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Introduction

I Aristotle (384-322 BCE) pondered the shape of the earth.

I He sought reasons based on physical evidence that the surface of
the earth is a sphere.

I He came up with several compelling arguments, one based on lunar
eclipses.



Introduction

I Aristotle realized that a lunar eclipse occurs when the sun and moon
are on opposite sides of the earth, and the moon enters the shadow
cast by the earth.

I From the fact that the edge of the shadow is always a circular arc
(through all stages of the eclipse), he inferred that the earth is
round.



Introduction

I Eratosthenes (276 BC - 194 BC) devised a clever way, using some
Euclidean geometry, to measure the radius of the earth.
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I Assuming a reasonable value for the stadion (in terms of modern
units), his answer was pretty darn accurate. Perhaps even more
important is the simple but elegant geometry behind his method.



Introduction

I Today we know that the Earth is not perfectly round. Due to the
Earth’s rotation, it bulges at the equator.

I The surface of the earth is a “stretched-out sphere”. A
mathematician would say that the surface of the earth is
“topologically” a sphere.



Introduction
Fast forward in time...

Isaac Newton (1643 - 1727)Albert Einstein (1879 - 1955)

Nicolaus Copernicus (1473 - 1543) Johannes Kepler (1571 - 1630)



Introduction

Stephen Hawking (1942 - )

I Hawking pondered the shape of black holes. His findings were
reported in this 1972 paper on the theoretical foundations of black
holes.
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Abstract. It is assumed that the singularities which occur in gravitational collapse
are not visible from outside but are hidden behind an event horizon. This means that one
can still predict the future outside the event horizon. A black hole on a spacelike surface
is defined to be a connected component of the region of the surface bounded by the event
horizon. As time increase, black holes may merge together but can never bifurcate. A black
hole would be expected to settle down to a stationary state. It is shown that a stationary
black hole must have topologically spherical boundary and must be axisymmetric if it is
rotating. These results together with those of Israel and Carter go most of the way towards
establishing the conjecture that any stationary black hole is a Kerr solution. Using this
conjecture and the result that the surface area of black holes can never decrease, one can
place certain limits on the amount of energy that can be extracted from black holes.

1. Introduction

It has been known for some time that a non-rotating star of more
than about two solar masses has no low temperature equilibrium
configuration. This means that such a star must undergo catastrophic
collapse when it has exhausted its nuclear fuel unless it has managed to
eject sufficient matter to reduce its mass to less than twice that of the sun.
If the collapse is exactly spherically symmetric, the metric is that of the
Schwarzschild solution outside the star and has the following properties
(see Fig. 1):

1. The surface of the star will pass inside the Schwarzschild radius
r = 2Gc~2M. After this has happened there will be closed trapped
surfaces [1,2] around the star. A closed trapped surface is a spacelike
2-surface such that both the future directed families of null geodesies
orthogonal to it are converging. In other words, it is in such a strong
gravitational field that even the outgoing light from it is dragged inwards.

2. There is a space-time singularity.
3. The singularity is not visible to observers who remain outside the

Schwarzschild radius. This means that the breakdown of our present
physical theory which one expects to occur at a singularity cannot affect
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General relativity and black holes

I Einstein’s General Theory of Relativity is a geometric theory of
gravity.

I The field equations of General Relativity,

Rij − 1
2 Rgij = 8πTij

describe how our space-time universe curves in the presence of
matter. This curvature is responsible for the effects of gravity.

Matter tells spacetime how to curve, and spacetime
tells matter how to move. - John Wheeler



General relativity and black holes

I Black holes are certainly one of the most remarkable predictions of
General Relativity.

I The following cartoon depicts the process of gravitational collapse
and formation of a black hole.
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I The shaded region is the black hole region. The boundary of this
region is the black hole event horizon.



General relativity and black holes

I In 1916, Karl Schwarzschild obtained the
first and extremely important exact solution
to the Einstein equations.

I The solution was understood to represent
the spacetime geometry (and hence gravi-
tational field) outside of a spherical star.

I Only decades later (late 50’s, 60’s) was it realized that the
Schwarzschild solution also describes a spherical black hole - more
specifically a stationary (steady state) nonrotating spherical black
hole.

I The term “black hole” was popularized by John Wheeler in the
late 60’s.



General relativity and black holes

I It was almost 50 years later, in 1963, that Roy
Kerr discovered an exact solution to the Ein-
stein equations that describes a stationary rotat-
ing black hole.

