irrotational null geodesic congruence) . This equation shows how the Ricci
curvature of spacetime influences the null mean curvature of a null hypersurface.

The following proposition is a standard application of the Raychaudhuri equation.

Proposition 3.4. Let M be a spacetime which obeys the null enery condition (NEC),
Ric (X,X) ≥ 0 for all null vectors X, and let S be a smooth null hypersurface in M .
If the null generators of S are future geodesically complete then S has nonnegative
null mean curvature, θ ≥ 0.
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Proof. Suppose θ < 0 at p ∈ S. Let s → η(s) be the null generator of S passing
through p = η(0), affinely parametrized. Let b(s) = bη′(s), and take θ = tr b. By the
invariance of sign under scaling, one has θ(0) < 0. Raychaudhuri’s equation and the
NEC imply that θ = θ(s) obeys the inequality,

dθ

ds
≤ − 1

n− 1
θ2 , (3.10)

and hence θ < 0 for all s > 0. Dividing through by θ2 then gives,

d

ds

(
1

θ

)
≥ 1

n− 1
, (3.11)

which implies 1/θ → 0, i.e., θ → −∞ in finite affine parameter time, contradicting
the smoothness of θ.

Exercise. Let Σ be a local cross section of the null hypersurface S, as depicted on
p. 34, with volume form ω. If Σ is moved under flow generated by K, show that
LKω = θ ω, where L = Lie derivative.

Thus, Proposition 3.4 implies, under the given assumptions, that cross sections of
S are nondecreasing in area as one moves towards the future. Proposition 3.4 is the
simplest form of Hawking’s black hole area theorem [19]. For a recent study of the
area theorem, with a focus on issues of regularity, see [6].

4 Trapped surfaces

In this section we introduce the important notions of trapped and marginally trapped
surfaces, which are associated with gravitational collapse and black hole formation.
As applications of these notions, we present the classical Penrose singularity theorem
and discuss the topology of black holes.

4.1 Trapped and marginally trapped surfaces

Let (Mn+1, 〈 , 〉) be an (n + 1)-dimensional spacetime, with n ≥ 3. Let Σn−1 be a
compact co-dimension two spacelike submanifold of M . Each normal space of Σ,
[TpΣ]⊥, p ∈ Σ, is timelike and 2-dimensional, and hence admits two future directed
null directions orthogonal to Σ.
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Thus, under suitable orientation assumptions, Σ admits two smooth nonvanishing
future directed null normal vector fields K+ and K−.

{K +K

By convention, we refer to K+ as outward pointing and K− as inward pointing.
Let S+ and S− be the null hypersurfaces, defined and smooth near Σ, generated

by the null geodesics with initial tangents K+ and K−, respectively. Let θ+ (resp.,
θ−) be the null expansion of S+ (resp., S−) restricted to Σ. Thus, as in Equation 3.5

θ+ = divΣK+ and θ− = divΣK− .

Hence, θ+ and θ− are smooth scalars on Σ that measure the overall expansion of the
outward going and inward going light rays, respectively, emanating from Σ.

For round spheres in Euclidean slices of Minkowski space, with the obvious choice
of inside and outside, one has θ− < 0 and θ+ > 0.

§

 0> +µ 0< {µ

In fact, this is the case in general for large “radial” spheres in asymptotically flat
spacelike hypersurfaces. However, in regions of spacetime where the gravitational
field is strong, one may have both θ− < 0 and θ+ < 0, in which case Σ is called a
trapped surface. As discussed in the following subsection, under appropriate energy
and causality conditions, the occurrence of a trapped surface signals the onset of
gravitational collapse [24].

Focussing attention on just the outward null normal, we say that Σ is an outer
trapped surface if θ+ < 0, and is a marginally outer trapped surface (MOTS) if
θ+ = 0. MOTSs arise in a number of natural situations. For example, compact cross
sections of the event horizon in stationary (steady state) black hole spacetimes are
MOTSs. (Recall, from Proposition 3.4, that in general one has θ ≥ 0 on the event
horizon, but in the steady state limit this goes to zero.)

H

§

 = 0+µ
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For dynamical black hole spacetimes, MOTS typically occur in the black hole
region, i.e., the region inside the event horizon.

 = 0
+
µ

H

While there are heuristic arguments for the existence of MOTSs in this situation,
based on looking at the boundary of the ‘trapped region’ [19, 28] within a given
spacelike slice, a recent result of Schoen [27] rigorously establishes their existence
under natural conditions.

There has been a lot of recent work done concerning properties of MOTSs. In
large measure, this is due to renewed interest in quasi-local notions of black holes,
such as dynamical horizons [2], and to connections between MOTSs in spacetime
and minimal surfaces in Riemannian manifolds. In fact, if Σn−1 is a hypersurface
in a time-symmetric (i.e, totally geodesic) spacelike hypersurface V n, then, with K+

suitably normalized, θ+ = H, where H is the mean curvature of Σ within V . Thus, a
MOTS contained in a totally geodesic spacelike hypersurface V n ⊂Mn+1 is simply a
minimal hypersurface in V . Despite the absence of a variational characterization of
MOTs like that for minimal surfaces, MOTS have been shown to satisfy a number of
properties analogous to those of minimal surfaces. As a case in point, in Subsection 4.3
we describe recent work with Rick Schoen [14], in which we generalize to higher
dimensions a classical theorem of Hawking on the topology of black holes.

