SUPPLEMENTARY MATERIALS: EFFECTS OF ASYMPTOMATIC
INFECTIONS ON THE SPATIAL SPREAD OF INFECTIOUS
DISEASES*

DAOZHOU GAOT, JUSTIN M. W. MUNGANGA?, P. VAN DEN DRIESSCHES,
AND LEI ZHANGY

SM1. Proof of Proposition 3.8.

Proof. It follows from the assumption on L := L! = LA that the matrix L =
CLC~! is symmetric, irreducible, and essentially nonnegative but not necessarily
Laplacian. Note that the two matrices

cviteTt = (cvpeTYH) Tt = (C(D; — d;L)YCY "t = (D —dyL) 7! v—1 ,

CVpplC71 = (CVaeC™ )™ = (C(Dp — daL)C™H) ™t = (D — dAL)* =V
are symmetric and positive whenever d; > 0 and d4 > 0. The fact
C(F Vit + FaaVyp ) O™ = (CFLC7H OV CT 4 (CFpeCH OV Ot
=F1 OV PO 4 FoaCVip' O = FriVigt + Faa Vi
implies that :R,Q = p(FllAvl_llA—F FQQ‘/le) = p(Fll‘A/l_ll + F22V251).
Denote V = diag(Vi1, Vag). Since Ro = p(FV™Y) = p(Fi V' + FagVip') =

p(FLiVigt + FyoVipt) = p(FV—1) = p(V~1F), there exists a positive eigenvector
= () such that

S

V- 1Fv—Rov<:><7i F— V)f;—o.
0

Under assumptions 6; = 6 and 7, = 7 for all © € ), we can then proceed as the
proof of Theorem 3.6 and obtain the derivative of Ry with respect to d; as follows

RZ (o7)T Loy

R/( ) 0 (IA)I—FT’QA)A)TB(’IAJI-‘FT@A).

The fact s(L) = s(L) = 0 implies that the real symmetric matrix L is negative
semidefinite and hence R (dy) is _non-positive for any dr > 0.

Suppose there exists some d; > 0 such that Rj(d;) = 0. It suffices to show
that Ro(dr) = Ro(dl) for any dy € [0,00). Letting & = Cayg > 0, we have
Léy = CLC~'Cap = 0. This implies that éy is a right eigenvector of L associated
with eigenvalue zero. Similar to the proof of Theorem A.1l in Gao [SM1], we claim
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that (9;)TLd; = 0 if and only if @; is a multiple of é&o. In fact, the spectrum
of L takes the form o(L) = o(L) = {Xos A1, Adn—1} with Ag = s(L) = 0 and
X <0forl1<i<n-—1. Since L is a real symmetric matrix, there exists a basis of
orthogonal eigenvectors, denoted by {é&yg, &1, ..., &n_1}, corresponding to eigenvalues
Aos A1y .- -5 An_1, respectively. Denoting vy = Z?;Ol & &y, we have

) T ) n—1 n—1 Tnfl )
(01)TLo; <Z£z ) LY &ay| = (Z&m) > ¢Lay
j=0 i=0 j=0
n— n—1 n—1
= (Z@(m)T) S oGNa; =) GG (@) Tay =Y NE (dy) T,
i=0 j=0 i, i=0

So (07)TLo; =0 if and only if &, = --- = &, = 0, i.e., D = Eoéxg.
By repeating the process in the proof of Theorem 3.6, we have

(SM1.1) RoVi1or = (FulViy' + FiaVay ' Foo Fi' )Vin 1.

It follows from Viiég = Djéyg — drLég = Dyéyy and assumption (i) that (SM1.1)
becomes

Ro(dr)Drévy = Fiiév + FagViy' Drég
= CFHC_l&O + FQQC‘GElc_lD]dO
= CFH(D] — d[LI)il(D] — d[LI)Cildo + CF22V251D1071 A
= CFH(D[ — d[LI)_l(D[ — d]LI)ao + CFQQ‘/QEIDIQO
= C(Fiu(Dy — dr L") ™ + Faa Vi ') Dy ax,
that is,
RQ(&])D1071d0 = Ro(dAj)D[Oéo = (FH(D[ — d[LI)il + F22V2§1)D1a0
for any d; > 0. Again by the Perron—Frobenius theorem, we have
Ro(dr) = p(Fii(Dy — diLY) ™' 4 FauVip') = Ro(dy), Yd; > 0.
Furthermore, if 4/ 4 &; = v/ for i € €, then
Vasétg = Daég = Drévg & Viy' D1éeo = éo
and therefore

Ro(dAI)Dldo = Fii6o + F22‘72§1D15é0 = (F11 + Fao)éry,

which means that R(()l) == Rén) = Ro(dy). O
SM2. Proof of Theorem 3.15.
Proof. By Theorem 2.1, each entry of (S}, I}, Af, R}) is bounded for any d; > 0.

