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EFFECTS OF ASYMPTOMATIC INFECTIONS ON THE SPATIAL
SPREAD OF INFECTIOUS DISEASES∗

DAOZHOU GAO† , JUSTIN M. W. MUNGANGA‡ , P. VAN DEN DRIESSCHE§ ,

AND LEI ZHANG¶

Abstract. Asymptomatic infection and transmission are common for quite a few directly or
indirectly transmitted diseases such as COVID-19, cholera, and Zika fever. In this paper, we propose
a susceptible-infective-asymptomatic-recovered patch model to address the influence of asymptomatic
infections on the spatial spread of infectious diseases. The multipatch basic reproduction number R0

of the model is defined and shown to be a threshold quantity for disease eradication and persistence.
Namely, the disease disappears if R0 ≤ 1 whereas it spreads otherwise. The monotonicity of R0 with
respect to the dispersal rates of the symptomatic and asymptomatic populations is investigated. In
particular, for the two-patch case, R0 is either strictly decreasing or strictly increasing or constant
in terms of dispersal rates. However, nonmonotonic dependence can occur with movement between
three or more patches. The asymptotic profiles of the endemic equilibrium (when it exists) as one
or all dispersal rates approach zero or infinity are studied. Interestingly, an increase in infectious
dispersal may decrease R0 but increase the number of nonsusceptible individuals. Analytical and
numerical results confirm that ignoring asymptomatic carriers not only significantly underestimates
the infection risk but also impairs the efficacy of travel restrictions.

Key words. asymptomatic infection, patch model, basic reproduction number, monotonicity,
endemic equilibrium, COVID-19
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1. Introduction. An asymptomatic case is an individual who tests positive
but experiences no symptoms throughout the course of infection. Asymptomatic
infection is very common for many infectious diseases including coronavirus disease
2019 (COVID-19), Ebola virus disease, influenza, hand-foot-mouth disease, cholera,
chlamydia, human papillomavirus infection, Zika fever, dengue fever, yellow fever,
and malaria. For example, a review of 16 cohort studies estimated that 40%∼45%
of COVID-19 infections are asymptomatic [36]. Another recent meta-analysis based
on 13 studies involving 21,708 people found that the percentage of asymptomatic
COVID-19 cases is approximately 17% [6]. The ratio of asymptomatic to sympto-
matic infections for cholera ranges from 3 to 100 [28]. About one in five people infected
with Zika virus displays symptoms [13]. The proportion of symptomatic patients and

∗Received by the editors February 18, 2021; accepted for publication (in revised form) January
6, 2022; published electronically May 26, 2022.

https://doi.org/10.1137/21M1398434
Funding: The work of the first author was partially supported by the National Natural Science

Foundation of China (12071300) and the Natural Science Foundation of Shanghai (20ZR1440600
and 20JC1413800). The work of the second author was supported by CRIC, CSET, and UNISA.
The work of the third author was partially supported by an NSERC Discovery Grant. The work
of the fourth author was partially supported by the National Natural Science Foundation of China
(11901138) and the Natural Science Foundation of Shandong Province (ZR2019QA006).

†Department of Mathematics, Shanghai Normal University, Shanghai 200234, People’s Republic
of China (dzgao@shnu.edu.cn).

‡Department of Mathematical Sciences, University of South Africa, Pretoria 0003, South Africa
(mungajmw@unisa.ac.za).

§Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 2Y2,
Canada (vandendr@uvic.ca).

¶Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai, Shandong
264209, People’s Republic of China (zhanglei890512@gmail.com).

899

D
ow

nl
oa

de
d 

05
/2

6/
22

 to
 1

11
.1

86
.8

1.
31

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1398434
mailto:dzgao@shnu.edu.cn
mailto:mungajmw@unisa.ac.za
mailto:vandendr@uvic.ca
mailto:zhanglei890512@gmail.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

900 GAO, MUNGANGA, VAN DEN DRIESSCHE, AND ZHANG

severity are typically correlated to age and gender. Asymptomatic infectives are hard
to detect and may, depending on the specific disease, transmit the infection to others,
acting as silent spreaders. Some studies show that asymptomatic and symptomatic
COVID-19 persons have similar initial viral loads [8]. However, asymptomatic carri-
ers are likely to have a shorter duration of viral shedding or infectiousness which may
confer a relatively short period of immunity. Since asymptomatic patients probably
do not seek treatment, they may require a longer time to recover from infections for
some diseases. On the other hand, symptomless people may have more contacts with
others through normal daily activities, so a significant proportion of new infections
could be attributed to asymptomatic transmission.

Understanding the role of asymptomatic infections in disease transmission is cru-
cial to public health. A large number of mathematical models with asymptomatic
infections have been developed and analyzed [10]. Based on SIS and SIR epidemic
models, Kemper [26, 27] studied the contribution of asymptomatic infections to disease
spread. Cooke [11] generalized the model of Kemper [26] by choosing different recovery
rates for infectives with and without symptoms and general contact rates. Busenberg
and van den Driessche [5] proposed an SIAS (I=infective, A=asymptomatic) endemic
model incorporating vital dynamics, vertical transmission, transition between groups
A and I, and different proportions of susceptibles infected by groups A and I being
symptomatic. Hyman, Li, and Stanley [24] constructed a general model with differen-
tial infectivity for the transmission of HIV where the infected population is subdivided
into multiple subgroups according to infectivity. Models with asymptomatic infections
have been extensively used to depict specific diseases such as COVID-19 [21, 42, 47],
Middle East respiratory syndrome [46], influenza [3, 23], hand-foot-mouth disease
[44], cholera [28, 35], Zika fever [18], dengue fever [22], yellow fever [48], and malaria
[39]. For more details, the reader can refer to a survey article by Chisholm et al.
[10].

Global travel and tourism accelerate the spread of infectious diseases and consti-
tute a major challenge for infection prevention and control. The COVID-19 epidemic,
which was first reported in Wuhan, China, in December 2019, was declared a pandemic
in March 2020. There are plenty of studies on modeling and analyzing the impact
of human movement on the spatio-temporal spread of infectious diseases (see Allen
et al. [1], Arino [2], Castillo-Chavez, Bichara, and Morin [7], Gao [14], Gao and Ruan
[19], Li and Shuai [29], Song, Lou, and Xiao [41], and the references therein). En-
try and exit screening can hardly detect asymptomatic travelers who are more likely
to spread the infectious agent from one area to another due to their uninterrupted
mobility. We are interested in exploring the joint effect of asymptomatic infection
and population dispersal. Existing related models are from quantitative research for
COVID-19 using Lagrangian and Eulerian approaches by Gatto et al. [21] and Wang
et al. [45], respectively, and for Zika using a Lagrangian approach by Moreno et al.
[34], and global stability analysis for waterborne diseases using a Lagrangian approach
by Rebaza [37].

In the next section, we propose an SIAR patch model to address asymptomatic
infection and spatial heterogeneity. In section 3, the threshold dynamics of the model
in terms of the basic reproduction number are obtained and the dependence and inde-
pendence of the basic reproduction number on dispersal rates are analyzed in detail.
We also study the asymptotic profiles of the endemic equilibrium for small or large
dispersal rates. In section 4, we numerically investigate the effects of asymptomatic
infection on disease persistence and prevalence. A brief discussion of main results and
future work is given in section 5.
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ASYMPTOMATIC INFECTIONS ON DISEASE SPREAD 901

Fig. 1. Flow diagram of the disease spread between patch i and patch j with λ∗
k =

βk(Ik + τkAk)/Nk representing the force of infection of patch k = i, j.

2. Model formulation. We consider a discrete space consisting of n ≥ 2 patches
connected by human movement. The total population Ni in patch i ∈ Ω = {1, . . . , n}
is divided into classes consisting of susceptible, symptomatic, asymptomatic, and re-
covered individuals, denoted by Si, Ii, Ai, and Ri, respectively. The disease spread
between patch i and patch j for i ̸= j is sketched in Figure 1. Based on the flowchart,
an SIAR patch model is given as follows:

dSi

dt
= dS

∑
j∈Ω

LS
ijSj + Λi − βi

Ii + τiAi

Ni
Si − µiSi, i ∈ Ω,

dIi
dt

= dI
∑
j∈Ω

LI
ijIj + θiβi

Ii + τiAi

Ni
Si − (µi + γIi + δi)Ii, i ∈ Ω,

dAi

dt
= dA

∑
j∈Ω

LA
ijAj + (1− θi)βi

Ii + τiAi

Ni
Si − (µi + γAi )Ai, i ∈ Ω,

dRi

dt
= dR

∑
j∈Ω

LR
ijRj + γIi Ii + γAi Ai − µiRi, i ∈ Ω.

(2.1)

In patch i, Λi is the recruitment rate, βi is the transmission coefficient between
symptomatic and susceptible individuals, τi is the relative infectiousness of asymp-
tomatic individuals compared to symptomatic individuals, θi ∈ (0, 1) is the propor-
tion of new infections that are symptomatic, γIi and γAi are the recovery rates of
symptomatic and asymptomatic persons, respectively, and µi and δi are the natu-
ral and disease-induced mortality rates, respectively. It is natural to assume that
only symptomatic infections may cause death. The dispersal rate and connectivity
matrix of the susceptible, symptomatic, asymptomatic, and recovered people are d♮
and L♮ = (L♮

ij) with ♮ denoting S, I, A, and R, respectively. Here L♮
ij represents the

degree of incoming movement from patch j to patch i for j ̸= i and −L♮
ii =

∑
j ̸=i Lji

is the degree of outgoing movement from patch i to all other patches. Note that
our model ignores the transition possibility between asymptomatic and symptomatic
states [10].
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The connectivity matrices L♮ with ♮ ∈ {S, I, A,R} are assumed to be essentially
nonnegative and irreducible with zero column sums, i.e., L♮ are irreducible Lapla-
cian matrices. Unless otherwise indicated, all parameters except the disease-caused
death rate and these involved in the connectivity matrices are assumed to be positive
throughout this paper. The incidence term Ii+τiAi

Ni
Si is defined to be zero when Si

or Ii + τiAi equals zero, so system (2.1) is Lipschitz continuous in the nonnegative
orthant. Thus, we can easily show that the model is well-posed and dissipative.