4.2 The Penrose singularity theorem

The Penrose singularity theorem [24] is the first of the famous singularity theorems of
general relativity. The singularity theorems establish, under generic circumstances,
the existence in spacetime of incomplete timelike or null geodesics. Such incomplete-
ness indicates that spacetime has come to an end either in the past or future. In
specific models past incompleteness is typically associated with a “big bang” begin-
ning of the universe, and future incompleteness is typically associated with a “big
crunch” (time dual of the big bang), or, of a more local nature, gravitational collapse
to a black hole. The Penrose singularity theorem is associated with the latter.

All the classical singularity theorems require energy conditions. The Penrose sin-
gularity theorem requires that the null energy condition (NEC) holds, namely that
Ric(X,X) ≥ 0 for all null vectors X. If a spacetime M satisfies the Einstein equations
(1.4), then one can express the NEC in terms of the energy momentum tensor: M
obeys the NEC iff TijX

iXj ≥ 0 for all null vectors X.

38



In studying an isolated gravitating system, such as the collapse of a star and
formation of a black hole, it is customary to model this situation by a spacetime
which is asymptotically flat (i.e., asymptotically Minkowskian). In this context, the
assumption of the Penrose singularity theorem that spacetime admit a noncompact
Cauchy surface is natural.

The key concept introduced by Penrose in this singularity theorem is that of the
trapped surface (discussed in the previous subsection). What Penrose proved is that
once the gravitational field becomes sufficiently strong that trapped surfaces appear
(as they do in the Schwarzschild solution) then the development of singularities is
inevitable.

Theorem 4.1. Let M be a globally hyperbolic spacetime with noncompact Cauchy
surfaces satisfying the NEC. If M contains a trapped surface Σ then M is future null
geodesically incomplete.

Proof. Suppose that M is future null geodesically complete. We show that the
achronal boundary ∂I+(Σ) is compact. Since ∂I+(Σ) is closed, if ∂I+(Σ) is non-
compact, there exists a sequence of points {qn} ⊂ ∂I+(Σ) that diverges to infinity
in M , i.e., that does not have a convergent subsequence in M . Since, by Proposi-
tion 2.14, J+(Σ) is closed, we have,

∂I+(Σ) = ∂J+(Σ) = J+(Σ) \ I+(Σ) . (4.12)

Hence, by Proposition 2.4, there exists a future directed null geodesic ηn; [0, an]→M
from some point pn ∈ Σ to qn, which is contained in ∂I+(Σ). In particular, ηn must
meet Σ orthogonally at pn (otherwise qn ∈ I+(Σ)). By passing to a subsequence if
necessary, we may assume that each ηn is ‘outward pointing’ (η′n(0) = K+

pn
).

Since Σ is compact there exists a subsequence {pm} of {pn}, such that pm → p ∈ Σ.
It follows that the sequence {ηm} converges in the sense of geodesics to a future
complete outward pointing normal null geodesic η : [0,∞)→M , starting at p, which
is contained in ∂I+(Σ). By Equation (4.12), there can be no timelike curve from a
point of Σ to a point of η. This implies that no outward pointing null normal geodesic
can meet η, for they would have to meet in a corner. A point further out on η would
then be timelike related to Σ. On similar grounds, there can be no null focal point to
Σ along η, i.e., no point on η where nearby outward pointing null normal geodesics
cross η “to first order” ([22, Prop. 48, p. 296]). This implies that the exponential
map, restricted to the null normal bundle of Σ, is nonsingular along η (see [22], Prop.
30, p. 283 and Cor. 40, p. 290). It follows that for any a > 0, the segment η|[0,a], is
contained in a smooth null hypersurface S, generated by the outward pointing null
normal geodesics emanating from a sufficiently small neighborhood of p in Σ. Since
Σ is a trapped surface, θ+(p) < 0. Choose a > n−1

|θ+(p)| .

Let s → θ(s) be the null mean curvature of S along η. By assumption, θ(0) =
θ+(p) < 0. As in the proof of Proposition 3.4, the Raychaudhuri equation (3.9) and
the NEC imply the differential inequality (3.11), from which it follows that θ → −∞
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in an affine parameter time ≤ n−1
|θ+(p)| < a, contradicting the smoothness of S in a

neighborhood of η|[0,a].
Thus we have shown that if M is future null geodesically complete then ∂I+(Σ)

is compact. It now follows from Propositions 2.7 and 2.18 that ∂I+(Σ) is a compact
Cauchy surface for M , contrary assumption.

4.3 The topology of black holes

One of the remarkable achievements of the mathematical theory of black holes is the
discovery and proof of the black hole uniqueness theorems - the so-called ‘no hair
theorems’. The basic version asserts that every 3 + 1-dimensional asymptotically flat
stationary black hole spacetime solving the vacuum Einstein equations is uniquely
determined by its mass M and angular momentum J , and in fact must be the Kerr
black hole solution for the given M and J . Thus, regardless of the nature of the
collapse of two disparate stellar objects, the resulting steady state configuration will
be the same, provided the mass and angular momentum are the same.

Recent developments in physics inspired by string theory (e.g., the conjectured
AdS/CFT correspondence, braneworld scenarios, etc.) have increased interest in the
study of black holes in higher dimensions. In fact there has been a great deal of
activity in this area in recent years. One of the first questions to be addressed was:
Does black hole uniqueness hold in higher dimensions? As it turns out, it does not.
In fact, one does not even have topological uniqueness, as we now explain.