190710

Thus, up to a sequence of dy — 0+, we assume that

(S5, IF,AX RY) — (S;, I;, Ai, Ry), i € Q.
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Without loss of generality, we let ST = nélgr; Sx. Tt follows from (3.13a) that

Il +T1A

0=ds > LS5+ A — B =ST — Sy

JEQ 1
>Aq — (max{1, 7} + p1 — dsL?))S;.

Thus, with L7} < 0, it follows that S} > Ay/(max{1,71}81 + p1 — dsL?)) for any
dr > 0. HenceS*>Sl > 0 for i € Q, giving S; > 0 for i € Q.

Claim 1: either T := (I;,...,I,) = 0 or I > 0. In fact, if I, = 0 for some k, then
the equation (3.13b) implies

I, + 1A A
9k5ku5k*(ﬂk+%+5)k—9kﬂk Mk Sk =0
Nk Nk

and therefore Ay, = 0. Following (3.13c) and the irreducibility of L#, we must have
A; =0 for i € Q. Similarly, the equation (3.13¢) implies
fi + TiAZ ~

Si— (i + v A = (1 - 0;)

I
1-— 01 I3 =
(1 =008, 5

Therefore, I; =0 for ¢ € Q and the claim is proved.
Claim 2: I > 0. Suppose not, then I = 0. From the proof of the first claim, we
know A; = 0 for i € Q. The equation (3.13d) gives

Z dRZL R +'7] +’}/ZA ,U,iRi

i€Q JEQ
_Z [+t A NiRi):_ZﬂiRizoy
i€ 1€Q

which implies R; = 0 for i € Q. Then the equation (3.13a) becomes
dSZLiSijJrAi —wiS; =0, ieQ
JjEQ
and therefore S := (Sy,...,S,) = 8°. Namely, E* — Ej as d; — 0+.

Define I; = I*/w € (0,1] and A, = A*/w € (0,1] for i € Q with w =
max;eq{l}, Af}. The equations (3.13b) and (3.13c) can be rewritten as

I; zAz ,
dr S LLE + 6,875 +T S*— (s + ! + 601 =0, i€,
(SM2.1) Jes o
Az I + 1A AN A ,
da ZLijAj +(1— ei)ﬁiTS’i — (i +7)A; =0, ie€Q.
JjEQ 4

Since S} /N — 1 as di — 0+, it follows from (SM2.1) that

I, - I, and A, — A;, for i€Q, as dy — 0+,
which satisfy

0:8:(Li + 1 Ai) — (i + v +6:)L; =0, i € Q,

SM2.2 _
( ) dAZLAA + 170)51( + T 1) (/L1+7;4)A1:07 iGQa
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or equivalently,
(F -V (0)(I,A)T =0 with V(0)=diag(Dy,Ds —daL™)

for some I = (I1,...,I,) > 0 and A = (Ay,...,A,) > 0. The irreducibility and
essential nonnegativity of F' — V(0) and (I, A)T > 0 imply that s(F — V(0)) = 0.
Thus Ro(0) = 1, which contradicts the underlying assumption of the theorem. Since
I > 0, the equations (3.13c) and (3.13d) indicate that A; > 0 and R; > 0 for i € €,
respectively. 0

Remark SM2.1. For the limit of E* as d; — 0+, equation (3.13b) gives

I ZAZ 1 .
(SM2.3) BTG = (! + 00T i€ 0

and substituting it into (3.13a), (3.13c), and (3.13d) yields

_ 1 _ _
S I _ .
ds Eeﬂ Liij + A; — 07(/11‘ +7v; + (51‘)11‘ —u;8; =0, i €Q,
J

9 ~ .
(SM2.4) da Y LA, S+ A+ 60T — (i + A =0, i€ Q,
JEQ
dRZL R +’Y,II +’}/1A /Liéiio,iEQ.
JEQ

Then (SM2.4) can be rewritten in matrix form as follows

(diag(p;) — dsL®) S = A — diag(0; *)D/I,
(SM2.5) (Da —daL?) A = (diag(6; ') — 1,) DrI,

(diag(ui) — drL™) R = diag(y] )T + diag(+;) A,
where A = (Aq,...,A,)T. Solving S, A, and R from (SM2.5), then substituting the
results into (SM2.3) gives a system of quadratic equations in terms of I.

