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Abstract. In this paper, we propose a Rosenzweig–MacArthur predator-prey
model with strong Allee effect and trigonometric functional response. The local

and global stability of equilibria is studied, and the existence of bifurcation is

determined in terms of the carrying capacity of the prey, the death rate of the
predator and the Allee effect. An analytic expression is employed to determine

the criticality and codimension of Hopf bifurcation. The existence of supercrit-
ical Hopf bifurcation and the non-existence of Bogdanov–Takens bifurcation at

the positive equilibrium are proved. A point-to-point heteroclinic cycle is also

found. Biologically speaking, such a heteroclinic cycle always indicates the
collapse of the system after the invasion of the predator, i.e., overexploitation

occurs. It is worth pointing out that heteroclinic relaxation cycles are driven

by either the strong Allee effect or the high per capita death rate. In addition,
numerical simulations are given to demonstrate the theoretical results.

1. Introduction. Since predator and prey populations can grow, disappear or re-
main unchanged over time, depending on their birth rates, mortality, immigration
and emigration, it is necessary to consider mathematical models which describe the
environment. By using the dynamical system approach [5, 6], it has been shown
that different predator functional responses in the Rosenzweig–MacArthur model
exhibit different effects on the dynamics of the model [22, 29, 11, 25]. Sugie and
Saito [29] studied the Rosenzweig–MacArthur predator-prey model with a Holling
type II functional response and derived necessary and sufficient conditions for the
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uniqueness of limit cycles. The most consistently useful mathematical representa-
tion of the real data was formed to be the trigonometric tangent function, which
precisely describes the relationship between photosynthesis and light for phyto-
plankton and was used by Jassby and Platt [16]. Fussmann and Blasius [11] pro-
posed a Rosenzweig–MacArthur model to describe the community dynamics with
three different functional responses including Holling type II functional response
(Φ(N) = aN

1+bN ), Ivlev functional response (Φ(N) = a(1 − e−bN )), and trigono-

metric functional response (Φ(N) = a tanh(bN)). It has been shown that the re-
sponse function with the trigonometric form has the lowest potential to collapse
Rosenzweig–MacArthur model dynamics.

Seo and Wolkowicz [25] considered the following Rosenzweig–Macarthur model:

dN

dt
= rN

(
1− N

K

)
− Φ(N)P,

dP

dt
= (Φ(N)−m)P,

(1)

where Φ(N) = α tanh(bN) is the trigonometric functional response, the variables N
and P represent the numbers of prey and predators, respectively. r is the intrinsic
growth rate of the prey, K is the carrying capacity, m is the per capita mortality
rate of the predator. All parameters r,m, α, b and K are assumed to be positive.
The tipping pint of subcritical Hopf bifurcation and supercritical Hopf bifurcation,
i.e., a saddle-node bifurcation point of limit cycles, induced by the trigonometric
functional response was investigated numerically, while for Holling type II functional
response Φ(N) = aN

1+bN or Ivlev functional response Φ(N) = a(1 − e−bN ), system

(1) only can give rise to supercritical Hopf bifurcation, i.e., there is a stable limit
cycle emanating from it.

The concept of Allee effect was initially proposed by American ecologist Warder
Allee [2]. It describes a positive relationship between any component of individual
fitness and either number or density of conspecifics in Stephen et al. [28]. Clustering
is good for population growth and survival, but too sparse or too crowded will have
negative effects. In nature, many species have Allee effects, such as animals [3, 33],
plants [9, 27], plants and animals [19]. There are two types of Allee effects: weak
Allee effect [4, 24] and strong Allee effect [1, 10, 13, 18, 21, 31, 32]. Berec et al. [3]
demonstrated that the speed of mate search determines the intensity of the Allee
effect, and found that it is mainly male prey that evolves towards the maximum mate
search rate, thus generating the weakest Allee effect in mate search or evolutionary
bistablity. Petrovskii et al. [20] investigated that patchy invasion seems possible
in a fully deterministic predator-prey model due to the Allee effect. Therefore, we
consider the role of the Allee effect in the Rosenzweig–MacArthur model to study
possible dynamics.

In this paper, we consider a Rosenzweig–MacArthur model with the strong Allee
effect and the trigonometric functional response as follows:

dN

dt
= rN

(
1− N

K

)
(N − v)− α tanh(bN)P

.
= q(N)− Φ(N)P,

dP

dt
= (α tanh(bN)−m)P

.
= (Φ(N)−m)P,

(2)

with initial conditions N(0) > 0 and P (0) > 0. Here the parameter v > 0 is
a threshold population level which represents the Allee effect. According to the
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nature of the hyperbolic tangent function, the trigonometric functional response
Φ(N) = α tanh(bN) is monotonically increasing, and satisfies Φ(0) = 0 and Φ′(N) =
αbsech2(bN) > 0 for allN > 0. The growth function q(N) = rN

(
1− N

K

)
(N−v) has

an enhanced growth rate as the population increases above the threshold population
value. If q(0) = 0 and q′(0) ≥ 0 as v ≤ 0, then q(N) represents a proliferation
exhibiting a weak Allee effect, whereas if q(0) = 0 and q′(0) < 0 as v > 0, then
q(N) represents a proliferation exhibiting a strong Allee effect (v > 0). With weak
Allee effect the population growth rate at low population densities is still positive,
though not at its maximum value. But in the strong Allee effect, below the threshold
v, the population growth rate is negative and the population becomes negative.