A basic step in the proof of the uniqueness of the Kerr solution in 3+1 dimensions
is Hawking’s black hole topology theorem.

Theorem 4.2 (Hawking’s black hole topology theorem). Suppose M is a 3 + 1-
dimensional AF stationary black hole spacetime obeying the dominant energy condi-
tion (DEC). Then cross sections of the event horizon are topologically 2-spheres.

2S¼§

)+I({@I = H

Remark: Let M be a spacetime that satisfies the Einstein equations (1.4) with Λ = 0.
Then we say M obeys the DEC if T (X, Y ) = TijX

iY j ≥ 0 for all future directed
causal vectors X, Y .

With impetus coming from the development of string theory, Myers and Perry in
a 1986 paper [21] constructed a natural higher dimensional generalization of the Kerr
solution, which, in particular, has spherical horizon topology. Perhaps one might
have expected black hole uniqueness to extend to these higher dimensional models.
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But any such expectations were quelled by the remarkable example of Emparan and
Reall [7], published in 2002, of a 4 + 1-dimensional AF vacuum stationary black hole
spacetime with horizon topology S2 × S1, the so-called“black ring”.

The question then naturally arises as to what, if any, are the restrictions on the
topology of black holes in higher dimensions. This was addressed in a recent paper
with Rick Schoen [14], which I would like to describe here. We obtained a natural
generalization of Hawking’s black hole topology theorem to higher dimensions. Our
result implies many well-known restrictions on the topology, some of which we shall
review here.

I want to recall briefly the idea behind Hawking’s proof of Theorem 4.2. The proof
is variational in nature. As in the following figure,

§

HH

 = 0+µ

 0< +µ

let Σ be a cross section of the event horizon H. Thus Σ is a co-dimension two compact
spacelike submanifold contained in H. The null generators of H are orthogonal to Σ
at points of intersection. Since the spacetime is stationary, the null generators have
vanishing expansion. It follows that Σ is a MOTS, θ+ = 0.

If Σ is not topologically a 2-sphere, i.e., if it has genus g ≥ 1 then using the
Gauss-Bonnet theorem and the DEC, Hawking shows how to deform Σ along a past
null hypersurface to a strictly outer trapped surface, θ+ < 0, outside the black hole
region. But the existence of an outer trapped surface outside the black hole region is
forbidden by standard results.

Remarks:

(1) Actually, the torus (g = 1) is borderline for Hawking’s argument. But this can
occur only under special circumstances.

(2) Hawking showed by a variation of his original argument, that the conclusion of
his theorem also holds for ‘outer apparent horizons’ in black hole spacetimes that
are not necessarily stationary. This will be the context for the generalization of
Hawking’s theorem described below.

(3) In higher dimensions, one cannot appeal to the Gauss-Bonnet theorem. This is
one of the complicating the issues.

We now present a generalization of Hawking’s black hole topology theorem. Let
V n be an n-dimensional, n ≥ 3, spacelike hypersurface in a spacetime (Mn+1, 〈 , 〉).
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Let Σn−1 be a closed hypersurface in V n, and assume that Σn−1 separates V n into an
“inside” and an “outside”. Let N be the outward unit normal to Σn−1 in V n, and let
U be the future directed unit normal to V n in Mn+1. Then K = U +N is an outward
null normal field to Σn−1, unique up to scaling.

K

outside

{1n§
nV

U

U

N

We shall say Σn−1 is an outer apparent horizon in V n provided, (i) Σ is marginally
outer trapped, i.e., θ = 0, and (ii) there are no outer trapped surfaces outside of Σ
in V homologous to Σ. Heuristically, Σ is the “outer limit” of outer trapped surfaces
in V . Note that any cross section of the event in a stationary black hole spacetime
arising from the intersection with a spacelike hypersurface V is necessarily an outer
apparent horizon in V .

Theorem 4.3 ([14]). Let (Mn+1, 〈 , 〉), n ≥ 3, be a spacetime satisfying the dominant
energy condition. If Σn−1 is an outer apparent horizon in V n then Σn−1 is of positive
Yamabe type, i.e., admits a metric of positive scalar curvature, unless Σn−1 is Ricci
flat (flat if n = 3, 4) in the induced metric, and both B and T (U,K) = TabU

aKb vanish
on Σ.

Theorem 4.3 may be viewed as a spacetime analogue of earlier results of Schoen
and Yau [26] concerning minimal hypersurfaces in manifolds of positive scalar curva-
ture.

Theorem 4.3 says that, apart from certain exceptional circumstances, Σ is of
positive Yamabe type. This implies many well-known restrictions on the topology.
Assume for the discussion that Σ is orientable.

In the standard case: dim Σ = 2 (dimM = 3 + 1), Σ admits a metric of positive
Gaussian curvature, so Σ ≈ S2 by Gauss-Bonnet, and hence one recovers Hawking’s
theorem.

Let’s now focus on the case dim Σ = 3 (dimM = 4 + 1). If Σ is positive Yamabe
then by well-known results of Schoen-Yau [26] and Gromov-Lawson [18] we know
that, Σ must be diffeomorphic to

(1) a spherical space (i.e., a homotopy 3-sphere, perhaps with identifications) or,

(2) S2 × S1, or

(3) a connected sum of the above two types.