I The Kerr solution is a generalization of the
Schwarzschild solution, in that when you set the
rotation to zero, it reduces to the Schwarzschild
solution.

10/8/2017 Roy Kerr

1/1

I No Hair Theorem: By a series of mathematical results, it has been
shown that the Kerr solution is the only stationary black hole
solution to the Einstein equations.

I Largely for this reason, it is widely believed that “true”
astrophysical black holes, resulting from gravitational collapse,
“settle down” to a Kerr black hole.

I LIGO and the No Hair Theorem.



General relativity and black holes

I A basic step in the proof of the uniqueness of the Kerr solution
(“No Hair Theorem”) is Hawking’s theorem on the shape of black
holes: In his paper “Black Holes in General Relativity” he writes:

“It is shown that a stationary black hole must have topologically

spherical boundary ... These results together with those of Israel

and Carter go most of the way towards establishing the conjecture

that any stationary black hole is a Kerr solution.”

I What does topologically spherical mean?

=
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Curvature and the Gauss-Bonnet theorem

I Hawking’s proof of his black hole topology theorem (that the
surface of a black hole is topologically spherical) is a beautiful
application of the Gauss-Bonnet Theorem.

I The Gauss-Bonnet formula is a remarkable formula that relates the
curvature of a surface to its topology (topological shape).

I The great mathematician Carl Friedrich Gauss
(1777-1855) introduced the notion of the cur-
vature of a surface in the early part of the 19th
century.

I Historical side comment: Bernhard Riemann
(1826-1866), who was a student of Gauss, and,
himsef a great mathematician, in his thesis gener-
alized the curvature of surfaces to higher dimen-
sional spaces. This turned out to be precisely the
mathematical theory Einstein needed to formu-
late the General Theory of Relativity.



Curvature and the Gauss-Bonnet theorem
Curvature of curves in the plane.

I Curvature is a measure of bending:

small

large

I This can be made precise by considering the rate at which a curve
changes direction with respect to distance along the curve.

I Examples.

I Straight line:

k = 0

I Circle of radius r :

k = 1
r

r

So, small radius implies large curvature and vice versa.



Curvature and the Gauss-Bonnet theorem
Curvature of surfaces in space.

I The curvature of a surface can be defined in terms of the curvature
of plane curves.

kn = normal curvature = curvature of the
normal section wrt the given normal plane.

I Let k1 and k2 be the maximum and mini-
mum normal curvatures, respectively.

p

n

normal section

Then the Gaussian curvature at the point p is defined as,

K = k1 · k2

(Sign convention: kn > 0 if normal section bends away from n, negative if it

bends towards n.)



Curvature and the Gauss-Bonnet theorem
Some examples.

I Σ = a plane. All normal sections are lines.

Hence k1 = k2 = 0, so,

K = k1 · k2 = 0 · 0 = 0 ⌃
p

n

normal section

I Σ = sphere of radius r . All normal sections
are great circles of radius r .

Hence, k1 = k2 = 1
r , so,

K = k1 · k2 = 1
r · 1

r = 1
r2

I Σ = “saddle surface”. Some normal sections
bend down, some bend up.

Hence, k1 > 0 and k2 < 0, so,

K = k1 · k2 < 0.
p

n

I Pringles have negative Gaussian
curvature!
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Curvature and the Gauss-Bonnet theorem
Gauss made a remarkable discovery about ‘Gaussian curvature’.

Theorema Egregium

The Gaussian curvature of a surface is intrinsic, i.e., it can be computed
from measurements taken solely within the surface.

I From such measurements two-dimensional creatures can determine
whether they live in a flat or positively curved or negatively curved
two-dimensional universe.

Sum of angles > 180� Sum of angles < 180� Sum of angles = 180�

I In general, the curvature can vary from point to point:
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Curvature and the Gauss-Bonnet theorem

Theorem (Classification of surfaces)

Every closed surface in space is ‘topologically equivalent’ to one of the
following surfaces.

g = 0 g = 1 g = 2 g = 3

· · ·

’g’ is called the genus of the surface.

For example:



Curvature and the Gauss-Bonnet theorem

Gauss-Bonnet Theorem

Let Σ be a closed surface, with Gaussian curvature K . Then,

the average value of K =
4π(1 − g)

Area of Σ
(∗)

I Check: If Σ = sphere of radius r , then

avg K =
4π(1 − g)

Area of Σ
=

4π

4πr2
=

1

r2

I Comment.