SM3. Proof of Proposition 3.17.

Proof. Under the above assumption, the total population of patch i satisfies

dN;
dt

=A; —/LiNi +dZLiij, 1€ Q7
JEQ

which has a globally asymptotically stable positive equilibrium N* = (N7,..., N}).
That is, N is the unique positive solution to
(SM3.1) Ai =Ny +dY  LijN; =0, i € Q.
JEQ
Since N, is bounded regardless of the selection of dispersal rate d and connectivity

matrix L, it follows from (SM3.1) that

lim (N7 (d),...,N5(d)) = ma

d— o0
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for some m > 0, where @ = (aq,...,a,)T is the right positive eigenvector with
eigenvalue zero of matrix L satisfying ) ;. @; = 1. Summing up (SM3.1) over i €
gives

D (Ai — N7 (d)) = 0, ¥d >0,
i€Q
implying that

dli_)rgo (;(A, — uiNi*(d))> = iEZQAi - iza%mmai =0, i.e., m= iza%/\i /ZEZQ iy .
Furthermore, the equilibrium equations (3.13) imply that
E* — (msa,mlmm“‘a,mRa) as d — oo,
where m? > 0 for fj € {S, I, A, R} obey
ms—i—ml—&—mA—i—mR =m,

I A
Z <9iﬁim+ﬁmm50ﬁ — (pi + %I)mlai> =0,

4 m
1€Q
SM3.2 I A
( ) > <(1 — 6,8, T S, — (s + 7{4)7”‘40%) =0,
ieQ m
Z ('yilmlal- + ’yfmAai — ,ul-mRai) =0.
i€

Denote m® = mf/m € (0,1) for § € {S,I, A, R}. Then (SM3.2) can be rewritten as

(SM3.3a) m +m!l +mA+mf =1,
(SM33b) (pQQﬁLI + p23mA)T7lS — q2277~1[ =0,
(SM3.3¢) (paorit + pagi®)m® — ggzn® =0,
(SM3.3d) p42’f7l[ + p43ﬁ1A — p447’71R =0,
where
P2 =Y _0iBic;, pas =Y 0iBiicu, G2 = Y (i + e,
ieQ ieQ ieQ
ps2 =Y (1=0:)Bici,  pss=» (1—0:)Bimci,  qss= Y (i +7)ou,
= = ieQ
Paz2 = Z’n—]ai, P43 = Z%Aai, P4sa = Z,uiazw
i€Q ieQ ieQ

It follows from (SM3.3b) and (SM3.3c) that

i o P26+ D23 022
psamd + pssmA  gsz3mA T psok + D33 gss

gives

(SM3.4) = ' (paagss — pazgee) + \/(P22gss — Pazgee)® + 4p32Q22p23Q33.

mA 2p32G22
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Thus, (SM3.3c) implies that

(SM3.5) S gmmt a4
pzoml + pssmA  paak + p33

Solving /m# and mf from (SM3.3a) and (SM3.3d) yields

A — (1— m3)1044 - ﬁll(pzxz + paa)

(SM3.6) i D43 +294;4
B (1 —m°)pas + M’ (paz — pas)
D43 + Daa .
Combining (SM3.4) and (SM3.6) gives
1—n S
A — ( m”)Pay

B P43 + Paa + (Paz +P44):‘<6.

Lastly, m! and mf are solvable using (SM3.4) and (SM3.6), respectively.
The overall nonsusceptible ratio at the limiting endemic equilibrium E*(oo) is

mS Zieﬂ Q; _ mis — ms
(mS +ml +mA+mB)3" o m ’

If 0; = 0 or 7, = 7 for all i € Q, then paapss = pasgps2 and hence (SM3.4) becomes

(P22q33 — P33q22) + \/(P2QQ33 — P33q22)? + 4p33q22p22433
2p32qa2
(P22g33 — P33q22) + (P22q33 + P33Ga2)  P22g33
2p32q22  paagen

Substituting it into (SM3.5) yields

1 1
ey (p22q?,3 +P33) — = P2 P8 Ri(00) + Roal00) = Ro(oo, 00).
m q22 433 q22 433

The last two equalities are due to Theorem 3.3.