This topological conclusion may be understood as follows. By the prime decompo-
sition theorem, Σ can be expressed as a connected sum of spherical spaces, S2×S1’s,
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and K(π, 1) manifolds (manifolds whose universal covers are contractible). But as Σ
admits a metric of positive scalar curvature, it cannot have any K(π, 1)’s in its prime
decomposition.

Thus, the basic horizon topologies in dimM = 4 + 1 are S3 and S2 × S1, both of
which are realized by nontrivial black hole spacetimes.

Proof of Theorem 4.3. We consider normal variations of Σ in V , i.e., variations t→ Σt

of Σ = Σ0 with variation vector field

V =
∂

∂t
|t=0 = φN, φ ∈ C∞(Σ) .

Let
θ(t) = the null expansion of Σt,

where Kt = U + Nt and Nt is the unit normal field to Σt in V (see the following
figure).

U
tN

tN +U = tK

nV

K

§

t§

A computation shows [5, 1]

∂θ

∂t

∣∣∣∣
t=0

= L(φ) , (4.13)

where,
L(φ) = −4φ+ 2〈X,∇φ〉+

(
Q+ divX − |X|2

)
φ , (4.14)

Q =
1

2
S − T (U,K)− 1

2
|b|2, X = tan (∇NU) , (4.15)

S is the scalar curvature of Σ, and 〈 , 〉 now denotes the the induced metric on Σ.
L is a second order linear elliptic operator, associated with variations in θ, anal-

ogous to the stability operator of minimal surface theory [1]. In fact, in the time-
symmetric case (V totally geodesic) the vector field X vanishes and L reduces to the
stability operator of minimal surface theory. Note, however, that L is not in general
self-adjoint (with respect to the standard L2 inner product on Σ).

Although L is not in general self adjoint, its principal eigenvalue (eigenvalue with
smallest real part) λ1(L) is real, and one can choose a principal eigenfunction φ which
is strictly positive, φ > 0. Using the eigenfunction φ to define our variation, we have
from (4.13),

∂θ

∂t

∣∣∣∣
t=0

= λ1(L)φ . (4.16)
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The eigenvalue λ1(L) cannot be negative, for otherwise (4.13) would imply that ∂θ
∂t
< 0

on Σ. Since θ = 0 on Σ, this would mean that for t > 0 sufficiently small, Σt would
be outer trapped, contrary to our assumptions. Hence, λ1(L) ≥ 0.

Now consider the “symmetrized operator”,

L0(φ) = −4φ+Qφ , (4.17)

obtained formally by setting X = 0 in (4.14)
The following claim is the heart of the proof.

Claim: λ1(L0) ≥ λ1(L). Hence, λ1(L0) ≥ 0.

Proof of the claim. Completing the square on the right hand side of (4.14), and using
L(φ) = λ1(L)φ gives,

−4φ+ (Q+ divX)φ+ φ|∇ lnφ|2 − φ|X −∇ lnφ|2 = λ1(L)φ (4.18)

Setting u = lnφ, we obtain,

−4u+Q+ divX − |X −∇u|2 = λ1(L) . (4.19)

Absorbing the Laplacian term 4u = div (∇u) into the divergence term gives,

Q+ div (X −∇u)− |X −∇u|2 = λ1(L). (4.20)

Setting Y = X −∇u, we arrive at,

−Q+ |Y |2 + λ1(L) = div Y . (4.21)

Given any ψ ∈ C∞(Σ), we multiply through by ψ2 and derive,

−ψ2Q+ ψ2|Y |2 + ψ2λ1(L) = ψ2div Y

= div (ψ2Y )− 2ψ〈∇ψ, Y 〉
≤ div (ψ2Y ) + 2|ψ||∇ψ||Y |
≤ div (ψ2Y ) + |∇ψ|2 + ψ2|Y |2 .

Integrating the above inequality yields,

λ1(L) ≤
∫

Σ
|∇ψ|2 +Qψ2∫

Σ
ψ2

for all ψ ∈ C∞(Σ), ψ 6≡ 0 . (4.22)

The claim now follows from the well-known Rayleigh formula for the principal eigen-
value applied to the operator (4.17).

Thus, we have that λ1(L0) ≥ 0 for the operator (4.17), where Q is given in (4.15).
We have in effect reduced the situation to the time-symmetric (or Riemannian) case,
where standard arguments become applicable.
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Let f ∈ C∞(Σ) be an eigenfunction associated to λ1(L0); f can be chosen to be
strictly positive. Consider Σ in the conformally related metric h̃ = f 2/n−2h, where h
is the induced metric. The scalar curvature S̃ of Σ in the metric h̃ is given by,

S̃ = f−n/(n−2)

(
−24f + Sf +

n− 1

n− 2

|∇f |2

f

)
= f−2/(n−2)

(
2λ1(L0) + 2T (U,K) + |B|2 +

n− 1

n− 2

|∇f |2

f 2

)
, (4.23)

where, in the second equation, we have used (4.17), with φ = f , and (4.15).
Since all terms in the parentheses above are nonnegative, (4.23) implies that S̃ ≥ 0.