Theorem 2.1. For model (2.1) with nonnegative initial conditions, there is a
unique solution satisfying Si(t) > 0, Ii(t) ≥ 0, Ai(t) ≥ 0, and Ri(t) ≥ 0 for all
time t > 0. Moreover, the total population over all patches N(t) :=

∑
i∈ΩNi(t) is in

the interval [min{N(0),Λ/µu},max{N(0),Λ/µl}] with Λ =
∑

i∈Ω Λi, µl = mini∈Ω µi,
and µu = maxi∈Ω(µi + δi).

It is worth noting that the single patch case of model (2.1) is related to an HIV
model with differential infectivity proposed by Hyman, Li, and Stanley [24] and the
disease dynamics are completely determined by the basic reproduction number in the
case of no disease-caused deaths [31].

3. Main results. In this section, we first derive the basic reproduction number
of model (2.1) and use it to establish threshold dynamics. Then we study the relation
between the basic reproduction number and dispersal rates under different circum-
stances. After that, we seek conditions under which the basic reproduction number
is independent of dispersal or dispersal rates. Finally, the asymptotic behavior of the
endemic equilibrium is considered as one or all dispersal rates tend to zero or infinity.

3.1. Threshold dynamics. Clearly, model (2.1) has a unique disease-free equi-
librium E0 = (S0,0,0,0), where S0 is the unique positive solution to

Λi − µiSi + dS
∑
j∈Ω

LS
ijSj = 0, i ∈ Ω.

The incidence and transition matrices are respectively

F =

(
F11 F12

F21 F22

)
and V =

(
V11 0
0 V22

)
,

where

F11 = diag(θ1β1, . . . , θnβn), F12 = diag(θ1τ1β1, . . . , θnτnβn),

F21 = diag((1− θ1)β1, . . . , (1− θn)βn),

F22 = diag((1− θ1)τ1β1, . . . , (1− θn)τnβn),

V11 = DI − dIL
I , DI = diag(µ1 + γI1 + δ1, . . . , µn + γIn + δn),

V22 = DA − dAL
A, DA = diag(µ1 + γA1 , . . . , µn + γAn ).

Using the next generation matrix method [12, 43], the basic reproduction number
of model (2.1) is defined as R0 = ρ(FV −1), where ρ denotes the spectral radius. Let
In be the identity matrix of order n. Since F12 = F11F

−1
21 F22, it follows from row and

column operations of the determinant that

|λI2n − FV −1| =
∣∣∣∣λIn − F11V

−1
11 −F12V

−1
22

−F21V
−1
11 λIn − F22V

−1
22

∣∣∣∣ = ∣∣∣∣ λIn −λF11F
−1
21

−F21V
−1
11 λIn − F22V

−1
22

∣∣∣∣
=

∣∣∣∣ λIn 0
−F21V

−1
11 λIn − F22V

−1
22 − F11V

−1
11

∣∣∣∣ = λn
∣∣λIn − F22V

−1
22 − F11V

−1
11

∣∣ .D
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Thus, by taking R0 = ρ(V −1F ) and a similar calculation using F21 = F22F
−1
12 F11,

R0 = ρ(FV −1) = ρ
(
F11V

−1
11 + F22V

−1
22

)
= ρ(V −1F ) = ρ

(
V −1
11 F11 + V −1

22 F22

)
.

So the basic reproduction number of patch i in isolation is R(i)
0 = R(i)

0I +R(i)
0A, where

R(i)
0I =

θiβi
µi + γIi + δi

and R(i)
0A =

(1− θi)τiβi
µi + γAi

are the numbers of secondary cases generated by symptomatic and asymptomatic
transmissions of an infected person, respectively. Clearly, the disease-free equilibrium
E0 is locally asymptotically stable if R0 < 1 but unstable if R0 > 1 [43].

In case all infections are symptomatic, i.e., θi = 1 for all i ∈ Ω, the SIAR patch
model (2.1) is reduced to an SIR patch model (see, e.g., McCormack and Allen [33])

dSi

dt
= dS

∑
j∈Ω

LS
ijSj + Λi − βi

Ii
Ni
Si − µiSi, i ∈ Ω,

dIi
dt

= dI
∑
j∈Ω

LI
ijIj + βi

Ii
Ni
Si − (µi + γIi + δi)Ii, i ∈ Ω,

dRi

dt
= dR

∑
j∈Ω

LR
ijRj + γIi Ii − µiRi, i ∈ Ω.

(3.1)

Following the analysis on the SIS patch model with standard incidence (Allen et al.
[1], Gao [14], and Gao and Dong [16]), we have the following monotonic result on the
basic reproduction number of model (3.1).

Theorem 3.1. For model (3.1), the reproduction number R0(dI) = ρ(F11V
−1
11 )

and the spectral bound s(dI) := s(F11−V11) = s(F11−DI+dIL
I) are strictly decreasing

and strictly convex in dI ∈ [0,∞) if R(i)
0 = βi/(µi+γ

I
i +δi) and βi−µi−γIi −δi are re-

spectively nonconstant in i ∈ Ω, and constant otherwise, where F11 = diag(β1, . . . , βn),
DI = diag(µ1 + γI1 + δ1, . . . , µn + γIn + δn), and L

I is an irreducible and essentially
nonnegative matrix with zero column sums. Moreover,

min
i∈Ω

R(i)
0 < R0(∞) =

∑
i∈Ω

βiL
I∗
ii

/∑
i∈Ω

(µi + γIi + δi)L
I∗
ii < R0(dI) < R0(0) = max

i∈Ω
R(i)

0

holds for any dI > 0 if R(i)
0 is nonconstant in i ∈ Ω. Here R0(∞) is the limit of

R0(dI) as dI → ∞ and LI∗
ii is the (i, i) cofactor of LI .

Before presenting an estimate on the basic reproduction number of model (2.1),
we introduce a lemma on the spectral radius of a positive linear combination of a
class of next generation matrices. Let 1 = (1, . . . , 1)T. We denote both zero row and
column vectors by 0 and the reader can distinguish them from the context.

Lemma 3.2. Let p be a positive integer. For i = 1, . . . , p, let Di = diag(γi1, . . . ,
γin) be a positive diagonal matrix and Li be an essentially nonnegative and irreducible
matrix with zero column sums. Then

ρ

(
p∑

i=1

miDi(Di − diLi)
−1

)
=

p∑
i=1

mi,

provided that mi ≥ 0 and di ≥ 0 for 1 ≤ i ≤ p.

Proof. Denote Vi = Di − diLi. It follows from 1TLi = 0 that 1TVi = 1TDi, or
equivalently, 1TDiV

−1
i = 1T, for i = 1, . . . , p. Hence,
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1T

p∑
i=1

miDiV
−1
i =

p∑
i=1

mi

(
1TDiV

−1
i

)
=

p∑
i=1

mi1T.

The proof is completed by using the Perron–Frobenius theorem [4].

Note that the basic reproduction number R0 for model (2.1) depends on the
movement of symptomatic and asymptomatic individuals but not on the movement
of susceptible or recovered individuals. Moreover, it is bounded from above and below
by the patch reproduction numbers of symptomatic and asymptomatic populations.

Theorem 3.3. For model (2.1), the basic reproduction number R0 satisfies

min
i∈Ω

R(i)
0I +min

i∈Ω
R(i)

0A ≤ R0 ≤ max
i∈Ω

R(i)
0I +max

i∈Ω
R(i)

0A,

and the asymptotic profiles of R0 with respect to small and large dispersal rates are

lim
dI→0+
dA→0+

R0(dI , dA) = max
i∈Ω

R(i)
0 and lim

dI→∞
dA→∞

R0(dI , dA) = R0I(∞) +R0A(∞),

respectively, where

R0I(∞) := lim
dI→∞

R0I(dI) =

∑
i∈Ω θiβiL

I∗
ii∑

i∈Ω(µi + γIi + δi)LI∗
ii

,

R0A(∞) := lim
dA→∞

R0A(dA) =

∑
i∈Ω(1− θi)τiβiL

A∗
ii∑

i∈Ω(µi + γAi )L
A∗
ii

,

and R0I(dI) = ρ(F11V
−1
11 ), and R0A(dA) = ρ(F22V

−1
22 ) with L♮∗

ii denoting the (i, i)
cofactor of L♮ for i ∈ Ω and ♮ ∈ {I, A}. Furthermore, the inequality

min
i∈Ω

R(i)
0 ≤ R0 ≤ max

i∈Ω
R(i)

0

holds if θi = θ, τi = τ and γIi + δi = γAi for i ∈ Ω.

Proof. Denote
¯
mI = mini∈Ω R(i)

0I , ¯
mA = mini∈Ω R(i)

0A, m̄I = maxi∈Ω R(i)
0I , and

m̄A = maxi∈Ω R(i)
0A. Since Vii is either an irreducible nonsingular M-matrix or a

positive diagonal matrix (if dI = 0 or dA=0), its inverse exists and is a positive
matrix or a positive diagonal matrix (if dI = 0 or dA = 0), i = 1, 2. Then

¯
mIDI ≤ F11 ≤ m̄IDI and

¯
mADA ≤ F22 ≤ m̄ADA,

which imply that

¯
mIDIV

−1
11 ≤ F11V

−1
11 ≤ m̄IDIV

−1
11 and

¯
mADAV

−1
22 ≤ F22V

−1
22 ≤ m̄ADAV

−1
22

and hence

¯
mIDIV

−1
11 +

¯
mADAV

−1
22 ≤ F11V

−1
11 + F22V

−1
22 ≤ m̄IDIV

−1
11 + m̄ADAV

−1
22 .