The rest of this paper is organized as follows. In section 2, we rescale model
(2) to obtain the number of equilibria and the basic reproduction number of the
dimensionless system. In section 3, using a linearized method, we conduct the local
stability analysis of four equilibria. In section 4, we derive the codimension of Hopf
bifurcation, the existence of heteroclinic cycle and the non-existence of Bogdanov-
Takens bifurcation for the positive equilibrium. Note that a heteroclinic orbit always
indicates that overexploitation occurs [1, 15, 32], i.e., the predator invasion can fail
and lead to system collapse. In section 5, numerical simulations are presented to
illustrate the main results. Further, the existence of heteroclinic relaxation oscil-
lation cycles is also found numerically when the per capita mortality rate of the
predator or the strong Allee effect is large enough. Finally, some conclusions and
discussions are also given.

2. Equilibria and basic reproduction number. To simplify the analysis in the
following sections, introducing the change of variables

P =
X

b
, N =

Y

b
, τ = αt, (3)

reduces the system (2) to

dX

dτ
= X(tanh(Y )−A),

dY

dτ
= BY (D − Y )(Y − C)−X tanh(Y ),

(4)

where

A =
m

α
, B =

r

αb2K
, C = vb, D = Kb. (5)

Similarly, if we take A = m
α , B̄ = r

αbK , D = Kb, then the dimensionless form of
model (1) becomes

dX

dτ
= X(tanh(Y )−A),

dY

dτ
= B̄Y (D − Y )−X tanh(Y ).

(6)

Setting the right-hand side of system (4) equals zero gives the following equilibria of
system (4): one trivial equilibrium E0(0, 0), two boundary equilibria E1(0, C) and
E2(0, D), and one positive equilibrium E3(X3, Y3), where X3 = B

AY3(D − Y3)(Y3 −
C) and Y3 = tanh−1(A). Since K > v > 0, then we have D > C > 0. Thus, the
positive equilibrium E3 exists for 0 < C < Y3 < D.

Note that model (6) has three equilibria: Ē0(0, 0), Ē2(0, D) and Ē3(X̄3, Ȳ3),
where X̄3 = B

A Ȳ3(D − Ȳ3), and Ȳ3 = tanh−1(A) satisfying 0 < Ȳ3 < D. Next, the
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basic reproduction number is obtained by using the next generation matrix method
developed by van den Driessche and Watmough [30]. System (4) can be rewritten
as

dZ(τ)

dτ
= f(Z)− v(Z),

where

Z =

(
X
Y

)
, f(Z) =

(
X tanh(Y )

0

)
,

v(Z) =

(
AX

−BY (D − Y )(Y − C) +X tanh(Y )

)
.

The matrices F(Z) and V(Z) are defined as

F(Z) =

(
tanh(Y ) Xsech2(Y )

0 0

)
,V(Z) =

(
A 0

tanh(Y ) η(X,Y )

)
,

and

V−1(Z) =

(
1
A 0

− tanh(Y )
Aη(X,Y )

1
Aη(X,Y )

)
,

where η(X,Y ) = −B(D − Y )(Y − C) + BY (Y − C) − BY (D − Y ) + Xsech2(Y ).
Hence, the basic reproduction number of system (4) can be defined as the spectral
radius of the next generation matrix FV−1, given by

R0 = ρ(FV−1) =
tanh(C)

A

.
=

tanh(C)

tanh(Y3)
. (7)

3. Stability of equilibria. The Jacobian matrix of system (4) at any equilibrium
E is

J(E) =

(
tanh(Y )−A Xsech2(Y )
− tanh(Y ) −η(X,Y )

)
.

Since the X−cordinates of equilibria E0, E1, E2 equal 0, the eigenvalues of the
Jacobian matrices at E0, E1 and E2 are

λ1 = tanh(Y )−A and λ2 = B(D − Y )(Y − C)−BY (Y − C) +BY (D − Y ).

(1) The Jacobian matrix J(E) evaluated at E0 = (0, 0) has two characteristic
roots

λ1E0
= −A < 0 and λ2E0

= −BDC < 0.

Hence, E0 is always a stable node.
(2) The Jacobian matrix J(E) evaluated at E1 = (0, C) has two characteristic

roots with

λ1E1
= tanh(C)−A > 0 (R0 > 1) and λ2E1

= BC(D − C) > 0.

