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[®] Introduction

> Avristotle (384-322 BCE) pondered the shape of the earth.

> He sought reasons based on physical evidence that the surface of
the earth is a sphere.

> He came up with several compelling arguments, one based on lunar
eclipses.



[®] Introduction

> Aristotle realized that a lunar eclipse occurs when the sun and moon

are on opposite sides of the earth, and the moon enters the shadow
cast by the earth.

> From the fact that the edge of the shadow is always a circular arc

(through all stages of the eclipse), he inferred that the earth is
round.



[®] Introduction

> Eratosthenes (276 BC - 194 BC) devised a clever way, using some
Euclidean geometry, to measure the radius of the earth.

5000 stadia ~ 7.2°
= r = 40,000 stadia

> Assuming a reasonable value for the stadion (in terms of modern
units), his answer was pretty darn accurate. Perhaps even more
important is the simple but elegant geometry behind his method.



[®] Introduction

> Today we know that the Earth is not perfectly round. Due to the
Earth's rotation, it bulges at the equator.
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» The surface of the earth is a “stretched-out sphere”. A
mathematician would say that the surface of the earth is
“topologically” a sphere.



[®] Introduction

Fast forward in time...

Albert Einstein (1879 - 1955) Isaac Newton (1643 - 1727)

L,



[®] Introduction

Stephen Hawking (1942 - )

» Hawking pondered the shape of black holes. His findings were
reported in this 1972 paper on the theoretical foundations of black
holes.

Commun. math. Phys. 25, 152166 (1972)
© by Springer-Verlag 1972

Black Holes in General Relativity

S. W. HAWKING

Institute of Theoretical Astronomy, University of Cambridge, Cambridge, England

Received October 15, 1971



@] General relativity and black holes

> Einstein's General Theory of Relativity is a geometric theory of
gravity.
» The field equations of General Relativity,

Rj — 5 Rgj = 8n Tj

describe how our space-time universe curves in the presence of
matter. This curvature is responsible for the effects of gravity.

Matter tells spacetime how to curve, and spacetime
tells matter how to move. - John Wheeler




@] General relativity and black holes

> Black holes are certainly one of the most remarkable predictions of
General Relativity.

> The following cartoon depicts the process of gravitational collapse
and formation of a black hole.

singularity

event horizon

time

matter collapsing
space

» The shaded region is the black hole region. The boundary of this
region is the black hole event horizon.



@] General relativity and black holes

» In 1916, Karl Schwarzschild obtained the
first and extremely important exact solution
to the Einstein equations.

» The solution was understood to represent
the spacetime geometry (and hence gravi-
tational field) outside of a spherical star.

> Only decades later (late 50's, 60's) was it realized that the
Schwarzschild solution also describes a spherical black hole - more
specifically a stationary (steady state) nonrotating spherical black
hole.

» The term “black hole” was popularized by John Wheeler in the
late 60's.



@] General relativity and black holes

It was almost 50 years later, in 1963, that Roy
Kerr discovered an exact solution to the Ein-
stein equations that describes a stationary rotat-
ing black hole.

v

» The Kerr solution is a generalization of the
Schwarzschild solution, in that when you set the
rotation to zero, it reduces to the Schwarzschild
solution.

» No Hair Theorem: By a series of mathematical results, it has been
shown that the Kerr solution is the only stationary black hole
solution to the Einstein equations.

> Largely for this reason, it is widely believed that “true”
astrophysical black holes, resulting from gravitational collapse,
“settle down" to a Kerr black hole.

» LIGO and the No Hair Theorem.



@] General relativity and black holes

> A basic step in the proof of the uniqueness of the Kerr solution
(“No Hair Theorem”) is Hawking's theorem on the shape of black
holes: In his paper “Black Holes in General Relativity” he writes:

“It is shown that a stationary black hole must have topologically
spherical boundary ... These results together with those of Israel
and Carter go most of the way towards establishing the conjecture
that any stationary black hole is a Kerr solution.”

» What does topologically spherical mean?
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(Torus)



@] Curvature and the Gauss-Bonnet theorem

> Hawking's proof of his black hole topology theorem (that the
surface of a black hole is topologically spherical) is a beautiful
application of the Gauss-Bonnet Theorem.