Therefore,

ρ
(
¯
mIDIV

−1
11 +

¯
mADAV

−1
22

)
≤ ρ

(
F11V

−1
11 + F22V

−1
22

)
≤ ρ

(
m̄IDIV

−1
11 + m̄ADAV

−1
22

)
.
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It follows from Lemma 3.2 that

ρ(
¯
mIDIV

−1
11 +

¯
mADAV

−1
22 ) =

¯
mI +

¯
mA and ρ(m̄IDIV

−1
11 +m̄ADAV

−1
22 ) = m̄I +m̄A,

thus completing the proof of the general estimate on R0 = ρ(F11V
−1
11 + F22V

−1
22 ).

The limit of R0 as dI → 0+ and dA → 0+ is obtained by the continuity of R0 in
dI ≥ 0 and dA ≥ 0. By using Lemma 3.2 in Gao and Dong [16], we have

lim
dI→∞

V −1
11 =

1∑
i∈Ω(µi + γIi + δi)LI∗

ii

LI∗ and lim
dA→∞

V −1
22 =

1∑
i∈Ω(µi + γAi )L

A∗
ii

LA∗,

where L♮∗ = (L♮∗
ij )

T is the adjoint matrix of L♮ for ♮ ∈ {I, A}. Thus, it follows from

1T

(
F11 lim

dI→∞
V −1
11 + F22 lim

dA→∞
V −1
22

)
= R0I(∞)1T +R0A(∞)1T

and the Perron–Frobenius theorem that

lim
dI→∞
dA→∞

R0(dI , dA) = lim
dI→∞
dA→∞

ρ
(
F11V

−1
11 + F22V

−1
22

)
= ρ

(
F11 lim

dI→∞
V −1
11 + F22 lim

dA→∞
V −1
22

)
= R0I(∞) +R0A(∞).

If, in addition, θi = θ, τi = τ and γIi + δi = γAi for i ∈ Ω, then

max
i∈Ω

R(i)
0I +max

i∈Ω
R(i)

0A = max
i∈Ω

θ
βi

µi + γA
i

+max
i∈Ω

(1− θ)τ
βi

µi + γA
i

= (θ + (1− θ)τ)max
i∈Ω

βi

µi + γA
i

=max
i∈Ω

(θ+(1− θ)τ)
βi

µi + γA
i

=max
i∈Ω

R(i)
0 .

A similar argument establishes the result mini∈Ω R(i)
0I +mini∈Ω R(i)

0A = mini∈Ω R(i)
0 .

Moreover, any value between the lower and upper bounds of R0 in Theorem 3.3
is reachable under an appropriate dispersal strategy.

Corollary 3.4. For model (2.1), given any number

r ∈ (r, r̄) :=

(
min
i∈Ω

R(i)
0I +min

i∈Ω
R(i)

0A,max
i∈Ω

R(i)
0I +max

i∈Ω
R(i)

0A

)
,

there exist some dispersal rates dI and dA and connectivity matrices LI and LA such
that the corresponding basic reproduction number R0(dI , dA, L

I , LA) = r.

Proof. By the continuity of R0 in dispersal rates and connectivity matrices, it
suffices to show that R0 can approach r and r̄ from above and below, respectively.

We now prove the upper bound case. Suppose that i♮ satisfies R
(i♮)
0♮ = maxi∈Ω R(i)

0♮ for
♮ ∈ {I, A}. Let ei♮ be the unit column vector having one in the i♮th component and
zero elsewhere for ♮ ∈ {I, A}. We can choose a sequence of positive column vectors

{α♮
k} converging to ei♮ such that∣∣∣∣1TF11α

I
k

1TDIαI
k

−R(iI)
0I

∣∣∣∣ < 1

k
and

∣∣∣∣1TF22α
A
k

1TDAαA
k

−R(iA)
0A

∣∣∣∣ < 1

k
for k ∈ N.

According to Remark 2 in Gao, van den Driessche, and Cosner [20], for any given
positive vector α, there is a connectivity matrix L having α as its right eigenvector
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corresponding to the zero eigenvalue. Thus, there exist LI
k and LA

k associated with αI
k

and αA
k , respectively, satisfying R0I(∞, LI

k) =
1TF11α

I
k

1TDIαI
k

and R0A(∞, LA
k ) =

1TF22α
A
k

1TDAαA
k

and hence ∣∣∣R0♮(∞, L♮
k)−R(i♮)

0♮

∣∣∣ < 1

k
for k ∈ N and ♮ ∈ {I, A}.(3.2)

Here R0♮(∞, L♮
k) is the limit of R0♮(d♮) with connectivity matrix L♮

k as d♮ → ∞.
Using Theorem 3.3, there exist two positive sequences {dIk} and {dAk} such that∣∣R0

(
dIk, dAk, L

I
k, L

A
k

)
−R0I

(
∞, LI

k

)
−R0A

(
∞, LA

k

)∣∣ < 1

k
for k ∈ N,(3.3)

where R0(dIk, dAk, L
I
k, L

A
k ) denotes R0(dIk, dAk) with connectivity matrices LI

k and
LA
k . A combination of (3.2) and (3.3) gives∣∣∣R0(dIk, dAk, L

I
k, L

A
k )−

(
R(iI)

0I +R(iA)
0A

)∣∣∣
≤
∣∣R0(dIk, dAk, L

I
k, L

A
k )−

(
R0I

(
∞, LI

k

)
+R0A

(
∞, LA

k

))∣∣
+
∣∣∣R0I

(
∞, LI

k

)
−R(iI)

0I

∣∣∣+ ∣∣∣R0A

(
∞, LA

k

)
−R(iA)

0A

∣∣∣ < 3

k
, k ∈ N,

which implies that R0(dIk, dAk, L
I
k, L

A
k ) → r̄ = R(iI)

0I +R(iA)
0A as k → ∞. The lower

bound case can be shown similarly.

By using a Lyapunov function and persistence theory, the basic reproduction
number R0 is shown to be a threshold between disease extinction and persistence.

Theorem 3.5. For model (2.1), if R0 ≤ 1, then the disease-free equilibrium E0

is globally asymptotically stable; if R0 > 1, then the disease is uniformly persistent
and there exists at least one endemic equilibrium.

Proof. The proof follows the method of Theorem 2.2 in Shuai and van den Driess-
che [40]. Let x = (I1, . . . , In, A1, . . . , An)

T and y = (S1, . . . , Sn, R1, . . . Rn)
T. Then,

x′ = (F − V )x− f(x,y),

where the prime denotes the first derivative and f = (f I1 , . . . , f
I
n, f

A
1 , . . . , f

A
n )T with

f Ii (x,y) = θiβi(Ii + τiAi)

(
1− Si

Ni

)
, i ∈ Ω,

fAi (x,y) = (1− θi)βi(Ii + τiAi)

(
1− Si

Ni

)
, i ∈ Ω.

Since Si/Ni ≤ 1, it follows that f(x,y) ≥ 0. Let ωT be the left eigenvector of V −1F
associated with R0 = ρ(V −1F ), i.e., ωTV −1F = R0ωT.

Since V −1F is irreducible and positive, ωT is positive. Consider a Lyapunov
function Q(x) = ωTV −1x. The derivative of Q(x) along a solution of (2.1) is

Q′(x) = ωTV −1x′ = ωTV −1(F − V )x− ωTV −1f(x,y)

= (R0 − 1)ωTx− ωTV −1f(x,y).

The second term is nonpositive. Thus, if R0 < 1, then the only invariant set where
Q′ = 0 is the singleton {E0} due to the irreducibility of LI and LA. If R0 = 1,
then Q′ = 0 implies x = 0. We can proceed as before. Thus, by LaSalle’s invariance
principle, E0 is globally asymptotically stable if R0 ≤ 1.

If R0 > 1, then E0 is unstable and the system is uniformly persistent and as in
[40] there exists at least one endemic equilibrium.
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3.2. Dependence of R0 on dispersal rates. Since the long-term disease dy-
namics of model (2.1) are entirely governed by the basic reproduction number R0, it
is desirable to eradicate a disease by reducing R0 to less than unity. A natural ques-
tion is how R0 varies with model parameters, especially the dispersal rates. Recently,
there has been increasing interest in this topic [1, 9, 14, 16, 19, 41]. In what follows,
we give three conditions under which R0 is a monotone decreasing function of the
dispersal rate of the symptomatic population. Biologically speaking, these conditions
mean that in each patch the same proportion of new infected individuals are symp-
tomatic, and the asymptomatic individuals have the same relative infectiousness. By
similar reasoning, similar conclusions can be given for the basic reproduction number
with respect to the dispersal rate of the asymptomatic population. These monotone
results can be used to improve the estimate of R0 [16].

Theorem 3.6. Suppose θi = θ and τi = τ for all i ∈ Ω, and LI and LA are
symmetric. Then the basic reproduction number R0(dI) of model (2.1) is constant in
terms of dI if DI1 is a right eigenvector of F11D

−1
I +F22V

−1
22 = θBD−1

I +(1−θ)τBV −1
22

associated with eigenvalue R0(0) = ρ(F11D
−1
I + F22V

−1
22 ), i.e.,(

F11D
−1
I + F22V

−1
22

)
DI1 = R0(0)DI1

and strictly decreasing otherwise, where B = diag(β1, . . . , βn). If, in addition, γIi +

δi = γAi for all i ∈ Ω, then R0 is constant in terms of dI if R(1)
0 = · · · = R(n)

0 and
strictly decreasing otherwise.

Proof. Since R0 = ρ(FV −1) = ρ(V −1F ) and V −1F is a nonnegative and irre-
ducible matrix whenever dI > 0 or dA > 0, there exists a positive right eigenvector
v = ( vI

vA
) such that

V −1Fv = R0v ⇐⇒
(

1

R0
F − V

)
v = 0.