I (∗) is equivalent to: ∫∫
Σ

KdA = 4π(1 − g)

I For example, whether Σ = or Σ = ,∫∫
Σ

KdA = 4π
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Black hole topology
Hawkings’ black hole topology theorem:
In 3 + 1-dimensions, the surface of a station-
ary (steady state) black hole is topologically
a sphere.

surface 
(black hole boundary)

Idea of the proof:

Let K̄ be the average Gaussian curvature of the black hole surface Σ.
Hawking uses the Einstein equations and the positivity of mass-energy
density, to show that if K̄ ≤ 0, there would have to be an outer trapped
surface outside the black hole:

Outer trapped

But Hawking proves that outer trapped surfaces cannot occur outside the
blackhole.

Hence, it must be that K̄ > 0. But by G.B., K̄ = 4π(1 − g)/(Area of Σ).
It follows that g = 0, and so Σ is topologically a sphere.



Black holes in higher dimensional spacetimes

I The incompatibility between general relativity and quantum field
theory is one of the main open problems in theoretical physics.
String theory has been an attempt to resolve this.

I Because it requires extra spatial dimensions, string theory, and
related developments, such as the AdS/CFT correspondence, have
generated a great deal of interest in gravity in higher dimensions,
and in particular, in higher dimensional black holes.

I One of the first questions to arise was:

Does black hole uniqueness (“No hair theorem”) hold in
higher dimensions?

I With impetus coming from the development of string theory, in
1986, Myers and Perry constructed natural higher dimensional
generalizations of the Kerr solution, which, in particular, have
spherical horizon topology. (There are natural n-dimensional
versions, Sn, of the two dimensional sphere S2.)
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Black holes in higher dimensional spacetimes
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The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary
asymptotically flat spacetime regular on and outside an event horizon of topology S1 3 S2. It describes
a rotating “black ring.” This is the first example of a stationary asymptotically flat vacuum solution with
an event horizon of nonspherical topology. The existence of this solution implies that the uniqueness
theorems valid in four dimensions do not have simple five-dimensional generalizations. It is suggested
that increasing the spin of a spherical black hole beyond a critical value results in a transition to a black
ring, which can have an arbitrarily large angular momentum for a given mass.

DOI: 10.1103/PhysRevLett.88.101101 PACS numbers: 04.50.+h, 04.20.Jb, 04.70.Bw

Black holes in four spacetime dimensions are highly
constrained objects. A number of classical theorems show
that a stationary, asymptotically flat, vacuum black hole
is completely characterized by its mass and spin [1], and
event horizons of nonspherical topology are forbidden [2].

In this Letter we show explicitly that in five dimen-
sions the situation cannot be so simple by exhibiting an
asymptotically flat, stationary, vacuum solution with a
horizon of topology S1 3 S2: a black ring. The ring
rotates along the S1 and this balances its gravitational
self-attraction. The solution is characterized by its mass
M and spin J. The black hole of [3] with rotation in
a single plane (and horizon of topology S3) can be ob-
tained as a branch of the same family of solutions. We
show that there exist black holes and black rings with
the same values of M and J. They can be distinguished

by their topology and by their mass dipole measured
at infinity. This shows that there is no obvious five-
dimensional analog of the uniqueness theorems.

S1 3 S2 is one of the few possible topologies for the
event horizon in five dimensions that was not ruled out by
the analysis in [4] (although this argument does not apply
directly to our black ring because it assumes time symme-
try). An explicit solution with a regular (but degenerate)
horizon of topology S1 3 S2 and spacelike infinity with
S3 topology has been built recently in [5]. An uncharged
static black ring solution is presented in [6], but it contains
conical singularities. Our solution is the first asymptot-
ically flat vacuum solution that is completely regular on
and outside an event horizon of nonspherical topology.

Our starting point is the following metric, constructed
as a Wick-rotated version of a solution in [7]:

ds2 � 2
F�x�
F�y�

µ
dt 1

r
n

j1

j2 2 y

A
dc

∂2

1
1

A2�x 2 y�2

∑
2F�x�

µ
G� y�dc2 1

F� y�
G� y�

dy2
∂

1 F� y�2
µ

dx2

G�x�
1

G�x�
F�x�

df2
∂∏

, (1)

where j2 is defined below and

F�j� � 1 2 j�j1, G�j� � 1 2 j2 1 nj3. (2)

The solution of [7] was obtained as the electric dual of
the magnetically charged Kaluza-Klein C metric of [8].
Our metric can be related directly to the latter solution by
analytic continuation. When n � 0 we recover the static
black ring solution of [6].