If S̃ > 0 at some point, then by well known results [20] one can conformally rescale
h̃ to a metric of strictly positive scalar curvature. If, on the other hand, S̃ vanishes
identically, then (4.23) implies: λ1(L0) = 0, T (U,K) ≡ 0, B ≡ 0 and f is constant.
Equations (4.17) and (4.15) then imply that S ≡ 0. One can then deform h in the
direction of the Ricci tensor of Σ to obtain a metric of positive scalar curvature, unless
(Σ, h) is Ricci flat (see [20]).

Remark: A drawback of Theorem 4.3 is that it allows certain ‘exceptional circum-
stances’. For example note that Theorem 4.3 does not rule out the possibility of
a vacuum black hole spacetime with toroidal horizon topology. More recently, we
have succeded in ruling out these exceptional cases in a number of natural situations;
see [13].

5 The null splitting theorem

5.1 Maximum principle for null hypersurfaces

There is a well-known geometric maximum principle for hypersurfaces in Riemannian
geometry and spacelike hypersurfaces in Lorentzian geometry, which extends to null
hypersurfaces. This maximum principle for null hypersurfaces, which we would now
like to discuss, is a key ingredient in the proof of the null splitting theorem.

Consider two null hypersurfaces S1 and S2 in spacetime meeting tangentially at a
point p, with S2 to the future of S1.

Because S2 lies to the ‘future side’ of S1, we must have (assuming a compatible
scaling) θ2 ≥ θ1 at p, where θi is the null mean curvature of Si, i = 1, 2. The
maximum principle for null hypersurfaces examines what happens when the reverse
inequalities hold.
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Theorem 5.1. Let S1 and S2 be smooth null hypersurfaces in a spacetime M . Sup-
pose,

(1) S1 and S2 meet at p ∈M and S2 lies to the future side of S1 near p, and

(2) the null mean curvature scalars θ1 of S1, and θ2 of S2, satisfy, θ2 ≤ 0 ≤ θ1.

Then S1 and S2 coincide near p and this common null hypersurface has null mean
curvature θ = 0.

The heuristic idea is that since the generators of S1 are (weakly) diverging, and
the generators of S2, which lie to the future of S1 are (weakly) converging, the two
sets of generators are forced to agree and form a nonexpanding congruence.

Proof. We give a sketch of the proof; for details, see [10]. S1 and S2 have a common
null direction at p. Let Q be a timelike hypersurface in M passing through p and
transverse to this direction. By taking Q small enough, the intersections,

Σ1 = S1 ∩Q and Σ2 = S2 ∩Q

will be smooth spacelike hypersurfaces in Q, with Σ2 to the future side of Σ1 near p.
Σ1 and Σ2 may be expressed as graphs over a fixed spacelike hypersurface V in Q

(with respect to normal coordinates around V ), Σ1 = graph (u1), Σ2 = graph (u2).
Let,

θ(ui) = θi|Σi= graph (ui)
, i = 1, 2 .

By suitably normalizing the null vector fieldsK1 ∈ X(S1) andK2 ∈ X(S2) determining
θ1 and θ2, respectively, a computation shows,

θ(ui) = H(ui) + lower order terms ,

where H is the mean curvature operator on spacelike graphs over V in Q. (The lower
order terms involve the second fundamental form of Q.) Thus θ is a second order
quasi-linear elliptic operator. In the present situation we have:

(1) u1 ≤ u2, and u1(p) = u2(p).

(2) θ(u2) ≤ 0 ≤ θ(u1).

Then Alexandrov’s strong maximum principle for second order quasi-linear elliptic
PDEs implies that u1 = u2. Thus, Σ1 and Σ2 agree near p. The null normal geodesics
to Σ1 and Σ2 in M will then also agree. This implies that S1 and S2 agree near p.
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The usefulness of Theorem 5.1 is somewhat limited by the fact that the most
interesting null hypersurfaces arising in general relativity, e.g., event horizons, Cauchy
horizons, and observer horizons, are in general rough, i.e., are C0, but in general not
C1. The key point, however, is that Theorem 5.1 extends to C0 null hypersurfaces,
suitably defined. Roughly, a C0 null hypersurface is a locally achronal C0 hypersurface
in spacetime that is ruled, in a suitable sense, by null geodesics. The null portions
of achronal boundaries, ∂I±(S) \ S, are the basic models for C0 null hypersurfaces
(recall Propositions 2.7 and 2.10). Although C0 null hypersurfaces do not in general
have null mean curvature in the classical sense, they, nonetheless may obey null mean
curvature inequalities in a certain weak sense, namely in the sense of support null
hypersurfaces [10, 12]. Thus, the null mean curvature inequalities, θ2 ≤ 0 ≤ θ1, can
hold for C0 null hypersurfaces in the support sense.

The upshot of these comments is that Theorem 5.1 extends, in an appropriate
manner, to C0 null hypersurfaces; see [10, Theorem III.2]. It is this maximum prin-
ciple for C0 null hypersurfaces that is actually needed to prove the null splitting
theorem.

5.2 The null splitting theorem

The null splitting theorem is a descendant of the famous Cheeger-Gromoll splitting
theorem of Riemannian geometry, and the more recent Lorentzian splitting theorem,
its direct Lorentzian analogue. The problem of establishing a Lorentzian analogue
of the Cheeger-Gromoll splitting theorem was posed by S.-T. Yau [29] in the early
80’s as an approach to establishing the rigidity of the Hawking-Penrose singularity
theorems1, and was solved in a series of papers towards the end of the 80’s; see [3,
Chapter 14] for a nice treatment.