More explicitly, we have(
1

R0
F11 − V11

)
vI +

1

R0
F12vA = 0,(3.4a)

1

R0
F21vI +

(
1

R0
F22 − V22

)
vA = 0.(3.4b)

Differentiating both sides of the two equations in (3.4) with respect to dI gives(
−R′

0

R2
0

F11 + LI

)
vI +

(
1

R0
F11 − V11

)
v′
I −

R′
0

R2
0

F12vA +
1

R0
F12v

′
A = 0,(3.5a)

− R′
0

R2
0

F21vI +
1

R0
F21v

′
I −

R′
0

R2
0

F22vA +

(
1

R0
F22 − V22

)
v′
A = 0.(3.5b)

It follows from (v′
I)

T×(3.4a)− (vI)T×(3.5a) and (v′
A)

T×(3.4b)− (vA)T×(3.5b) and
the symmetry of LI and LA that

R′
0

R2
0

(vI)T(F11vI + F12vA) = (vI)TL
IvI +

1

R0

(
(vI)TF12v

′
A − (v′

I)
TF12vA

)
,

R′
0

R2
0

(vA)T(F21vI + F22vA) =
1

R0

(
(vA)TF21v

′
I − (v′

A)
TF21vI

)
.

(3.6)D
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The assumptions θi = θ and τi = τ for all i ∈ Ω lead to

F11 = θB, F12 = θτB, F21 = (1− θ)B, F22 = (1− θ)τB.(3.7)

We therefore can rewrite (3.6) in an explicit form as follows:

θ
R′

0

R2
0

(vI)TB(vI + τvA) = (vI)TL
IvI +

θτ

R0

(
(vI)TBv′

A − (v′
I)

TBvA

)
,(3.8a)

(1− θ)
R′

0

R2
0

(vA)TB(vI + τvA) =
1− θ

R0

(
(vA)TBv′

I − (v′
A)

TBvI

)
.(3.8b)

Directly calculating (1− θ)×(3.8a)+θτ×(3.8b) yields

(1− θ)θ
R′

0

R2
0

(vI + τvA)TB(vI + τvA) = (1− θ)(vI)TL
IvI ,

and hence

R′
0(dI) =

R2
0

θ
· (vI)TL

IvI

(vI + τvA)TB(vI + τvA)
.

Thus R′
0 is nonpositive since B is a positive diagonal matrix and LI is the negative

of a symmetric singular M-matrix (i.e., negative semidefinite). Furthermore, if we
denote vI = (vI1 , . . . , v

I
n)

T, then

(vI)TL
IvI = −1

2

∑
i,j∈Ω

LI
ij

(
vIi − vIj

)2 ≤ 0.

Solving vA from (3.4a) gives

vA = −F−1
12 (F11 −R0V11)vI ,(3.9)

and substituting it into (3.4b) yields

1

R0
F21vI =

(
1

R0
F22F

−1
12 F11 − F22F

−1
12 V11 − V22F

−1
12 F11 +R0V22F

−1
12 V11

)
vI .

By noting F21 = F22F
−1
12 F11, the above equality can be simplified to

R0V22F
−1
12 V11vI =(F22F

−1
12 V11 + V22F

−1
12 F11)vI ,

which is equivalent to

R0V11vI = (F11V
−1
11 + F12V

−1
22 F22F

−1
12 )V11vI .(3.10)

Suppose there exists some d̂I ≥ 0 such that R′
0(d̂I) = 0. It suffices to show that

R0(dI) ≡ R0(d̂I) for any dI ∈ [0,∞). Following the proof of Lemma 3.4 in Allen
et al. [1], the irreducibility of LI and (vI)TL

IvI = 0 imply that vI = k1 for some

k > 0 as dI = d̂I . It follows from V111 = DI1 and (3.7) that (3.10) becomes

R0(d̂I)DI1 = F111+ F22V
−1
22 DI1

= F11

(
DI − dIL

I
)−1 (

DI − dIL
I
)
1+ F22V

−1
22 DI1

=
(
F11

(
DI − dIL

I
)−1

+ F22V
−1
22

)
DI1

for any dI ≥ 0. By the Perron–Frobenius theorem, we have
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R0(d̂I) = ρ
(
F11

(
DI − dIL

I
)−1

+ F22V
−1
22

)
= R0(dI) ∀dI ≥ 0.

In addition, if γIi + δi = γAi for i ∈ Ω, then

V221 = DA1 = DI1 ⇒ V −1
22 DI1 = 1

and hence
R0(d̂I)DI1 = F111+ F22V

−1
22 DI1 = (F11 + F22)1,

which implies that R(1)
0 = · · · = R(n)

0 = R0(d̂I).

Under the same assumptions as in Theorem 3.6, we can use a similar approach
to conclude that the initial exponential growth rate of model (2.1), i.e., s(F −V ), the
spectral bound of the Jacobian matrix of model (2.1) at the disease-free equilibrium
E0, is monotone decreasing with respect to dI and dA. In fact, the matrix F−V +kI2n
is nonnegative and irreducible for large enough k > 0 so that ρ(F − V + kI2n) =
s(F−V +kI2n) = s(F−V )+k holds and the associated eigenvector is strictly positive.
This is a generalization of the results on the SIS or SIR patch model (Lemma 3.4 in
Allen et al. [1] and Corollary 3.5 in Gao and Dong [16]).

Proposition 3.7. Suppose θi = θ and τi = τ for all i ∈ Ω, and LI and LA are
symmetric. Then the spectral bound of the Jacobian matrix of system (2.1) at the
disease-free equilibrium, s(dI) := s(F −V ) = s(F −diag(DI −dILI , V22)), is constant

in terms of dI if (
1

F−1
12 (s(0)In−F11+DI)1

) is a right eigenvector of F − diag(DI , V22)

associated to eigenvalue s(0) = s(F −diag(DI , V22)) and strictly decreasing otherwise.

For some diseases, it may be that dS = dA = dR and LS = LI = LA = LR,
or approximate equalities hold. In case where LI and LA are equal and diagonally
similar to a symmetric matrix, the reproduction number is still monotone decreasing
in dispersal rates. The proof of the following is in the supplementary material (SM1).

Proposition 3.8. Assume that (i) θi = θ and τi = τ for i ∈ Ω; (ii) the con-
nectivity matrices LI and LA are equal (i.e., LI = LA := L); (iii) there is a pos-
itive diagonal matrix C such that CLC−1 is symmetric. Let α0 be a positive right
eigenvector of L corresponding to eigenvalue zero. Then the basic reproduction num-
ber R0(dI) of model (2.1) is constant in terms of dI if DIα0 is a right eigen-
vector of F11D

−1
I + F22V

−1
22 = θBD−1

I + (1 − θ)τBV −1
22 associated to eigenvalue

R0(0) = ρ(F11D
−1
I + F22V

−1
22 ), i.e.,(

F11D
−1
I + F22V

−1
22

)
DIα0 = R0(0)DIα0

and strictly decreasing otherwise, where B = diag(β1, . . . , βn). If, in addition, γIi +

δi = γAi for all i ∈ Ω, then R0 is constant in terms of dI if R(1)
0 = · · · = R(n)

0 and
strictly decreasing otherwise.

Remark 3.9. The necessary and sufficient condition for a connectivity matrix L to
meet assumption (iii) in Proposition 3.8 is that it is symmetrizable. A square matrix
M is called symmetrizable if DM is symmetric for some positive diagonal matrix D =
diag(d1, . . . , dn). In matrix theory, a matrix M = (mij)n×n is symmetrizable if and
only if mij = mji = 0 or mijmji > 0 for all 1 ≤ i, j ≤ n, and mi1i2mi2i3 · · ·miki1 =
mi2i1mi3i2 · · ·mi1ik for all k ≥ 3 and i1, i2, . . . , ik ∈ {1, . . . , n} (see Maybee [32]).

Denote D
1
2 = diag(

√
d1, . . . ,

√
dn) and D− 1

2 = diag(1/
√
d1, . . . , 1/

√
dn). If M is

symmetrizable, then
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DM = (DM)T =MTDT =MTD ⇔ D− 1
2DMD− 1

2 = D− 1
2MTDD− 1

2

⇔ D
1
2MD− 1

2 = D− 1
2MTD

1
2 =

(
D

1
2MD− 1

2

)T
,

that is, D
1
2MD− 1

2 is symmetric. A special case is that if a connectivity matrix
L = (Lij)n×n has no cycles of length ≥ 3, that is, L has only loops Lii < 0 and
cycles of length 2 from products LijLji > 0 (i ̸= j), then it is symmetrizable and
hence satisfies assumption (iii) (see Lemma 12.3.1 in Johnson and Saiago [25]). In
particular, this holds for the two-patch case.

When symptomatic or asymptomatic individuals do not move between patches,
the monotonic result on R0 holds with no restrictions on model parameters.

Theorem 3.10. For model (2.1), if dI = 0 (or dA = 0), then the basic repro-

duction number R0 is strictly decreasing with respect to dA (or dI) whenever R(i)
0 is

nonconstant in i ∈ Ω, and constant otherwise.

Proof. We only consider the case of dA = 0 while the case of dI = 0 can be shown
similarly. Notice that F11V

−1
11 = (V11F

−1
11 )−1 = (DIF

−1
11 − dIL

IF−1
11 )−1, without loss

of generality, we assume that F11 = In. Otherwise, we can define D̃I = DIF
−1
11 ,

L̃I = LIF−1
11 and Ṽ11 = V11F

−1
11 , and replace DI , L

I , and V11 by D̃I , L̃
I , and Ṽ11 in

the following argument, respectively. For convenience, let

DI = diag(c1, . . . , cn) and F22V
−1
22 =W = diag(w1, . . . , wn).