Therefore, E1 is an unstable node. Or if

λ1E1
= tanh(C)−A < 0 (R0 < 1),

then E1 is a saddle point.
(3) The Jacobian matrix J(E) evaluated at E2 = (0, D) has two characteristic

roots with

λ1E2
= tanh(D)−A < 0 for tanh(D) < A, and λ2E2

= −BD(D − C)) < 0.
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This claims that E2 is a stable node. If

λ1E2
= tanh(D)−A > 0 for tanh(D) > A, and λ2E2

= −BD(D − C)) < 0,

then E2 is a saddle point. It is easy to see that tanh(D)−A > tanh(C)−A > 0, i.e.,
E2 is always a saddle when E1 is an unstable node. Furthermore, the characteristic
equation of system (4) at the positive equilibrium E3 is

λ2 − tr(J(E3))λ+ det(J(E3)) = 0, (8)

where

tr(J(E3)) =
B

tanh(Y3)
tr∗(J(E3)),

det(J(E3)) =
BY3

cosh2(Y3)
(D − Y3)(Y3 − C), (9)

and tr∗(J(E3)) = −Y3(D − Y3)(Y3 − C)(1 − tanh2(Y3)) − [3Y 2
3 − 2(C + D)Y3 +

CD] tanh(Y3). It is easy to see that det(J(E3)) > 0 when E3 exists. The stability of
E3 is thus determined by the sign of tr∗(J(E3)): E3 is stable when tr∗(J(E3)) < 0,
and unstable if tr∗(J(E3)) > 0. Note that E3 becomes a Hopf bifurcation point as
tr∗(J(E3)) = 0.

Next, model (4) will be analyzed in a biologically feasible region

R2
+ =

{
(X,Y ) ∈ R2 : X ≥ 0 and Y ≥ 0

}
.

Proposition 1. All solutions of system (4) converge to E0(0, 0) if R0 > 1.

Proof. Consider the following Lyapunov function

V (X,Y ) = AX + tanh(C)Y, (10)

which satisfies V (E0) = 0. Differentiating V with respect to τ along the trajectory
of system (4) yields

dV

dτ

∣∣∣∣
(4)

= AX tanh(Y )−A2 + tanh(C)BY (D − Y )(Y − C)− tanh(C)X tanh(Y )

= (A− tanh(C))X tanh(Y )−A2.

Since we only consider the region in {(X,Y ) ∈ R2 : X ≥ 0, 0 ≤ Y ≤ D}, it is
easy to see that dV

dτ |(4) < 0 as A− tanh(C) < 0, i.e., R0 > 1. Hence, all solutions of
system (4) converge to E0(0, 0) if R0 > 1.

4. Bifurcation analysis.

4.1. Hopf bifurcation. Hopf bifurcation may occur in system (4) when the posi-
tive equilibrium E3 exists. By using (9), we know that det(J(E3)) > 0 and E3 exists
if 0 < C < D in model (4). Thus, Bogdanov-Takens bifurcation of positive equilib-
rium is impossible, otherwise it requires det(J(E3)) = 0 which only occurs at the
boundary equilibria E1 and E2. Consequently, tr(J(E3)) determines the stability of
E3.

Note that the parameter B does not play any role in determining the stability
of E3, and it will be shown that it also does not affect the codimension of Hopf
bifurcation. It is easy to know that the first term in tr(J(E3)) is negative for
C < Y3 < D. Hence, in order to have Hopf bifurcation, the quadratic polynomial
in the second term, 3Y 2

3 − 2(C + D)Y3 + CD, must be negative. The roots of the
polynomial are
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Y3± =
1

3
(C +D ±

√
C2 +D2 − CD). (11)

It is easy to show that Y3− < C < Y3+ < D. This means that E3 is asymptotically
stable for Y3+ ≤ Y3 < D. A direct computation shows that

tr∗(J(E3))|Y3=C = C(D − C) tanh(C) > 0, (12)

tr∗(J(E3))|Y3=
D
2

=
D2

4(1 + cosh(D))
[sinh(D)−D + 2C] > 0, (13)

tr∗(J(E3))|Y3+
= −Y3+(D − Y3+)(Y3+ − C)(1− tanh2(Y3+)) < 0. (14)

Thus, tr∗(J(E3)) = 0 has at least one solution for Y3 ∈ (max{C, D2 }, Y3+). To prove

the uniqueness of the solution, we show dtr∗(J(E3))
dY3

< 0 for Y3 ∈ (max{C,D}, Y3+).

Note that C < Y3 < Y3+ if C < D ≤ 2C, and D
2 < Y3 < Y3+ if D > 2C. A direct

calculation shows that

C +D − 3Y3 <

{
D − 2C ≤ 0, if D

2 ≤ C ≤ Y3 < Y3+ for D ≤ 2C;
C − D

2 < 0, C < D
2 ≤ Y3 < Y3+ for D > 2C.