» The Gauss-Bonnet formula is a remarkable formula that relates the
curvature of a surface to its topology (topological shape).

> The great mathematician Carl Friedrich Gauss
(1777-1855) introduced the notion of the cur-
vature of a surface in the early part of the 19th
century.

> Historical side comment: Bernhard Riemann
(1826-1866), who was a student of Gauss, and,
himsef a great mathematician, in his thesis gener-
alized the curvature of surfaces to higher dimen-
sional spaces. This turned out to be precisely the
mathematical theory Einstein needed to formu-
late the General Theory of Relativity.




@] Curvature and the Gauss-Bonnet theorem

Curvature of curves in the plane.

» Curvature is a measure of bending:

large

small

> This can be made precise by considering the rate at which a curve
changes direction with respect to distance along the curve.

» Examples.

» Straight line: /
k=0

» Circle of radius r:
_1
k = r

So, small radius implies large curvature and vice versa.



@] Curvature and the Gauss-Bonnet theorem

Curvature of surfaces in space.

SNE)
» The curvature of a surface can be defined in terms of the curvature
of plane curves.

k, = normal curvature = curvature of the
normal section wrt the given normal plane.

> Let k; and k> be the maximum and mini-
mum normal curvatures, respectively.

Then the Gaussian curvature at the point p is defined as,
K=ks ke

(Sign convention: kp > 0 if normal section bends away from n, negative if it
bends towards n.)



@] Curvature and the Gauss-Bonnet theorem

Some examples.
» ¥ = a plane. All normal sections are lines.
Hence k; = ko, = 0, so,
K=k k=0-0=0 -

» Y = sphere of radius r. All normal sections
are great circles of radius r.

Hence, klzkgz%,so,
K:kl./@:%.lzi

r re

» > = “saddle surface”. Some normal sections
bend down, some bend up.

Hence, k1 > 0 and k> < 0, so,
K=k -k <O.




@] Curvature and the Gauss-Bonnet theorem

Some examples.
» ¥ = a plane. All normal sections are lines.
Hence k; = ko, = 0, so,
K=k k=0-0=0 -

O

» Y = sphere of radius r. All normal sections
are great circles of radius r.
Hence, k1 = ko = % S0,
K:kl.k2:%.lzi

r re

> Pringles have negative Gaussian
curvature!




@] Curvature and the Gauss-Bonnet theorem

Gauss made a remarkable discovery about ‘Gaussian curvature’.

Theorema Egregium

The Gaussian curvature of a surface is intrinsic, i.e., it can be computed
from measurements taken solely within the surface.

» From such measurements two-dimensional creatures can determine
whether they live in a flat or positively curved or negatively curved
two-dimensional universe.

Positive Curvature Negative Curvature Flat Curvature
Sum of angles > 180°  Sum of angles < 180°  Sum of angles = 180°



@] Curvature and the Gauss-Bonnet theorem

Gauss made a remarkable discovery about ‘Gaussian curvature’.

Theorema Egregium

The Gaussian curvature of a surface is intrinsic, i.e., it can be computed
from measurements taken solely within the surface.
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> In general, the curvature can vary from point to point:

HegateCUrvator,

Hostve Gyrvatur




@] Curvature and the Gauss-Bonnet theorem

Theorem (Classification of surfaces)

Every closed surface in space is ‘topologically equivalent’ to one of the
following surfaces.

.Q““.

g=0 g=1 = =

'g’ is called the genus of the surface.

For example:

6 D



@] Curvature and the Gauss-Bonnet theorem
Gauss-Bonnet Theorem

Let X be a closed surface, with Gaussian curvature K. Then,

4m(1—g)

the average value of K = Area of = (*)

» Check: If ¥ = sphere of radius r, then

4r(1—g) 4r 1
K = = = —
Ve Areaof ¥ 4mr2  r2




@] Curvature and the Gauss-Bonnet theorem
Gauss-Bonnet Theorem

Let X be a closed surface, with Gaussian curvature K. Then,

4m(1—g)

the average value of K = Area of = (*)

» Check: If ¥ = sphere of radius r, then

4r(1—g) 4r 1
K = = = —
Ve Areaof ¥ 4mr2  r2

» Comment.