Since F11V
−1
11 + F22V

−1
22 = V −1

11 +W is a positive matrix, by the Perron–Frobenius
theorem, there exists a positive eigenvector u ≫ 0 such that

(V −1
11 +W )u = R0(dI)u.

Clearly, R0(dI) > maxi∈Ω wi. Let v := (R0(dI)In −W )u = V −1
11 u, which implies

that u = V11v = (DI − dIL
I)v. Notice that V11 is irreducible; we then have v ≫ 0.

An easy computation yields that

(dIL
I −DI + (R0(dI)In −W )−1)v = (dIL

I −DI)v + u = 0.

By the Perron–Frobenius theorem, the essential nonnegativity and irreducibility of
dIL

I −DI + (R0(dI)In −W )−1 mean that

s(dIL
I −DI + (R0(dI)In −W )−1) = 0.

Define χ(dI , λ) = s(dIL
I − DI + (λIn − W )−1) for dI > 0 and λ > maxi∈Ω wi.

In particular, χ(dI ,R0(dI)) = 0 for any dI > 0. Again by the Perron–Frobenius
theorem (see, e.g., Corollary 2.1.5 in Berman and Plemmons [4]), χ(dI , λ) is strictly
decreasing in λ > maxi∈Ω wi. By Corollary 3.5 in Gao and Dong [16], χ(dI , λ) is
strictly decreasing in dI > 0 if and only if −DI +(λIn−W )−1 is not a scalar multiple
of In. Therefore, given a pair of d̃I and dI satisfying d̃I > dI > 0, we have

χ(d̃I ,R0(dI)) ≤ χ(dI ,R0(dI)) = 0 = χ(d̃I ,R0(d̃I)),

which implies that R0(dI) ≥ R0(d̃I). The equality R0(dI) = R0(d̃I) holds if and only
if χ(d̃I ,R0(dI)) = χ(dI ,R0(dI)), and hence if and only if

−DI + (R0(dI)In −W )−1 = kIn,

for some constant k ∈ R. Thus, χ(dI ,R0(dI)) = s(dIL
I+kIn) = k+s(dIL

I) = k = 0.

We conclude that −ci + (R0(dI) − wi)
−1 = 0 for all i ∈ Ω, i.e., R0(dI) = R(i)

0 =
1/ci + wi is constant in i ∈ Ω.
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When only two patches are concerned, we show below that the basic reproduction
number R0 is either strictly decreasing or strictly increasing or constant with respect
to dI and dA depending on parameter values (see section 4 for numerical examples).
Nevertheless, following Theorem 3.1, the reproduction number of the corresponding
SIR patch model (3.1) is either strictly decreasing or constant in dispersal rate of the
infected population. This means that the presence of asymptomatic infections can
alter the relation between R0 and dI . It is worth mentioning that Gao and Ruan [19]
analyzed the dependence of the basic reproduction number on the dispersal rate and
dispersal asymmetry for a two-patch malaria model.

Proposition 3.11. For model (2.1) with n = 2, if all parameters are positive,
then the derivative of R0 with respect to dI or dA has sign-preserving property, i.e.,

sgn

(
dR0

ddI

)
= sgn

(
dR0

ddI

∣∣∣∣
dI=0+

)
and sgn

(
dR0

ddA

)
= sgn

(
dR0

ddA

∣∣∣∣
dA=0+

)

for dI > 0 and dA > 0.

Proof. We prove the case of dI , and a similar argument holds for dA. Note that

F11V
−1
11 + F22V

−1
22 =

(
V11F

−1
11

)−1
+ F22V

−1
22 =

(
DIF

−1
11 − dIL

IF−1
11

)−1
+ F22V

−1
22 .

Here DIF
−1
11 is a positive diagonal matrix, LIF−1

11 is an essentially nonnegative and
irreducible matrix with zero column sums, and F22V

−1
22 is a positive matrix with

positive determinant. Thus, it suffices to consider the case of F11 = I2, i.e.,

R0(dI) = ρ
((
DI − dIL

I
)−1

+ F22V
−1
22

)
,

where

DI =

(
γ1 0
0 γ2

)
, LI =

(
−L21 L12

L21 −L12

)
, and F22V

−1
22 =

(
a11 a12
a21 a22

)
satisfy γ1, γ2, L12, L21, a11, a12, a21, a22 > 0, and a11a22 > a12a21. A direct calcula-
tion yields

R0(dI) =
ϕ+

√
ψ

2∆
,

where

∆ = (L12γ1 + L21γ2)dI + γ1γ2,

ϕ = (a11 + a22)∆ + (L12 + L21)dI + γ1 + γ2,

ψ = ϕ2 − 4∆(1 + a11γ1 + a22γ2 + (a11a22 − a12a21)∆

+ ((a11 − a12)L21 + (a22 − a21)L12)dI) > 0.

Thus, we have

dR0

ddI
=

2
√
ψ(ϕ′∆− ϕ∆′) + (ψ′∆− 2ψ∆′)

4∆2
√
ψ

,(3.11)

where the prime represents the derivative with respect to dI .
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Since ϕ′∆−ϕ∆′ = −L12γ
2
1 −L21γ

2
2 < 0, the derivative R′

0(dI) = 0 if and only if

ψ′∆− 2ψ∆′ > 0,(3.12a)

(ψ′∆− 2ψ∆′)2 = 4ψ(ϕ′∆− ϕ∆′)2.(3.12b)

It is straightforward to obtain

(ψ′∆− 2ψ∆′)2 − 4ψ(ϕ′∆− ϕ∆′)2 = −16∆2g1g2,

where

g1 = (a11L12γ1 + a12L21γ2 + L12)L21γ2 − (a22L21γ2 + a21L12γ1 + L21)L12γ1,

g2 = (a11γ1 + a21γ2 + 1)γ2 − (a22γ2 + a12γ1 + 1)γ1.

So, (3.12b) holds if and only if g1 = 0 or g2 = 0. Next we show that (3.12b) implies
(3.12a). Solving a11 from g1 = 0 and substituting it into the left side of (3.12a) give

ψ′∆− 2ψ∆′ =
2
(
L12γ

2
1 + L21γ

2
2

)
L12L21γ1γ2

((
a12L

2
21γ

2
2 + a21L

2
12γ

2
1

)
∆

+
(
L12γ

2
1 + L21γ

2
2

)
L12L21dI

)
> 0.

Similarly, solving a11 from g2 = 0 and substituting it into the left side of (3.12a) give

ψ′∆− 2ψ∆′ =
2
(
L12γ

2
1 + L21γ

2
2

)
γ1γ2

((
a12γ

2
1 + a21γ

2
2

)
∆+

(
L12γ

2
1 + L21γ

2
2

)
dI
)
> 0.

Therefore, R′
0(dI) = 0 if and only if either g1 = 0 or g2 = 0 holds. Note that both g1

and g2 are independent of dI . Thus, if R′
0(d

0
I) = 0 for some d0I ≥ 0, then R′

0(dI) ≡ 0
for all dI ∈ [0,∞), i.e., R0(dI) ≡ const.

Remark 3.12. Based on the above proof, for the two-patch case, we can obtain
an explicit condition to determine the sign of the right derivative of R0 with respect
to dI at zero and use it to decide the monotonicity of R0(dI). In particular, using the
notation in the proof, R0(dI) is constant if and only if one of the following holds:

1

γ1
+ a11 + a21

γ2
γ1

=
1

γ2
+ a22 + a12

γ1
γ2
,

1

γ1
+ a11 + a12

L21γ2
L12γ1

=
1

γ2
+ a22 + a21

L12γ1
L21γ2

,

where the left- and right-hand sides of the equalities are related to R(1)
0 and R(2)

0 ,
respectively. A tedious calculation shows that each equality with respect to dA has at
most one positive root and hence there exist at most two positive dA1 and dA2 such
that R0(dI) is constant in dI ≥ 0 as dA = dA1 or dA2 whenever R0(dI , dA) ̸≡ const.

3.3. Independence of R0 on dispersal rates. The aforementioned analysis
indicates that the relation between the reproduction number and population dispersal
could be very complicated when there are no or weak restrictions on model parameters.
An interesting question is to determine under what conditions R0 is independent of
dispersal and dispersal rates, respectively, which means that R0(dI , dA, L

I , LA) is
constant for any dispersal rates dI and dA and any connectivity matrices LI and LA,
and R0(dI , dA) is constant for any dispersal rates dI and dA, respectively. The present
analysis can play a key role in completely classifying the model parameter space on
the monotonicity of R0 with respect to dispersal rates.
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Proposition 3.13. For model (2.1), the following statements on R0 hold:

(a) R0 is independent of dispersal if and only if both R(i)
0I and R(i)

0A are constant
in i ∈ Ω.

(b) R0 is independent of dispersal rates dI and dA if and only if R(i)
0 is constant in

i ∈ Ω and s((DAF
−1
22 F11D

−1
I −dALAF−1

22 )−1−DIF
−1
11 F22D

−1
A +dIL

IF−1
11 ) = 0

for any dI ≥ 0 and dA ≥ 0.

(c) R0 is independent of dispersal rates dI and dA if R(i)
0 is constant in i ∈ Ω

and DIα
I = kDAα

A for some k > 0, where α♮ is a right positive eigenvector
with eigenvalue zero of matrix L♮ for ♮ ∈ {I, A}, but not conversely.

(d) R0 is independent of dispersal rates dI and dA if R0 is independent of dis-
persal, but not conversely.

Proof. Denote D̃I = DIF
−1
11 , L̃I = LIF−1

11 , Ṽ11 = V11F
−1
11 = D̃I − dI L̃

I , D̃A =
DAF

−1
22 , L̃A = LAF−1

22 , and Ṽ22 = V22F
−1
22 = D̃A − dAL̃

A.