The Lorentzian splitting theorem is concerned with the structure of spacetimes
that admit a timelike line, which, by definition, is an inextendible timelike geodesic,
each segment of which is maximal. The null splitting theorem is concerned with the
structure of spacetimes that admit a null line.

By definition a null line is an inextendible null geodesic that is globally achronal,
i.e., no two points can be joined by a timelike line. (From the point of view
of the Lorentzian distance function, each segment of a null line is maximal.)

We know from Proposition 2.2 that null geodesics are lo-
cally achronal, but they may not be achronal in the large,
even in globally hyperbolic spacetimes. Consider, for ex-
ample a null geodesic winding around a flat spacetime
cylinder (closed in space); eventually points on the null
geodesic are timelike related.

1Establishing this rigidity remains an important open problem; see, for example the discussion
in [3, p. 503ff].
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Null lines arise naturally in causal arguments; recall, for example, that sets of the
form ∂I±(S) \S, S closed, are ruled by null geodesics which are necessarily achronal.
Null lines have arisen in various situations in general relativity, for example in the
proofs of the Hawking-Penrose singularity theorem, topological censorship and certain
versions of the positivity of mass.

Every null geodesic in Minkowski space and de Sitter space is a null line. At the
same time, both of these spacetimes obey the null energy condition. In general, it
is difficult for complete null lines to exist in spacetimes which obey the null energy
condition. The null energy condition tends to focus congruences of null geodesics,
which can lead to the occurence of null conjugate points. But a null geodesic con-
taining a pair of conjugate points cannot be achronal. Thus we expect a spacetime
which satisfies the null energy condition and which contains a complete null line to
be special in some way, to exhibit some sort of rigidity. The null splitting theorem
addresses what this rigidity is.

Theorem 5.2 ([10]). Let M be a null geodesically complete spacetime which obeys
the NEC. If M admits a null line η then η is contained in a smooth properly embedded
achronal totally geodesic null hypersurface S.

Recall from Section 3, ‘totally geodesic’ means that the null second form of S van-
ishes, B ≡ 0, or equivalently that the null expansion and shear, θ and σ, repectively,
vanish on S. This implies that the metric h defined on the vector bundle TS/K is
invariant under the flow generated by K; it is in this sense that S ‘splits’.

The simplest illustration of Theorem 5.2 is Minkowski space: Each null line ` in
Minkowski space is contained in a unique null hyperplane Π.

Proof. The proof is an application of the maximum principle for C0 null hypersurfaces.
For simplicity we shall assume M is strongly causal; this however is not required; see
[10] for details.

By way of motivation, note that the null plane Π in Minkowski space determined
by the null line ` can be realized as the limit of the future null cone ∂I+(x) as x goes
to past null infinity along the null line `.

Π can also be realized as the limit of the past null cone ∂I−(x) as x goes to future
null infinity along the null line `. In fact, one sees that Π = ∂I+(`) = ∂I−(`).
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Thus, in the setting of Theorem 5.2, consider the achronal boundaries S+ =
∂I+(η) and S− = ∂I−(η). By Proposition 2.7, S+ and S− are closed achronal C0

hypersurfaces in M . Since η is achronal, it follows that S+ and S− both contain η.
For simplicity, assume S+ and S− are connected (otherwise restrict attention to the
component of each containing η). The proof then consists of showing that S+ and S−
agree and form a smooth totally geodesic null hypersurface.

By Proposition 2.10, each point p ∈ S+ \ η lies on a null geodesic σ ⊂ S+ which
either is past inextendible in M or else has a past endpoint on η. In the latter case,
σ meets η at an angle, and Proposition 2.4 then implies that there is a timelike curve
from a point on η to a point on σ, violating the achronality of S+. Thus, S+ is ruled
by null geodesics which are past inextendible in M , and hence, by the completeness
assumption, past complete. In a similar fashion we have that S− is ruled by null
geodesics which are future complete.

Suppose for the moment that S− and S+ are smooth null hypersurfaces. Then, by
Proposition 3.4 (and its time-dual), S− and S+ have null mean curvatures satisfying,

θ+ ≤ 0 ≤ θ− . (5.24)

Let q be a point of intersection of S+ and S−. S+ necessarily lies to the future side of
S− near q. We may now apply Theorem 5.1 to conclude that S+ and S− agree near
q to form a smooth null hypersurface having null mean curvature θ = 0. A fairly
straightforward continuation argument shows that S+ = S− = S is a smooth null
hypersurface with θ = 0. By setting θ = 0 in the Raychaudhuri equation (3.9), and
using the NEC, we see that the shear σ must vanish, and hence S is totally geodesic.

In the general case in which S+ and S− are merely C0 null hypersurfaces, one can
show that (5.24) holds in the support sense. Then the C0 version of Theorem 5.1 ([10,
Theorem III.2]) may be applied to arrive at the same conclusion.