SM4. Patch Model with Multiple Infectious Subgroups. We generalize

model (2.1) from two infectious groups to m infectious groups. The number of indi-

viduals of infectious group k in patch ¢ is denoted by I for i € Q = {1,...,n} and
k€ ¥ ={1,...,m}. The transmission dynamics of the epidemic patch model with
multiple infectious groups are described the following system of ordinary differential

equations (1 <i < n)

dS»L S Sz
g = Us Z L3S+ Ai — Bi meilﬁi — WilSs,
jeq lew
dly In Si
(SM4.1) i dr, Z L;; Lk + 0 5s ZTilIilﬁ — (pi + ik + i) Lig, k € 0,
JEQ lev v
T dr Z Li;Rj + Z Yiklire — pi R

jeQ kew
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Here N; = S;+ > cy lix + R; is the total population size of patch i, the proportion of
new infections in patch ¢ that progress to infectious group k is 6;;, satisfying 0 < 0 <1
and Zkeq/ 0;r =1, and dj, and L = (Lzlj’“)nxn are the dispersal rate and connectivity
matrix of infectious group k, respectively.

For convenience, suppose all connectivity matrices are irreducible. It is easy to
check that the generalized model (SM4.1) still has a unique disease-free equilibrium
Ey=(8°,0,...,0,0). Direct calculations give the incidence and transition matrices

F = (Fx)mxm and V =diag(Vi1,..., Vium),
where the blocks

Fi = diag(01x61711, - - -, OnkBnTal)s
Vi = diag (i1 + Yk + O1ks - - - s oy + Yk + Onk) — dr L.

Following the next generation matrix method, the basic reproduction number of model
(SM4.1) is defined as
Ro = p(FVH).

PROPOSITION SM4.1. The basic reproduction number of model (SM4.1) is

Ro=0p (Z Fka@l) =p (Z Vk_lekk> :

kev kew

Proof. We introduce

P =diag(Py,...,Pn), Q= (1,)mxm and R =diag(Ri,...,R,),
where

P, = diag(@lk, A ,an) and R; = diag(ﬂlﬁl, A ,ﬂn’rnl)7 klew.
It is easy to verify that F' = PQR which implies that
Pl Hn U Hn Wl
FV~'=PQRV ' = Do ..
where W; = RlVlfl for [ € W. Multiplying the m-th row of A, — FV ! by — P, P;!
and then adding it to the k-th row for all k € {1,...,m — 1} yield

AL — FV*1|
AL, — LWy —PWs —PiWp1 -PWp,
—P, W AL, — PoWy - —Po W1 —P,W,,

- mflwl - m71W2 o )\]In - melwmfl - mflwm
—P,, Wy —P,, W, e —P W1 AL, — PpuWh,
AL, 0 0 —AP, P!

0 AL, e 0 —AP,P!
0 0 AL, AP, 1Pt
_mel _PmW2 e —Pme,1 )\]In - Pme
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Multiplying the I-th column of the above by P,P,.1 and adding it to the m-th column
foralll e {1,...,m — 1} give

AL, 0 e 0 0
0 ML, e 0 0
ALpp — FV " =] : .. : :
0 0 cee A, 0
—P,W1 P Wa - —PaWhoy AL, =0 PW)

Therefore, [Aly,, — FV = = A= AL, — S o BW,| with BW, = PRV ' =
Flqu_l. This completes the proof of the first equality, whereas the second equality
can be proved by similarly considering V—1F = ((V~'P)Q)R. O

By the comparison principle and persistence theory, we can again establish sharp
threshold dynamics in terms of R for model system (SM4.1). Lower and upper
bounds on Rq similar to Theorem 3.3 can be obtained. Under certain conditions
(similar to Theorem 3.6 and Proposition 3.8, e.g., 8;x = 0 and 7, = 7 for all i € Q,
and L' is symmetric for all k € Q), some monotone decreasing results on Ry with
respect to dispersal rates can be expected. Theorem 3.10 holds if only one infectious
group moves, whereas it fails if there are more than two infectious groups move. When
only two patches are concerned, it is easy to verify that the proof of Proposition 3.11 is
still valid (one only needs to remove the unnecessary restriction “aijaze > ajga21”).
Therefore, for model (SM4.1), the basic reproduction number Rq is either strictly
increasing, or strictly decreasing, or constant with respect to the dispersal rate of any
given infectious group in a two-patch environment.
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