(a) If R(i)
0I = R(1)

0I and R(i)
0A = R(1)

0A for i ∈ Ω, then it follows from Lemma 3.2 and

F11V
−1
11 + F22V

−1
22 = F11D

−1
I DIV

−1
11 + F22D

−1
A DAV

−1
22

= R(1)
0I DI

(
DI − dIL

I
)−1

+R(1)
0ADA(DA − dAL

A)−1

that R0 = ρ(F11V
−1
11 + F22V

−1
22 ) = R(1)

0I +R(1)
0A = R(1)

0 for any dI , dA, L
I and LA.

On the contrary, suppose R0 is independent of dispersal. Then, by Corollary 3.4,

min
i∈Ω

R(i)
0I +min

i∈Ω
R(i)

0A = max
i∈Ω

R(i)
0I +max

i∈Ω
R(i)

0A,

which implies that maxi R(i)
0I = mini R(i)

0I , and maxi R(i)
0A = mini R(i)

0A. So both R(i)
0I

and R(i)
0A are constant in i ∈ Ω.

(b) Suppose R0 is independent of dispersal rates. Then, in particular, R0(dI , 0)

is constant for any dI ≥ 0. So, R(i)
0 is constant in i ∈ Ω, i.e., D̃−1

I + D̃−1
A = R0In, by

using Theorem 3.10. There exists a right positive vector v such that(
F11V

−1
11 + F22V

−1
22

)
v =

(
Ṽ −1
11 + Ṽ −1

22

)
v = R0v

⇔
(
Ṽ22Ṽ

−1
11 + In

)
v = R0Ṽ22v

⇔
(
Ṽ22 + Ṽ11

)
Ṽ −1
11 v = R0Ṽ22Ṽ11Ṽ

−1
11 v

⇔
(
Ṽ22 + Ṽ11

)
w = R0Ṽ22Ṽ11w,

where w = Ṽ −1
11 v ≫ 0. This is equivalent to

w = (R0Ṽ22 − In)(R0Ṽ11 − In)w

= (R0D̃A − In − dAL̃
A)(R0D̃I − In − dI L̃

I)w

= (D̃AD̃
−1
I − dAL̃

A)(D̃ID̃
−1
A − dI L̃

I)w

⇔
(
(D̃AD̃

−1
I − dAL̃

A)−1 − D̃ID̃
−1
A + dI L̃

I
)
w = 0,

where the third equality is based on D̃−1
I + D̃−1

A = R0In. Note that the matrix

M̃ = (D̃AD̃
−1
I −dAL̃A)−1− D̃ID̃

−1
A +dI L̃

I is essentially nonnegative and irreducible.

By the Perron–Frobenius theorem, s(M̃) = 0 for any dI ≥ 0 and dA ≥ 0.
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Sufficiency can be shown by reversing the argument for the necessity. The only
point we need to address is that if w ≫ 0, then v = Ṽ11w ≫ 0. In fact,

(Ṽ22 + Ṽ11)w = R0Ṽ22Ṽ11w ⇔ w =
(
R0In − Ṽ −1

22

)
Ṽ11w.

It follows from

1TD̃A

(
D̃−1

A −
(
D̃A − dAL̃

A
)−1

)
= 0 ⇒ s

(
D̃−1

A −
(
D̃A − dAL̃

A
)−1

)
= 0

that

R0In − Ṽ −1
22 = D̃−1

I + D̃−1
A −

(
D̃A − dAL̃

A
)−1

is an irreducible nonsingularM -matrix such that (R0In−Ṽ −1
22 )−1 exists and is positive

(see, e.g., Theorem 6.2.7 in Berman and Plemmons [4]). So v = Ṽ11w = (R0In −
Ṽ −1
22 )−1w ≫ 0.

(c) Suppose R(i)
0 is constant in i ∈ Ω and DIα

I = kDAα
A for some k > 0,

or equivalently, D̃−1
I + D̃−1

A = R0In and D̃Iα̃
I = kD̃Aα̃

A with α̃I = F11α
I and

α̃A = F22α
A for k > 0. Note L̃Iα̃I = LIαI = 0 and L̃Aα̃A = LAαA = 0. Then(

F11V
−1
11 + F22V

−1
22

)
D̃Iα̃

I =

((
D̃I − dI L̃

I
)−1

+
(
D̃A − dAL̃

A
)−1

)
D̃Iα̃

I

=
(
D̃I−dI L̃

I
)−1

D̃Iα̃
I+k

(
D̃A − dAL̃

A
)−1

D̃Aα̃
A=α̃I + kα̃A

= α̃I + k · 1
k
D̃−1

A D̃Iα̃
I =

(
In + D̃−1

A D̃I

)
α̃I = R0D̃Iα̃

I .

Thus, R0 = ρ(F11V
−1
11 + F22V

−1
22 ) is unaffected by the selection of dI and dA.

On the other hand, supposeR0 is independent of dispersal rates. Clearly, DIα
I =

kDAα
A can fail if both R(i)

0I and R(i)
0A are constant in i ∈ Ω, i.e., DIF

−1
11 and DAF

−1
22

are scalar multiple of the identity matrix In by (a). Moreover, the equality may still

fail even if R(i)
0I and R(i)

0A are nonconstant. Consider, for instance, F11 = F22 = I3,
DI = diag(1, 32 , 1), DA = diag(1, 34 , 1), and

LI =

− 3
2 2 1
1 −3 1
1
2 1 −2

 and LA =

−2 1 1
1 − 3

2 1
1 1

2 −2

 .

Then a straightforward calculation yields

R0(dI , dA) = ρ
(
F11V

−1
11 + F22V

−1
22

)
= ρ

((
DI − dIL

I
)−1

+
(
DA − dAL

A
)−1
)
≡ 2

and the associated left eigenvector

(2(dI + 2dA + 9dIdA), 3(dI + dA + 6dIdA), 2(dI + 2dA + 9dIdA)).

However, DIα
I = (2, 32 , 1)

T ̸= kDAα
A = k(5, 92 , 4)

T for any k > 0 where αI =
(2, 1, 1)T and αA = (5, 6, 4)T.

(d) It leaves only one thing to argue, that is, the independence of R0 on dispersal
rates does not imply the independence of R0 on dispersal. Consider, for example,

F11 =

(
1 0
0 2

)
, F22 =

(
2 0
0 1

)
, DI = DA = I2, and LI = LA =

(
−1 1
1 −1

)
,

D
ow

nl
oa

de
d 

05
/2

6/
22

 to
 1

11
.1

86
.8

1.
31

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ASYMPTOMATIC INFECTIONS ON DISEASE SPREAD 915

thenR(1)
0 = R(2)

0 = 3 andDIα
I = DAα

A with αI = αA =
(
1
1

)
. According to case (c),

R0 is independent of dispersal rates. However, it follows from R(1)
0I = 1 ̸= R(2)

0I = 2
and case (a) that R0 is not independent of dispersal.

Remark 3.14. For the SIR patch model (3.1), by Theorem 3.1, it is simple to
verify that R0 is independent of the dispersal rate if and only if R0 is independent
of dispersal. Thus, the independence of the basic reproduction number on dispersal
gives one more difference between SIR and SIAR patch models.

3.4. Asymptotic profiles of the endemic equilibrium. In this subsection,
we focus on the asymptotic properties of the endemic equilibrium of model (2.1) for
slow or fast dispersal. When R0 > 1, by Theorem 3.5, there always exists at least
one endemic equilibrium, denoted by

E∗ = (S∗
1 , . . . , S

∗
n, I

∗
1 , . . . , I

∗
n, A

∗
1, . . . , A

∗
n, R

∗
1, . . . , R

∗
n),

which is a positive solution to

dS
∑
j∈Ω

LS
ijS

∗
j + Λi − βi

I∗i + τiA
∗
i

N∗
i

S∗
i − µiS

∗
i = 0, i ∈ Ω,(3.13a)

dI
∑
j∈Ω

LI
ijI

∗
j + θiβi

I∗i + τiA
∗
i

N∗
i

S∗
i − (µi + γIi + δi)I

∗
i = 0, i ∈ Ω,(3.13b)

dA
∑
j∈Ω

LA
ijA

∗
j + (1− θi)βi

I∗i + τiA
∗
i

N∗
i

S∗
i − (µi + γAi )A

∗
i = 0, i ∈ Ω,(3.13c)

dR
∑
j∈Ω

LR
ijR

∗
j + γIi I

∗
i + γAi A

∗
i − µiR

∗
i = 0, i ∈ Ω,(3.13d)

with N∗
i = S∗

i + I∗i + A∗
i + R∗

i . In general, the basic reproduction number R0 deter-
mines the disease dynamics, but cannot characterize the endemic level. We first study
the asymptotic profile of the endemic equilibrium E∗ as dI → 0+, i.e., the sympto-
matic people have very limited mobility. The proof is provided in the supplementary
material (SM2).

Theorem 3.15. Assume limdI→0+ R0(dI) = R0(0) = ρ(F11D
−1
I + F22V

−1
22 ) > 1.

Then the endemic equilibrium of model (2.1) satisfies (up to a sequence of dI → 0+)

(S∗
i , I

∗
i , A

∗
i , R

∗
i ) → (S̃i, Ĩi, Ãi, R̃i), i ∈ Ω, as dI → 0+,

where (S̃i, Ĩi, Ãi, R̃i) ≫ 0 for all i ∈ Ω.

Similar to Theorem 3.15, if limdA→0+ R0(dA) = ρ(F11V
−1
11 + F22D

−1
A ) > 1, then

for fixed dI > 0 the endemic equilibrium E∗ approaches a positive limiting endemic
equilibrium as dA → 0+ or d♮ → 0+ for all ♮ ∈ {S,A,R} (up to a sequence). Conse-
quently, the asymptotic profile of the endemic equilibrium of model (2.1) as d♮ → 0+
is different from that of the SIS patch model without vital dynamics in which the
endemic equilibrium converges to a limiting disease-free equilibrium as dS → 0+ if at
least one patch reproduction number is less than one [1, 9].