5.3 An application: Uniqueness of de Sitter space

In this subsection, as an application of the null splitting theorem, we present a unique-
ness result for de Sitter space, dSn+1, which is the the simply connected space form of
constant positive curvature (which for the purposes of discussion we take to be +1).
De Sitter space satisfies the vacuum (Tij = 0) Einstein equations with cosmological
constant Λ = n(n− 1)/2,

Ric = ng (5.25)

where g = 〈 , 〉. dSn+1 can be explicitly realized as the hyperboloid of one sheet,

−(x0)2 +
n+1∑
i=1

(xi)2 = 1 (5.26)

in n+ 2 dimensional Minkowski space. Introducing spherical type coordinates, dSn+1

can be expressed globally as,

M = R× Sn, ds2 = −dt2 + cosh2 t dΩ2 . (5.27)
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There has been increased interest in recent years in de Sitter space, and space-
times which are asymptotically de Sitter, due, firstly, to observations supporting an
accelerated rate of expansion of the universe, suggesting the presence in our universe
of a positive cosmological constant, and due, secondly, to recent efforts to understand
quantum gravity on such spacetimes (see [4] and references cited therein).

We use Penrose’s notion of conformal infinity [23] to make precise what it means
for spacetime to be asymptotically de Sitter. Recall, this notion is based on the
way in which the standard Lorentzian space forms, Minkowski space, de Sitter space
and anti-de Sitter space, conformally imbed into the Einstein static universe (R ×
Sn,−du2 + dω2).

Under the transformation u = tan−1(et)− π/4, the metric (5.27) becomes

ds2 =
1

cos2(2u)
(−du2 + dω2) . (5.28)

Thus, de Sitter space conformally imbeds onto the region −π/4 < u < π/4 in the
Einstein static universe.

Future conformal infinity I+ (resp., past conformal infinity I−) is represented by the
spacelike slice u = π/4 (resp., u = −π/4). This serves to motivate the following
definitions.

Definition 5.1. A spacetime (M, g) is asymptotically de Sitter provided there
exists a spacetime-with-boundary (M̃, g̃) and a smooth function Ω on M̃ such that

(1) M is the interior of M̃ ; hence M̃ = M ∪ I, I = ∂M̃ .

(2) g̃ = Ω2g, where (i) Ω > 0 on M , and (ii) Ω = 0, dΩ 6= 0 along I.

(3) I is spacelike.

In general, I decomposes into two disjoint sets, I = I+∪ I− where I+ ⊂ I+(M, M̃)
and I− ⊂ I−(M, M̃). I+ is future conformal infinity and I− is past conformal infinity.
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Definition 5.2. An asymptotically de Sitter spacetime is asymptotically simple
provided every inextendible null geodesic in M has a future end point on I+ and a
past end point on I−.

Thus, an asymptotically de Sitter spacetime is asymptotically simple provided
each null geodesic extends to infinity both to the future and the past. In particular,
such a spacetime is null geodesically complete.

It is a fact that every inextendible null geodesic in de Sitter space is a null line.
As discussed below, this may be understood in terms of the causal structure of de
Sitter space. As the following result shows, the occurrence of null lines is a very
special feature of de Sitter space among asymptotically simple and de Sitter vacuum
spacetimes.

Theorem 5.3 ([11]). Let (M, g) be a 4-dimensional asymptotically simple and de
Sitter spacetime satisfying the vacuum Einstein equations (5.25). If M contains a
null line then M is isometric to de Sitter space.

This theorem can be interpreted in terms of the initial value problem in the
following way: Friedrich’s work [9] on the nonlinear stability of de Sitter space shows
that the set of asymptotically simple solutions to the Einstein equations with positive
cosmological constant is open in the set of all maximal globally hyperbolic solutions
with compact spatial sections. As a consequence, by slightly perturbing the initial
data on a fixed Cauchy surface of dS4 we get in general an asymptotically simple
solution of the Einstein equations different from dS4. Thus, by virtue of theorem 5.3,
such a spacetime has no null lines. In other words, a small generic perturbation of the
initial data destroys all null lines. This suggests that the so-called generic condition
of singularity theory [19] is in fact generic with respect to perturbations of the initial
data.

As discussed in [14], Theorem 5.3 may also be interpreted as saying that no other
asymptotically simple and de Sitter solution of the vacuum Einstein equations besides
dS4 develops eternal observer horizons. By definition, an observer horizon A is the
past achronal boundary ∂I−(γ) of a future inextendible timelike curve γ, thus A is
ruled by future inextendible achronal null geodesics. In the case of de Sitter space,
observer horizons are eternal, that is, all null generators of A extend from I+ all the
way back to I−.

Since the observer horizon ∂I−(γ) is the boundary of the region of spacetime
that can be observed by γ, the question arises as to whether at one point γ would
be able to observe the whole of space. More precisely, we want to know if there
exists q ∈ M̃ such that I−(q) would contain a Cauchy surface of spacetime. Gao
and Wald [16] were able to answer this question affirmatively for globally hyperbolic
spacetimes with compact Cauchy surfaces, assuming null geodesic completeness, the
null energy condition and the null generic condition. Thus, as expressed by Bousso
[4], asymptotically de Sitter spacetimes satisfying the conditions of the Gao and Wald
result, have Penrose diagrams that are “tall” compared to de Sitter space.
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Though no set of the form I−(q) in dS4 contains a Cauchy surface, I−(q) gets
arbitrarily close to doing so as q → I+. However, notice that de Sitter space is
not a counterexample to Gao and Wald’s result, since dS4 does not satisfy the null
generic condition. Actually, the latter remark leads us to interpret theorem 5.3 as a
rigid version of the Gao and Wald result in the asymptotically simple (and vacuum)
context: by dropping the null generic hypothesis in [16] the conclusion will only fail
if (M̃, g̃) is isometric to dS4.