(15)

Further, we have

lim
Y3→C

dtr∗(J(E3))

dY3
= (C +D − 3Y3) cosh2(Y3) < 0,

lim
Y3→D

2

dtr∗(J(E3))

dY3
= (C − D

2
)(cosh(

D

2
) +

D

2
)(cosh(

D

2
)− D

2
) < 0,

d2tr∗(J(E3))

dY 2
3

= (C +D − 3Y3)[sinh(2Y3) + 2Y3]− CD

− 3[cosh(Y3) + Y3][cosh(Y3)− Y3] < 0, for max

{
C,
D

2

}
< Y3 < Y3+,

which clearly indicates that dtr∗(J(E3))
dY3

< 0 for Y3 ∈ (max{C, D2 }, Y3+). That is,

tr∗(J(E3)) is monotonically decreasing for Y3 ∈ (max{C, D2 }, Y3+). Hence,

tr∗(J(E3)) has a unique solution Y3H for Y3 ∈ (max{C, D2 }, Y3+), at which Hopf
bifurcation occurs. The codimension of Hopf bifurcation can be determined based
on the computation of focus values. In order to carry out this analysis, we rewrite
tr∗(J(E3)) as

tr(J(E3)) =
B

sinh(3Y3)
tr∗(J(E3)),

where tr∗(J(E3)) = D[Y3 sinh(2Y3)+(Y3−C)(sinh(2Y3)−2Y3)]−Y3[Y3 sinh(2Y3)+
(Y3 − C)(2 sinh(2Y3)− 2Y3)].

It is easy to see that

Y3 sinh(2Y3)+ (Y3 −C)(2 sinh(2Y3)− 2Y3) > Y3 sinh(2Y3)+ (Y3 −C)(sinh(2Y3)− 2Y3) > 0

for Y3 > C. Therefore, we can find the unique solution for the Hopf critical point,
defined in terms of the parameter D (i.e., the K in the original system (2)) as

DH
.
=
Y3Y3 sinh(2Y3) + (Y3 − C)2 sinh(2Y3)− 2Y3
Y3 sinh(2Y3) + (Y − C)(sinh(2Y3)− 2Y3)

> Y3. (16)

Note that the critical point Y3H and RH0 can be determined from DH :

D = DH ⇒ Y3H ⇒ RH0 =
tanh(C)

tanh(Y3H)
. (17)
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Next, applying an affine transformation to system (4) and using the Maple code in
Yu [35] for computing the normal form of Hopf bifurcation, we obtain the first-order
focus value as follows:

v1 = − cosh2(Y3)

8Y 2
3 (Y3 − C)2

v∗1 , (18)

where v∗1 = C0C
2 + C1C + C2 = C0(C +

C1

2C0
)2 − C2

1 − 4C0C2

4C0
, and

C0 = (3 tanh2(Y3)− 1)(Y3 tanh2(Y3) + tanh(Y3)− Y3),

C1 = −3(Y3 tanh2(Y3) + tanh(Y3)− Y3)(3Y3 tanh2(Y3) + tanh(Y3)− Y3),

C2 = 2Y3[3 tanh(Y3)(1 + Y3 tanh(Y3))(Y3 tanh2(Y3) + tanh(Y3)− Y3)]+

2Y3[Y 2
3 (1− tanh2(Y3))]. (19)

It is obvious that C1 < 0 and C2 > 0, and

C0


> 0, if tanh2(Y3) > 1

3 ,

= 0, if tanh2(Y3) = 1
3 ,

< 0, if tanh2(Y3) < 1
3 .

Since Y3 ≥ C, C reaches its maximal value at C = Y3. One can show that the
term C0(C + C

2C0
)2 in v∗1 reaches its minimum at C = Y3, regardless of C0 > 0 or

C0 < 0. Therefore, for C0 6= 0, we obtain

v∗1 = C0(Y3 +
C1

2C0
)2 − C2

1 − 4C0C2

4C0

=
Y3 tanh(Y3)

cosh2(Y3)[2Y3 cosh2(Y3) + 3( 1
2 sinh(2Y3)− Y3)]

> 0. (20)

When C0 = 0, it can be shown that

v∗1 = C1C + C2 > C1Y3 + C2

= Y3[3 tanh2(Y3) + Y 2
3 (1− tanh2(Y3))(3 tanh2(Y3)− 1)]

= Y3 > 0. (21)

This shows that v∗1 > 0, then v1 < 0 for feasible parameter values, which implies
that the codimension of the Hopf bifurcation is one, and the Hopf bifurcation is
supercritical. Thus, stable limit cycles are expected. The transversal condition can
be found as

v0 =
B

2 sinh(2Y3H)
[Y3H sinh(2Y3H) + (Y3H − C)(sinh(2Y3H)− 2Y3H)] > 0. (22)

In summary, for any given parameters A > 0 and C > 0, we have tanh−1(A) > C
(i.e., A > tanh(C)) and Y3 = tanh−1(A). Then DH is defined by (16). If D ≤
DH , then E3 is asymptotically stable for C < Y3 < D; if D > DH , then E3 is
asymptotically stable for C < Y3 < Y3H (Y3H is determined from D = DH), and
unstable for Y3H < Y3 < D. Hence, bistable phenomenon happens for C < Y3 <
Y3H , and the relaxation oscillation must appear for R0 < 1, but near 1. The above
results show that there are no complex dynamical behaviours in system (4) since it
does not have Bogdanov-Takens (B-T) bifurcation bifurcation or generalized Hopf
bifurcation. Although the dimensionless system (4) had four parameters, only two
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of them (A and C) play important roles in the dynamics of the system, in particular
on stability and bifurcation.