Remark 3.16. As d♮ → 0+ for all ♮ ∈ {S, I, A,R}, if R(i)
0 > 1, then the population

of patch i at the endemic equilibrium E∗ approaches the globally asymptotically stable
endemic equilibrium of patch i in isolation, denoted by (S∗

i (0), I
∗
i (0), A

∗
i (0), R

∗
i (0)),

which can be solved explicitly [31]. This gives the respective prevalences of sympto-
matic and asymptomatic infections in the ith isolated patch
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I∗i (0)

N∗
i (0)

=
θiµi

µi + γIi + (1− θ)δi

(
1− 1

R(i)
0

)
,

A∗
i (0)

N∗
i (0)

=
µi + γIi + δi

µi + γIi + (1− θ)δi
(1− θi)

µi

µi + γAi

(
1− 1

R(i)
0

)
.

Furthermore, the ratio of nonsusceptible population to total population in patch i is

I∗i (0) +A∗
i (0) +R∗

i (0)

N∗
i (0)

= 1− S∗
i (0)

N∗
i (0)

= 1− 1

R(i)
0

,

which is the same as the disease prevalence of an SIAS or SIS model. So, for a single

patch, the higher the infection risk (measured by R(i)
0 ), the larger the nonsusceptible

ratio. In particular, if δi = 0, then the endemic equilibrium of patch i in isolation is(
Λi

µi
· 1

R(i)
0

, I∗i (0),
1− θi
θi

· µi + γIi
µi + γAi

I∗i (0),

(
γIi
µi

+
1− θi
θi

· µi + γIi
µi + γAi

· γ
A
i

µi

)
I∗i (0)

)

with I∗i (0) = θi
Λi

µi+γI
i

(
1− 1/R(i)

0

)
.

When infection does not affect host mobility, the endemic equilibrium E∗ con-
verges as the uniform dispersal rate goes to infinity. The following result and Re-
mark 3.16 make it possible to compare the effect of small and large dispersal on local
and global infection size [15, 17].

Proposition 3.17. For model (2.1), if δi = 0 for i ∈ Ω, d♮ = d and L♮ = L for
♮ ∈ {S, I, A,R}, and limd→∞ R0(d) > 1, then the endemic equilibrium satisfies

E∗(d) → E∗(∞) := (mSα,mIα,mAα,mRα) as d→ ∞,

where α = (α1, . . . , αn) ≫ 0 with
∑

i∈Ω αi = 1 is the right eigenvector of L associated

with the zero eigenvalue and m♮ > 0 for ♮ ∈ {S, I, A,R} can be determined explicitly
in terms of model parameters. If, in addition, θi = θ or τi = τ for all i ∈ Ω, then the
overall nonsusceptible ratio at E∗(∞) is 1− 1/R0(∞,∞).

The proof of Proposition 3.17 appears in the supplementary material (SM3). The
nonsusceptible ratio agrees with that of the SIS patch model studied by Gao [15] and
Gao and Lou [17]. The above result remains true when the dispersal rates are distinct
but all go to infinity.

4. Numerical simulations. To further illustrate the effects of dispersal and
asymptomatic infection on disease persistence and prevalence in a heterogeneous en-
vironment, we present some simulations related to the epidemiology of COVID-19.
The selected parameter values with day as the default time unit mainly come from
Byambasuren et al. [6], Gatto et al. [21], Oran and Topol [36], and the references
therein. For convenience, we denote γ̃Ii = µi + γIi + δi and γ̃

A
i = µi + γAi for i ∈ Ω.

Example 4.1 (infection risk versus dispersal rates). By Theorem 3.6, Proposi-
tion 3.8, and Theorem 3.10, an increase in dispersal rate of the infected populations,
dI or dA, has a high possibility to decrease the basic reproduction number R0 and
hence reduces the risk of infection. However, R0 can be increasing or nonmonotone
in dI or dA when the underlying conditions of these results fail. For model (2.1) with
two patches, by choosing two parameter sets, we make two contour plots of R0 versus
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(a) (b)

Fig. 2. The contour plots of the basic reproduction number R0 versus dispersal rates dI and dA
under parameter settings (a) β1 = 0.77, β2 = 0.35, γ̃I

1 = 0.24, γ̃I
2 = 0.13, γ̃A

1 = 0.18, γ̃A
2 = 0.21, θ1 =

θ2 = 0.66, τ1 = 0.20, τ2 = 0.92, LI
12 = LI

21 = 0.08 and LA = LI ; and (b) β1 = 0.59, β2 = 0.44, γ̃I
1 =

0.25, γ̃I
2 = 0.22, γ̃A

1 = 0.24, γ̃A
2 = 0.11, θ1 = θ2 = 0.72, τ1 = τ2 = 0.29, LI

12 = 0.06, LI
21 = 0.01, and

LA
12 = LA

21 = 0.10.

dI and dA in Figure 2. In both scenarios, R0 is decreasing for small dispersal rates
but increasing for large dispersal rates. The horizontal and vertical dashed lines given
by Remark 3.12 are the contours where R0 is constant with respect to dI and dA, re-
spectively. Note that the independence of R0 on dI does not imply the independence
of R0 on dA and vice versa. It follows from Theorem 3.6 and Proposition 3.8 that
the nondecreasing dependences in Figure 2 are due to the difference in asymptomatic
infectivity and the connectivity matrices, respectively.

When three or more patches are concerned, nonmonotonic dependence of R0 on
dispersal rates can occur. Assume a three-patch environment with parameter values
at

β1 = 0.39, β2 = 0.35, β3 = 0.33, γ̃I1 = 0.12, γ̃I2 = 0.27, γ̃I3 = 0.11,

γ̃A1 = 0.29, γ̃A2 = 0.11, γ̃A3 = 0.19, θ = 0.75, τ = 0.4, LI = LA = L,

L12 = 0.1, L13 = 0.004, L21 = 0.05, L23 = 0.06, L31 = 0.05, L32 = 0.02.

Thus, R0(0.2, 0) = 2.3015 > R0(0.2, 0.6) = 2.2994 < R0(0.2, 4) = 2.3009 implies that
R0(dI , dA) is not monotone in terms of dA as dI = 0.2. This also suggests that the
conclusion of Proposition 3.8 may fail if the matrix L is not symmetrizable.

Under special situations, the basic reproduction number R0 can be simultane-
ously decreasing or increasing in both dispersal rates which implies that R0(dI , dA) <
R0(0, 0) or R0(dI , dA) > R0(0, 0) for any dI > 0 and dA > 0. In Figure 3(a), the

patch reproduction numbers are R(1)
0 = R(2)

0 = R0(0, 0) =
5
2 with R(1)

0I = 2,R(1)
0A = 1

2 ,

R(2)
0I = 3

2 , and R(2)
0A = 1, and symmetric dispersal (LI and LA are symmetric) always

reduces the infection risk. In Figure 3(b), we have R(1)
0 = R(2)

0 = R0(0, 0) =
7
4 with

R(1)
0I = 3

4 ,R
(1)
0A = 1, R(2)

0I = 1, and R(2)
0A = 3

4 , and asymmetric dispersal of sympto-
matic cases strengthens disease persistence. These mean the failure of the upper and

lower bounds of R0 in terms of the maximum and minimum of {R(i)
0 }i∈Ω, differing

from the SIR patch model (3.1).
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(a) (b)

Fig. 3. The contour plots of the basic reproduction number R0 versus dispersal rates dI and
dA under parameter settings (a) β1 = β2 = 1

2
, γ̃I

1 = 1
6
, γ̃I

2 = 2
9
, γ̃A

1 = 1
6
, γ̃A

2 = 1
12

, θ1 = θ2 = 2
3
, τ1 =

τ2 = 1
2
, LI

12 = LI
21 = 1

10
and LA = LI ; and (b) β1 = β2 = 1

2
, γ̃I

1 = 1
3
, γ̃I

2 = 1
4
, γ̃A

1 = 1
4
, γ̃A

2 = 1
3
, θ1 =

θ2 = 1
2
, τ1 = τ2 = 1, LI

12 = LA
12 = LA

21 = 1
30

, and LI
21 = 1

5
.

Example 4.2 (underestimate the infection risk). In the case where only symp-
tomatic infections are counted, the single patch and multipatch basic reproduction

numbers of model (2.1) are R(i)
0I and R0I = ρ(F11V

−1
11 ), respectively. Clearly, R(i)

0I <

R(i)
0 = R(i)

0I + R(i)
0A and R0I < R0 = ρ(F11V

−1
11 + F22V

−1
22 ). Biologically speaking,

ignoring asymptomatic infection will locally and globally underestimate the infection
risk. Further, the extent of underestimation is significantly affected by population
dispersal. For example, a two-patch environment with parameter setting

β1 = 0.42, β2 = 0.32, γ̃I1 = 0.16, γ̃I2 = 0.18, γ̃A1 = 0.14, γ̃A2 = 0.17,

θ1 = θ2 = 0.8, τ1 = 0.5, τ2 = 0.36, LI
12 = 0.02, LI

21 = 0.1, LA = LI

gives R(1)
0I = 2.1,R(2)

0I = 1.42,R(1)
0 = 2.4, and R(2)

0 = 1.56. So the percentages of
underestimation of the basic reproduction number for patches 1 and 2 are U (1) :=

1 − R(1)
0I /R

(1)
0 = 12.5% and U (2) := 1 − R(2)

0I /R
(2)
0 = 8.7%, respectively. When the

two patches are connected, the relative underestimation of the multipatch basic re-
production number, U(dI , dA) := 1 − R0I(dI)/R0(dI , dA), is plotted in Figure 4(a).
In this scenario, an increase in the dispersal rate of symptomatic cases initially in-
creases and then decreases relative underestimation while increasing the dispersal
rate of asymptomatic cases decreases relative underestimation. Note that U is not
necessarily between the maximum and minimum of {U (1),U (2)}.