Proof of Theorem 5.3. We present some comments on the proof; see [11, 15] for fur-
ther details. The main step is to show that M has constant curvature. Since M is
Einstein, it is sufficient to show that M is conformally flat.

Let η be the assumed null line in M . By Theorem 5.2, η is contained in a smooth
totally geodesic null hypersurface S in M . By asymptotic simplicity, η acquires a
past end point p on I− and a future end point q on I+. Let us focus attention on the
situation near p. By the proof of Theorem 5.2, and the fact that p is the past end
point of η, we have that,

S = ∂I+(η) = ∂I+(p, M̃) ∩M .

It follows that Np := S ∪ {p} is a smooth null cone in M̃ , generated by the future
directed null geodesics emanating from p.

From the Riccati equation (3.8), one easily derives a propagation equation for
b̂, the trace free part of the Weingarten map involving the Weyl conformal tensor
(exercise: derive this). But since S is totally geodesic, b̂ vanishes identically, and
then this propagation equation implies that the components Ca0b0 of the conformal
tensor (with respect to an appropriately chosen pseudo-orthonormal frame in which
e0 is aligned with the generators) vanish on S = Np \ {p}. An argument of Friedrich
[8], based on the conformal field equations, specifically the divergencelessness of the
rescaled conformal tensor,

∇̃id
i
jkl = 0, dijkl = Ω−1Ci

jkl ,

in which Np plays the role of an initial characteristic hypersurface, then shows that
the conformal tensor of g vanishes on the future domain of dependence of Np,

Ci
jkl = 0 on D+(Np, M̃) ∩M . (5.29)

In a time-dual manner one obtains that Ci
jkl vanishes on D−(Nq, M̃)∩M . Since it

can be shown that M is contained in D+(Np, M̃) ∪D−(Nq, M̃), we conclude that M
is conformally flat. Together with equation (5.25), this implies that M has constant
curvature = +1. Moreover, further global arguments show that M is geodesically
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complete and simply connected. It then follows from uniqueness results for Lorentzian
space forms that M is isometric to de Sitter space.

Remark: It has recently been shown that the conclusion of Theorem 5.3 applies under
much more general circumstances. The assumption of asymptotic simplicity can
be substantially weakened, and one can allow a priori for the presence of certain
matter fields; see [15]. The arguments make use of the fact that the null splitting
theorem does not require full null geodesic completeness. As the proof of the null
splitting theorem shows, if η is the given null line, it is sufficient to require that the
generators of ∂I−(η) be future geodesically complete and the generators of ∂I+(η) be
past geodesically complete.
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400. MR MR2098922 (2006f:83015)

[13] , Rigidity of outer horizons and the topology of black holes, (2006), gr–
qc/0608118.

[14] Gregory J. Galloway and Richard Schoen, A generalization of Hawking’s black
hole topology theorem to higher dimensions, Comm. Math. Phys. 266 (2006),
no. 2, 571–576. MR MR2238889

[15] Gregory J. Galloway and Didier A. Solis, Uniqueness of de sitter space, Classical
Quantum Gravity (2007), 3125–3138.

[16] Sijie Gao and Robert M. Wald, Theorems on gravitational time delay and related
issues, Classical Quantum Gravity 17 (2000), no. 24, 4999–5008. MR MR1808809
(2001m:83077)

[17] Robert Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437–
449. MR MR0270697 (42 #5585)

[18] Mikhael Gromov and H. Blaine Lawson, Jr., Positive scalar curvature and the
Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci.
Publ. Math. (1983), no. 58, 83–196 (1984). MR MR720933 (85g:58082)

[19] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cam-
bridge University Press, London, 1973, Cambridge Monographs on Mathematical
Physics, No. 1. MR MR0424186 (54 #12154)

[20] Jerry L. Kazdan and F. W. Warner, Existence and conformal deformation of
metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101
(1975), 317–331.

[21] R. C. Myers and M. J. Perry, Black holes in higher-dimensional space-times,
Ann. Physics 172 (1986), no. 2, 304–347. MR MR868295 (88a:83074)

54



[22] Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics,
vol. 103, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York,
1983, With applications to relativity. MR MR719023 (85f:53002)

[23] R. Penrose, Zero rest-mass fields including gravitation: Asymptotic behaviour,
Proc. Roy. Soc. Ser. A 284 (1965), 159–203. MR MR0175590 (30 #5774)

[24] Roger Penrose, Gravitational collapse and space-time singularities, Phys. Rev.
Lett. 14 (1965), 57–59. MR MR0172678 (30 #2897)

[25] , Techniques of differential topology in relativity, Society for Industrial
and Applied Mathematics, Philadelphia, Pa., 1972, Conference Board of the
Mathematical Sciences Regional Conference Series in Applied Mathematics, No.
7. MR MR0469146 (57 #8942)

[26] R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar
curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183.

[27] Richard Schoen, Lecture at Miami Waves Conference (2004).

[28] Robert M. Wald, General relativity, University of Chicago Press, Chicago, IL,
1984. MR MR757180 (86a:83001)

[29] Shing Tung Yau, Survey on partial differential equations in differential geometry,
Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ.
Press, Princeton, N.J., 1982, pp. 3–71. MR MR645729 (83i:53003)

55