Based on the above analysis, we obtain the following results:

Theorem 4.1. System (4) undergoes the Hopf bifurcation at the threshold Y3H in
(17) when tr∗(J(E3)) in (9) holds, and Y3H defines the unique Hopf critical point.
Meanwhile, the Hopf bifurcation is supercritical, yielding stable limit cycles when
the first focus value v1 < 0 in (18) is satisfied.

In order to precisely describe the dynamics transition of equilibrium in system
(4), the bifurcation diagram is illustrated in Figure 1, where the basic reproduc-
tion number R0 is taken as the primary bifurcation parameter, solid and dotted
lines/curves represent stable and unstable equilibrium solutions, respectively. This
bifurcation diagram is a projection on the R0 − Y plane, clearly shows the bifur-
cation relation between the four equilibrium solutions: E0, E1, E2 and E3. The
equilibrium E0 is a stable node, E1 is always unstable (an unstable node for R0 > 1,

and a saddle point for R0 < 1), and E2 is stable for 0 < R0 <
tanh(C)
tanh(D) . There are

two transcritical bifurcations: one of them is at R0 = 1 between E1 and E2, and

the other at R0 = tanh(C)
tanh(D) between E2 and E3. The dotted curve on part of E3

denotes non biologically meaningful solution (only mathematically interesting), and
H indicates the supercritical Hopf bifurcation point.

where

X3 =
B

A
Y3(D − Y3)(Y3 − C), Y3 = tanh−1(A). (5)

Suppose K > v (the case K < v can be similarly discussed), and so D > C. Thus, E3 exists

for C ≤ Y3 ≤ D. Define the Basic Reproduction Number as

R0 =
tanh(C)

A
=

tanh(C)

tanh(Y3)
. (6)

Then the bifurcation diagram is shown in the following figure.

R0
RH

0

Y

D

C

0 1tanh(C)
tanh(D)

E0

E1

E2

E3

•

•
◦

We have the following result.

Theorem. System (2) has four equilibria: E0, E1, E2 and E3. The first three are boundary

equilibria which exist for all positive parameter values, while E3 is a positive equilibrium

which exists for C ≤ Y3 ≤ D. E0 is asymptotically stable (AS) for all parameter values,

while E1 is always unstable. E2 is AS for R0 <
tanh(C)
tanh(D)

, and unstable for R0 >
tanh(C)
tanh(D)

. E3

has a trascritical bifurcation with E2 at R0 = tanh(C)
tanh(D)

, and it is AS for C < Y3 < Y3H and

unstable for Y3H < Y3 < D, where Y3H defines a unique Hopf critical point and the Hopf

bifurcation is supercritical, yielding stable limit cycles.

To simplify the analysis, instead of the solution Y3 = tanh−1(A), we use A = tanh(Y3)

and treat Y3 as a “parameter”. The stability of the equilibria can be easily obtained using

the Jacobian of the system: E0 is a stable node; E1 is unstable (an unstable node for R0 < 1,

2

Figure 1. Bifurcation diagram for system (4) showing the tran-
sition of equilibrium solutions E0, E1, E2, and E3, where solid and
dotted lines/curves represent stable and unstable equilibrium solu-
tions, respectively.

4.2. Heteroclinic cycle.

Theorem 4.2. If 0 < C < Ỹ < D and tanh(C) < A < tanh(D), for an open subset
of parameter space, there exists a heteroclinic cycle in the first quadrant connecting
equilibria E1(0, C) and E2(0, D).

Proof. We refer to Eduardo’s method [12] for the existence of a heteroclinic cycle.
The heteroclinic cycle consists of two connections between two saddle points. When
tanh(C) < A < tanh(D), it is known from section 2 that E1(0, C) and E2(0, D)
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(0, 0)

(0, C)

(0, D)

 u

W   (0, C)
 s

W    (0, D)

Y

XX  s X u

Y
~

(0, D)

(0, C)

(0, 0)

W   (0, C) s

W    (0, D)
 u

Y

XX  X  su

Y
~

(a) (b)

Figure 2. The possible relative position between the unstable
manifold W s(0, C) of the saddle point E1(0, C) and the stable man-
ifold Wu(0, D) of the saddle point E2(0, D). (a) Xs < Xu; (b)
Xs > Xu.

are both saddle points. Denote the stable and unstable manifolds by W s(0, C) and
Wu(0, D), respectively. The α-limit of W s(0, C) and the ω-limit of Wu(0, D) are
bounded in the X-axis. Neither the ω-limit of Wu(0, D) is on the Y -axis. Let

Ỹ satisfy 0 < C < Ỹ < D. There exist two points (Ỹ , Xs) ∈ W s(0, C) and

(Ỹ , Xu) ∈ Wu(0, D), with Xs and Xu depending on the parameter values, such
that Xs = s(A,B,C,D) and Xu = u(A,B,C,D) (see Figure 2).

It can be seen from Kuznetsov [17] that one property of heteroclinic connection
is that the unstable manifold Wu(0, D) overlaps with the stable manifold W s(0, C),
i.e., ξDC ⊂W s(0, C) ∩Wu(0, D).