We assume that 0 , n , n� � 2��3
p

3�, which en-
sures that the roots of G�j� are all distinct and real. They
will be ordered as j2 , j3 , j4. It is easy to establish
that 21 , j2 , 0 , 1 , j3 , j4 ,

1
n . A double root

j3 � j4 appears when n � n�. Without loss of generality,
we take A . 0. Taking A , 0 simply reverses the sense
of rotation.

We take x to lie in the range j2 # x # j3 and require
that j1 $ j3, which ensures that gxx ,gff $ 0. In order

to avoid a conical singularity at x � j2 we identify f with
period

Df �
4p

p
F�j2�

G0�j2�
�

4p
p

j1 2 j2

n
p

j1 �j3 2 j2� �j4 2 j2�
.

(3)

A metric of Lorentzian signature is obtained by taking
y , j2. Examining the behavior of the constant t slices of
(1), one finds that c must be identified with period Dc �
Df in order to avoid a conical singularity at y � j2 fi x.
Regularity of the full metric here can be demonstrated by
converting from the polar coordinates � y, c � to Cartesian
coordinates —the dtdc term can then be seen to vanish
smoothly at the origin y � j2.

There are now two cases of interest depending on the
value of j1. One of these will correspond to a black ring

101101-1 0031-9007�02�88(10)�101101(4)$20.00 © 2002 The American Physical Society 101101-1

I But in 2002, Emparan and Reall discovered a remarkable example of
a 4 + 1 dimensional stationary black hole spacetime having horizon
topology a ring of two-dimensional spheres (the black ring):

2-spheres

= ring of 2-spheres  
(S2 ⇥ S1)

I Thus in higher dimensions, black hole uniqueness does not hold and
horizon topology need not be spherical.



Black holes in higher dimensional spacetimes

I The Emparan and Reall Black Ring caused a great surge of activity
in the study of higher dimensional black holes.

Question: What horizon topologies are allowed in higher
dimensions? What restrictions are there?

I This is a question Rick Schoen and I addressed several years ago.
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Abstract: Hawking’s theorem on the topology of black holes asserts that cross sections
of the event horizon in 4-dimensional asymptotically flat stationary black hole spacetimes
obeying the dominant energy condition are topologically 2-spheres. This conclusion
extends to outer apparent horizons in spacetimes that are not necessarily stationary. In
this paper we obtain a natural generalization of Hawking’s results to higher dimensions
by showing that cross sections of the event horizon (in the stationary case) and outer
apparent horizons (in the general case) are of positive Yamabe type, i.e., admit metrics of
positive scalar curvature. This implies many well-known restrictions on the topology, and
is consistent with recent examples of five dimensional stationary black hole spacetimes
with horizon topology S2 × S1. The proof is inspired by previous work of Schoen and
Yau on the existence of solutions to the Jang equation (but does not make direct use of
that equation).

1. Introduction

A basic result in the theory of black holes is Hawking’s theorem [11, 13] on the topology
of black holes, which asserts that cross sections of the event horizon in 4-dimensional
asymptotically flat stationary black hole spacetimes obeying the dominant energy condi-
tion are spherical (i.e., topologically S2). The proof is a beautiful variational argument,
showing that if a cross section has genus ≥ 1 then it can be deformed along a null
hypersurface to an outer trapped surface outside of the event horizon, which is forbid-
den by standard results on black holes [13].1 In [12], Hawking showed that his black
hole topology result extends, by a similar argument, to outer apparent horizons in black
hole spacetimes that are not necessarily stationary. (A related result had been shown
by Gibbons [8] in the time-symmetric case.) Since Hawking’s arguments rely on the
Gauss-Bonnet theorem, these results do not directly extend to higher dimensions.

1 Actually the torus T 2 arises as a borderline case in Hawking’s argument, but can occur only under special
circumstances.
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I The result we obtained is a geometric result about black holes in
any spacetime dimension, which has topological consequences.

I In standard 3 + 1 spacetime dimensions our result recovers

Hawking’s theorem.
I In 4 + 1 spacetime dimensions our result gives a complete list of all

possible horizon topologies, namely: S3 , S2 × S1, and certain

spaces constructed from these.
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spaces constructed from these.
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I The Emparan and Reall Black Ring caused a great surge of activity
in the study of higher dimensional black holes.

Question: What horizon topologies are allowed in higher
dimensions? What restrictions are there?

I This is a question Rick Schoen and I addressed several years ago.
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