Using the same parameter set as Figure 4(a) except that γ̃I1 = 0.21, γ̃I2 = 0.16, τ2 =

0.5, LI
12 = 0.01, and LI

21 = 0.02, then R(1)
0I = R(2)

0I = 1.6,R(1)
0 = 1.9, and R(2)

0 = 1.79.

It follows from Theorem 3.1 and R(1)
0I = R(2)

0I that R0I(dI) is constant. By Proposi-
tion 3.8, we know R0(dI , dA) is strictly decreasing in dI and dA. So is the relative
underestimation U as illustrated in Figure 4(b). According to Proposition 3.13(d),
it is possible that R0(dI , dA) is constant but R0I(dI) is decreasing, so U is in-
creasing in dI . These suggest that the dependence of the level of underestima-
tion on dispersal rates can be complicated. To further quantify the level of un-
derestimation, we use the Latin hypercube sampling method to randomly gener-
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(a) (b)

Fig. 4. The contour plots of the relative underestimation of the multipatch basic reproduction
number, U(dI , dA) = 1−R0I(dI)/R0(dI , dA), under two different scenarios. See text in Example 4.2
for parameter values.

ate 105 parameter sets with biological reasonable parameter ranges and restrictions:
βi ∈ [0.2, 0.6], γ̃Ii , γ̃

A
i ∈ [0.1, 0.3], θi ∈ [0.4, 0.9], τi ∈ [0.2, 1], dI , dA ∈ (0, 1], and

dI ≤ dA, L
I
12, L

I
21 ∈ (0, 0.1], and LA = LI for i = 1, 2. The average percentage

of underestimation of R0 is 23.7% with the maximum value approximately 77%.

Example 4.3 (nonsusceptible ratio versus dispersal rates). The basic reproduction
number of model (2.1) determines whether an infectious disease can spread in a popu-
lation. By Remark 3.16, it also determines what proportion of the population will be
infected at the globally stable endemic equilibrium in the single patch case. However,
the reproduction number may be unable to play such a role in the multipatch case
[15, 17]. For illustrative purpose only, we consider a two-patch environment with pa-
rameter setting β1 = 0.4, β2 = 0.54, γI1 = 0.15, γI2 = 0.24, γA1 = 0.17, γA2 = 0.19, θi =

0.9, τi = 0.4, Λ1 = 50,Λ2 = 21, µi = 0.004, and δi = 0 for i = 1, 2. Then R(1)
0 = 2.43

and R(2)
0 = 2.10 and hence the nonsusceptible ratios of patches 1 and 2 in isolation

are 1− 1/R(1)
0 = 0.59 and 1− 1/R(2)

0 = 0.52, respectively. When the two patches are
connected by human movement with LI

12 = 0.012, LI
21 = 0.06, LS = LA = LR = LI ,

and dS = dA = dR, the ratio of nonsusceptible population over both patches and the
difference of nonsusceptible ratios of patches 1 and 2 at the endemic equilibrium, i.e.,∑2

i=1(I
∗
i +A∗

i +R∗
i )∑2

i=1N
∗
i

= 1− S∗
1 + S∗

2

N∗
1 +N∗

2

and
I∗1 +A∗

1 +R∗
1

N∗
1

− I∗2 +A∗
2 +R∗

2

N∗
2

=
S∗
2

N∗
2

− S∗
1

N∗
1

are plotted in Figure 5. The overall nonsusceptible ratio can nonmonotonically vary
with respect to dI and dA even if they are proportional and the high risk patch (where
the patch reproduction number is larger) may no longer have high nonsusceptible

ratio. For example, 1−S∗
1/N

∗
1 = 0.49 < 1− 1/R(2)

0 < 1− 1/R(1)
0 < 1−S∗

2/N
∗
2 = 0.61

at (dI , dA) = (0.8, 0.2). However, by Proposition 3.8, R0 is strictly decreasing in
terms of dispersal rates for the scenario. This means that travel restriction may
reduce the infection risk but increase the nonsusceptible population size, leading to a
counterintuitive relation between infection risk and nonsusceptible ratio in measuring
the effectiveness of interventions.
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(a) (b)

Fig. 5. The contour plots of (a) the nonsusceptible ratio over two patches and (b) the difference
of the nonsusceptible ratios of patches 1 and 2 at the endemic equilibrium. See text in Example 4.3
for parameter values.

5. Discussion. Asymptomatic infections occur commonly for a few widespread
infectious diseases such as COVID-19, influenza, and Zika fever. Their role in disease
transmission and herd immunity has attracted considerable attention in recent years.
In this paper, we introduced a metapopulation model for disease spread across a num-
ber of spatial patches where the population is split into susceptible, symptomatically
infected, asymptomatically infected, and recovered individuals in every patch. We
computed the basic reproduction number R0 of the model and obtained its thresh-
old property. That is, the disease-free equilibrium is globally asymptotically stable
if R0 ≤ 1 and the disease is uniformly persistent if R0 > 1. It is shown that under
certain biologically meaningful conditions (Theorem 3.6, Proposition 3.8, and Theo-
rem 3.10) the reproduction number is monotone decreasing in terms of the dispersal
rates of symptomatic and asymptomatic persons. For the two-patch case, R0 either
strictly increases, strictly decreases, or remains unchanged with respect to dispersal
rates. Some necessary and sufficient conditions for R0 to be independent of dispersal
rates and dispersal were given. When R0 > 1, we studied the asymptotic profiles of
the endemic equilibrium as one or all dispersal rates approach zero or infinity.

Additionally, three numerical examples were presented to further study the influ-
ence of asymptomatic carriers and their dispersal on the spread of infectious agents.
The first example confirmed the theoretical results on the dependence of R0 ver-
sus dispersal rates. The difference in the transmissibility or dispersal pattern of the
asymptomatic class relative to the symptomatic class can cause nondecreasing depen-
dence. Nonmonotonic dependence can happen when people move between three or
more patches. In the second example, we showed that ignoring asymptomatic infec-
tions not only locally but also globally underestimates the transmission potential. The
overall relative level of underestimation significantly varies with dispersal rates and
may not be in the range of the relative underestimations of isolated patches. The last
example investigated the relation between the total nonsusceptible population and hu-
man movement. There is a potential inconsistent feedback to fast dispersal between
the basic reproduction number and the number of nonsusceptible individuals.

Besides underestimating the infection risk, there are some other critical differences
between the SIAR patch model (2.1) and the SIR patch model (3.1). First, the basic
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reproduction number of model (3.1) is either strictly decreasing or constant in the
dispersal rate of the infected population, whereas that of model (2.1) is either strictly
decreasing, or strictly increasing, or constant in terms of dispersal rates for the two-
patch case and can be nonmonotonic for the case of three or more patches. In reality,
the proportion and relative infectivity of asymptomatic infections are probably spa-
tially heterogeneous due to factors like age structure, awareness program, and contact
tracing. Meanwhile, the connectivity matrix may not be symmetric or symmetrizable.
Thus, the possibility of increasing the infection risk via fast dispersal is not negligible.
Second, the basic reproduction number of model (3.1) is between the maximum and
minimum of the set of patch reproduction numbers, but this is generally not true for
model (2.1). Thus, it is possible that the disease dies out or persists in a strongly
connected patchy environment even if it is persistent or extinct in each isolated patch
as asymptomatic infections occur. Third, the independences of the reproduction num-
ber of model (3.1) on dispersal rate and dispersal are equivalent, whereas they are
not for model (2.1). In addition, the dependence of the local or global nonsuscep-
tible ratio on dispersal rates for model (3.1) is more complicated than that for an
SIS patch model and the weak order-preserving property correlating patch reproduc-
tion number with local nonsusceptible ratio may fail [15, 17]. So the presence and
movement of asymptomatic patients must be considered in predicting the transmis-
sion potential and designing travel policy. The control strategies toward SARS may
not work for COVID-19 due to the difference in asymptomatic or presymptomatic
transmission.

The current study generalizes some findings on SIS and SIR patch models to the
SIAR patch model [1, 15, 16, 29]. It is applicable to patch models with SIA, SIAS,
or SIARS structure in each patch since their reproduction numbers take the same
form [10]. The main results throughout this paper can be extended to a differential
infectivity SIR patch model where the infected population is divided into multiple
infectious subgroups [24] (see supplementary material (SM4)). In particular, when
only two patches are concerned, the proof of Proposition 3.11 is still valid and hence
the basic reproduction number is either strictly increasing or strictly decreasing or
constant in the dispersal rate of any given infectious subgroup. There are a variety of
directions deserving further investigation. The dependence of the basic reproduction
number of model (3.1) with respect to dispersal rates is generally unclear in the case
of three or more patches. It is interesting to characterize the independence of the
reproduction number on dispersal rates in an easy-to-verify way. We would like to
know how the total number of symptomatic and/or asymptomatic infections and its
distribution change with dispersal [15, 17]. What is the effect of the travel of suscepti-
ble and recovered individuals for disease control? The uniqueness and global stability
of the endemic equilibrium are unknown even under strict conditions of no disease-
induced mortality and the same dispersal rate and connectivity matrix for all disease
states. A partial answer may be achievable by constructing a suitable Lyapunov
function with a graph-theoretic approach [29]. The model presented here can be gen-
eralized to include a latent period and temporary immunity [38, 41], progression and
regression between asymptomatic and symptomatic stages [5, 10], travel restriction
and border screening [30], multiple transmission modes [18, 44], seasonal variation
in contacts and survivability of pathogens [44], quarantine and isolation [42], and
vaccination [48].

Acknowledgments. We thank the editor and the anonymous referee for their
valuable comments and suggestions.
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