Therefore, there exists (Ỹ , X̃) ∈ {(Y,X) ∈ R2|0 ≤ Y ≤ D,X ≥ 0} such that

Ỹ = X̃. Moreover, by the uniqueness of solutions of system (4), this intersection
must occur along a whole trajectory ξDC . Therefore, the equation s(A,B,C,D) =
u(A,B,C,D) defines a codimension-one submanifold in the parameter space, for
which the heteroclinic curve ξDC exists in R2

+, connecting the points E1(0, C) and
E2(0, D). Then ξDC ⊂ W s(0, C) ∩Wu(0, D) and it exists for any parameter value
such that 0 < C < Y ∗ < D. Hence a heteroclinic cycle ξ exists for certain parameter
values on the same submanifold for which ξ = (0, D) ∪ ξDC ∪ (0, C) ∪ ξCD.

5. Numerical simulations. In this section, we will conduct numerical simulations
to demonstrate the theoretical results for model (4). We choose the following set
of parameters in model (2): α = 0.99, b = 1.48, r = 1,m = 0.1,K = 1.08, v = 0.01,
which are taken from Fussmann and Blasius [11]. By using the rescalings (3) and
(5) for model (4), we have

A = 0.1010101, B = 0.4269899, C = 0.0148, D = 1.5984. (23)

All figures are drawn by MATLAB and AUTO-07P [8].
Firstly, we verify the existence of heteroclinic cycle based on Theorem 4.2 when

0 < C < Ỹ < D and tanh(C) < A < tanh(D). Since C = 0.0148, D =
1.5984, then we obtain tanh(0.0148) < A < tanh(1.5984), i.e., 0.0147989 < A <
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0.9214274. When we take α = 0.15 and keep the remaining parameters unchanged
in model (2), then we have A = 0.6666667, B = 2.8181335, C = 0.0148, D =
1.5984 in model (4), it is easy to obtain that model (4) has two boundary equi-
libria E1(0, 0.0148), E2(0, 1.5984), and one positive equilibrium E3(2.1327, 0.80472),
where E1 and E2 are saddles, and E3 is an unstable focus. There exists a separatrix
(the stable manifold of E1) linked to the boundary equilibrium E1, which serves as
the boundary of the attraction basins of these two equilibria. Next, we take α = 0.19
in model (2), then A = 0.52631579, B = 2.2248422, C = 0.0148, D = 1.5984, and
model (4) has two boundary equilibria E1(0, 0.0148), E2(0, 1.5984), and one posi-
tive equilibrium E3(1.4291, 0.58504), where E1 and E2 are saddles, and E3 is an
unstable focus. There exists two heteroclinic orbits: one is connecting two boundary
equilibria E1(0, 0.0148) and E2(0, 1.5984), and the other is connecting E2(0, 1.5984)
and E3(1.4291, 0.58504). While α = 0.99 in model (2), then A = 0.1010101, B =
0.42698992, C = 0.0148, D = 1.5984 in model (4), and there still exist two boundary
equilibria E1(0, 0.0148), E2(0, 1.5984), both are saddles. The positive equilibrium
E3(0.055518, 0.10136) becomes an unstable focus, see Figure 3 for details.

Ｅ

Ｅ

Ｅ

1

2

3
Ｅ

Ｅ

Ｅ1

2

3

3

Ｅ

Ｅ1

2

Ｅ

Figure 3. Phase portraits of model (4). (a) A = 0.6666667 and
B = 2.8181335. (b) A = 0.5263158 and B = 2.2248422. (c) A =
0.1010101 and B = 0.4269899.

To investigate the impact of the basic reproduction number R0 on the dimen-
sionless system (4), we rewrite it as follows:

dX

dτ
= X

(
tanh(Y )− tanh(C)

R0

)
,

dY

dτ
= BY (D − Y )(Y − C)−X tanh(Y ).

(24)
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（b）

Figure 4. Bifurcation diagram for model (24). Here HB, TC1

and TC2 denote the supercritical Hopf bifurcation point and two
transcritical bifurcation points, respectively. (a) R0 vs X. (b) R0

vs Y.
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1
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(d)

Figure 5. Bifurcation diagram and phase portrait of model (4).
Here HB, TC1, TC2 and TC3 denote the supercritical Hopf bifur-
cation point and three transcritical bifurcation points, respectively.
(a) A vs X. (b) A vs Y . (c) A vs the period. (d) A family of sta-
ble limit cycles approach a heteroclinic cycle which connects the
boundary equilibria E1(0, 0.0148) and E2(0, 1.5984).

We take R0 as the primary bifurcation parameter and choose the parameter val-
ues as B = 0.4269899, C = 0.0148, D = 1.5984. Then we obtain one-parameter
bifurcation diagram illustrated in Figure 4. There are two transcritical bifurcation
points TC1(0, 1.59839), TC2(0, 0.0148) and one supercritical Hopf bifurcation point
HB(0.332546, 0.940275) as R0 = 0.0160609, 1.00, 0.0201250, respectively. A family



12 XIAOQING LIN, YANCONG XU, DAOZHOU GAO AND GUIHONG FAN
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Figure 6. Bifurcation diagram and phase portrait of model (4).
Here HB, TC1 and TC2 denote the supercritical Hopf bifurcation
point and two transcritical bifurcation points. (a) D vs X. (b) D
vs Y . (c) D vs the period. (d) Heteroclinic relaxation oscillations
appear in phase portrait.

of stable limit cycles bifurcating from Hopf bifurcation point HB approach a hetero-
clinic cycle which connects the boundary equilibria E1(0, 0.0148) and E2(0, 1.5984).