» () is equivalent to:

//z KdA = 4n(1 — g)

» For example, whether ¥ = @ orY = Q:f) ,

//KdA:47r
b3



@] Black hole topology

Hawkings’ black hole topology theorem:
In 3 + 1-dimensions, the surface of a station-
ary (steady state) black hole is topologically
a sphere.

surface
(black holé boundar

Idea of the proof:

Let K be the average Gaussian curvature of the black hole surface X.
Hawking uses the Einstein equations and the positivity of mass-energy
density, to show that if K < 0, there would have to be an outer trapped
surface outside the black hole:

But Hawking proves that outer trapped surfaces cannot occur outside the
blackhole.

Hence, it must be that K > 0. But by G.B., K = 47(1 — g)/(Area of ).
It follows that g = 0, and so ¥ is topologically a sphere.



@] Black holes in higher dimensional spacetimes

> The incompatibility between general relativity and quantum field
theory is one of the main open problems in theoretical physics.
String theory has been an attempt to resolve this.

> Because it requires extra spatial dimensions, string theory, and
related developments, such as the AdS/CFT correspondence, have
generated a great deal of interest in gravity in higher dimensions,
and in particular, in higher dimensional black holes.

> One of the first questions to arise was:

Does black hole uniqueness (“No hair theorem”) hold in
higher dimensions?



@] Black holes in higher dimensional spacetimes

» The incompatibility between general relativity and quantum field
theory is one of the main open problems in theoretical physics.
String theory has been an attempt to resolve this.

> Because it requires extra spatial dimensions, string theory, and
related developments, such as the AdS/CFT correspondence, have
generated a great deal of interest in gravity in higher dimensions,
and in particular, in higher dimensional black holes.

> One of the first questions to arise was:

Does black hole uniqueness (“No hair theorem”) hold in
higher dimensions?

> With impetus coming from the development of string theory, in
1986, Myers and Perry constructed natural higher dimensional
generalizations of the Kerr solution, which, in particular, have
spherical horizon topology. (There are natural n-dimensional
versions, S”, of the two dimensional sphere 52.)



@] Black holes in higher dimensional spacetimes

'VOLUME 88, NUMBER 10 PHYSICAL REVIEW LETTERS 11 MarcH 2002

A Rotating Black Ring Solution in Five Dimensions

Roberto Emparan!* and Harvey S. Reall>
'Theory Division, CERN, CH-1211 Geneva 23, Switzerland
2Physics Department, Queen Mary College, Mile End Road, London EI 4NS, United Kingdom
(Received 8 November 2001; published 21 February 2002)

> But in 2002, Emparan and Reall discovered a remarkable example of
a 4 + 1 dimensional stationary black hole spacetime having horizon
topology a ring of two-dimensional spheres (the black ring):

i — ring of 2-spheres
(52 x SY)

> Thus in higher dimensions, black hole uniqueness does not hold and
horizon topology need not be spherical.



@] Black holes in higher dimensional spacetimes

» The Emparan and Reall Black Ring caused a great surge of activity
in the study of higher dimensional black holes.

Question: What horizon topologies are allowed in higher
dimensions? What restrictions are there?



@] Black holes in higher dimensional spacetimes
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» This is a question Rick Schoen and | addressed several years ago.

Commun. Math. Phys. 266, 571-576 (2006)
Digital Object Identifier (DOT) 10.1007/500220-006-0019-7

A Generalization of Hawking’s Black Hole Topology
Theorem to Higher Dimensions

Gregory J. Galloway', Richard Schoen®

! Department of Mathematics, University of Miami, Coral Gables, FL 33124, USA
E-mail: galloway@math.miami.edu
2 Department of Mathematics, Stanford University, Stanford, CA 94305, USA

> The result we obtained is a geometric result about black holes in
any spacetime dimension, which has topological consequences.
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> The result we obtained is a geometric result about black holes in
any spacetime dimension, which has topological consequences.

> In standard 3 + 1 spacetime dimensions our result recovers
Hawking’s theorem.

> In 4 4 1 spacetime dimensions our result gives a complete list of all
possible horizon topologies, namely: S®, 5% x S!, and certain
spaces constructed from these.



@] Black holes in higher dimensional spacetimes

For more on higher dimensional black holes:

Black
Holes in