The bistability regions are, respectively, (0, tanh(C)
tanh(D) ) = (0, 0.0160609) for the stable

equilibrium E0 and stable equilibrium E2; ( tanh(C)
tanh(D) , R

H
0 ) = (0.0160609, 0.0201250)

for the stable equilibrium E0 and the stable equilibrium E3; (RH0 , 1) = (0.0201250, 1)
for the bistable phenomenon involving the stable equilibrium E0 and a stable limit
cycle; (1,+∞) for the global stability of E0.

Secondly, we take the per capita mortality rate of the predator A (= m
α ) as the

primary bifurcation parameter. Choosing B = 0.4269899, C = 0.0148, D = 1.5984
fixed as before, we obtain one-parameter bifurcation diagrams. As shown in Fig-
ure 5, there are a supercritical Hopf bifurcation point HB(0.332546, 0.940277) as
A = 0.735349, and three transcritical bifurcation points TC1(0, 0) as A = 0,
TC2(0, 0.0148) as A = 0.0147989, and TC3(0, 1.59840) as A = 0.921427. From
Figure 5 (a), it is easy to see that the predator population becomes extinct for
all nonnegative initial conditions when the mortality rate A of predators is high
enough. By continuation from the supercritical Hopf bifurcation point, we obtain a
limit cycle branch and find a family of stable limit cycles approaching a heteroclinic
cycle with the period tending to infinity. In other words, the limit cycles are ac-
tually approaching a heteroclinic orbit connecting E1(0, 0.0148) and E2(0, 1.5984),
see Figure 5 (c), (d) for details. That is to say, the predator invasion will cause
system (4) to collapse with the increasing per capita mortality of the predator,
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namely, the overexploitation occurs as Voorn et al. [31]. Meanwhile, the transition
from coexistence to overexploitation is associated with the destruction of periodic
solutions. One trivial connection occurs at the boundary of the positive quadrant of
the space (X,Y ), from the equilibria E1 to E2, and the other nontrivial connection
is from E2 to E1 in the interior of the positive quadrant. The region encapsulated
by the heteroclinic loop contains the positive equilibrium E3(0.332546, 0.940277).
More interestingly, the so-called hydra effect [7, 26] is also found in model (4), see
Figure 5 (a) for details.

Thirdly, we take the carrying capacity D (= Kb) as the primary bifurcation
parameter and fix A = 0.1010101, B = 0.4269899, C = 0.0148, then we obtain
one-parameter bifurcation diagrams. There are one supercritical bifurcation point
HB(3.19134×10−3, 0.101356) as D = 0.187411, two transcritical bifurcation points
TC1(0, 0.0148) and TC2(0, 0.101356) as D = 0.0148 and D = 0.101356, respectively.
A family of stable limit cycles bifurcating from the supercritical Hopf bifurcation
point HB become heteroclinic relaxation oscillations, see Figure 6. Biologically
speaking, the number of predators and the number of prey in system (4) will increase
with the increase of carrying capacity. Meanwhile, it is found that heteroclinic
relaxation oscillations appear with the increasing periods of limit cycles.

HB

TCTC 21

(a) (b)

HB

TC

TC1

2

(c)

C

（d）

Figure 7. Bifurcation diagram and phase portrait of model (4),
where HB, TC1 and TC2 represent the supercritical Hopf bifurca-
tion point and two transcritical bifurcation points, respectively. (a)
C vs X. (b) C vs Y . (c) Period against C. (d) The phase portrait
indicates that a family of limit cycles with amplitudes stretched to
a heteroclinic cycle connecting E1(0, 1.41234) and E2(0, 1.5984).

Now, we investigate the role of strong Allee effect C (= bv) in model (4) with
A = 0.8879899 (i.e., m = 0.87911 in model (2)), and take the Allee effect parameter
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（a） （b）

Figure 8. (a) Bifurcation diagram (C vs Period) of limit cycles
of model (4) as A = 0.9888, B = 0.4269899, D = 1.5984. (b) Hete-
roclinic relaxation oscillations occur for model (4) with a family of
limit cycles approaching a heteroclinic cycle in the phase plane.

C as the free bifurcation parameter. Then we obtain a supercritical Hopf bifurca-
tion point HB(0.0257627, 1.41234) as C = 1.20845, and two transcritical bifurcation
points TC1(0, 1.41234) for C = 1.41234, TC2(0, 1.5984) for C = 1.5984, see Figure
7 (a), (b). By continuation from the supercritical Hopf bifurcation point, we have
a family of stable limit cycles approaching a heteroclinic cycle which connects the
equilibria E1(0, 1.41234) and E2(0, 1.5984), see Figure 7 (c), (d). Biologically speak-
ing, when the mortality of predators is high, the number of predators will decrease
until it becomes extinct as the Allee effect of prey increases.

For comparison, we revisit the dynamics of model (6) without the Allee effect
which was investigated by Seo and Wolkowicz [25]. We find that there always
exists a saddle-node bifurcation point of limit cycles as the parameter A or D is
varied. Further, we notice that the inclusion of the Allee effect may lead to the
disappearance of saddle-node bifurcation point of limit cycles. However, it cannot
induce the occurrence of isola bifurcation of limit cycles [23, 34].

As we know, global bifurcations have many biological implications. The existence
of a heteroclinic cycle has important implications for model (4), which indicates
that overexpliotation occurs as [15, 31], that is to say, the predator population may
eventually go extinct.

At last, we consider the existence of relaxation oscillations as Li et al. [18] in
models (6) and (4). Model (6) can exhibit the homoclinic relaxation oscillations
which are different from the limit cycles with small amplitudes. This kind of relax-
ation oscillations occur when the parameter A → 1. There exists a family of limit
cycles approaching the homoclinic cycle which connects the equilibrium E2 with
periods tending to +∞. However, heteroclinic relaxation oscillation cycles rather
than homoclinic relaxation oscillation cycles in model (4) can be found, i.e., a family
of limit cycles approach a heteroclinic cycle with the period tends to infinity when
A is close to 1. Actually, such relaxation oscillations occur when the parameter A
in model (4) approaches a constant 0.978912, shown in Figure 8 (a), (b). Interest-
ingly, we find that the heteroclinic relaxation oscillations cycles can be caused by
either the strong Allee effect or the high per capita death rate. For the heteroclinic
relaxation oscillations cycles caused by the small intrinsic growth rate, it is refered
to aforementioned work by Li et al. [18]. More precisely, the existence of hetero-
clinic cycles is induced by the strong Allee effect, while the relaxation oscillations
are caused by the trigonometric functional response.
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6. Conclusions. Local bifurcations involved in the dynamics with the equilibria
always reflects the transition from one scenario to another, while global bifurcations
are associated with the transition from the coexistence of prey and predator to over-
exploitation, in particularly, the limit cycles are destroyed by homoclinic cycle or
heteroclinic cycle. In this paper, we investigate the dynamics in a Rosenzweig–
MacArthur predator-prey model with the trigonometric functional response and
strong Allee effect. Firstly, we obtain the basic reproduction number and equi-
libria of model (4). Secondly, we establish sufficient conditions for the local and
global asymptotic stability of trivial equilibria in model (4). Thirdly, the local
bifurcation and the global bifurcation including transcritical bifurcation, Hopf bi-
furcation and heteroclinic bifurcation are also given to mark the transition bound-
aries in parameter interval between different regions and explain the collapse of
the Rosenzweig–MacArthur model with the strong Allee effect, respectively. Note
that the Bogdanov-Takens bifurcation cannot be found at the positive equilibrium
for model (4). Furthermore, we use numerical simulations to verify the theoretical
results.

As a comparison to the results in Seo and Wolkowicz [25], the following differences
have been observed:

(1) Model (4) has four equilibria due to the incorporation of the strong Allee effect
while model (6) has only three equilibria. The new boundary equilibrium E1

is attributed to the Allee effect in model (4).
(2) There is only one supercritical Hopf bifurcation point which can generate

large amplitude stable limit cycles in model (4), i.e., the codimension of Hopf
bifurcation is one. Model (6) may have two Hopf bifurcation points: one su-
percritical Hopf bifurcation point and one subcritical Hopf bifurcation point
as well as a saddle-node point of limit cycle bifurcation. That is, the involve-
ment of the strong Allee effect may cause the saddle-node bifurcation of limit
cycles to disappear. Actually, the saddle-node bifurcation point of limit cycles
in model (6) will persist when the parameters A, B̄ and D are varied.

(3) Heteroclinic relaxation oscillations occur for model (4) when A or C is large
enough. The heteroclinic cycles in model (4) due to the strong Allee effect
while model (6) has only the homoclinic relaxation oscillations. More pre-
cisely, the strong Allee effect and the trigonometric functional response may
be responsible for the existence of heteroclinic cycle and the occurrence of re-
laxation oscillations, respectively. Many scenarios have different implications
for the dynamics in model (4) due to the occurrence of heteroclinic relaxation
oscillations. This scenario does not occur in the models [22, 25].

In this paper, it is noticed that the predation of the predators is more effective
when the death rate of the predator is sufficiently small. Biologically speaking, this
is true and not surprising. The results show that the Allee effect plays an important
role in the stability of model (4) and it is very important to detect the global
bifurcations in this model, which helps us understand the dynamics of predators
and prey. Interestingly, there exist homoclinic relaxation oscillations similar to
those in Zhang et al. [36] or heteroclinic relaxation oscillation for Rosenzweig–
MacArthur model which illustrate the recurrence phenomenon or overexploitation,
we will leave the analytical proof for future work.
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