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SM1. Proof of Proposition 3.8.

Proof. It follows from the assumption on L := LI = LA that the matrix L̂ =
CLC−1 is symmetric, irreducible, and essentially nonnegative but not necessarily
Laplacian. Note that the two matrices

CV −1
11 C−1 = (CV11C

−1)−1 = (C(DI − dIL)C
−1)−1 = (DI − dI L̂)

−1 := V̂ −1
11 ,

CV −1
22 C−1 = (CV22C

−1)−1 = (C(DA − dAL)C
−1)−1 = (DA − dAL̂)

−1 := V̂ −1
22

are symmetric and positive whenever dI > 0 and dA > 0. The fact

C(F11V
−1
11 + F22V

−1
22 )C−1 = (CF11C

−1)CV −1
11 C−1 + (CF22C

−1)CV −1
22 C−1

=F11CV −1
11 C−1 + F22CV −1

22 C−1 = F11V̂
−1
11 + F22V̂

−1
22

implies that R0 = ρ(F11V
−1
11 + F22V

−1
22 ) = ρ(F11V̂

−1
11 + F22V̂

−1
22 ).

Denote V̂ = diag(V̂11, V̂22). Since R0 = ρ(FV −1) = ρ(F11V
−1
11 + F22V

−1
22 ) =

ρ(F11V̂
−1
11 + F22V̂

−1
22 ) = ρ(FV̂ −1) = ρ(V̂ −1F ), there exists a positive eigenvector

v̂ = ( v̂I

v̂A
) such that

V̂ −1F v̂ = R0v̂ ⇐⇒
(

1

R0
F − V̂

)
v̂ = 0.

Under assumptions θi = θ and τi = τ for all i ∈ Ω, we can then proceed as the
proof of Theorem 3.6 and obtain the derivative of R0 with respect to dI as follows

R′
0(dI) =

R2
0

θ
· (v̂I)TL̂v̂I

(v̂I + τ v̂A)TB(v̂I + τ v̂A)
.

The fact s(L̂) = s(L) = 0 implies that the real symmetric matrix L̂ is negative
semidefinite and hence R′

0(dI) is non-positive for any dI > 0.

Suppose there exists some d̂I ≥ 0 such that R′
0(d̂I) = 0. It suffices to show

that R0(dI) ≡ R0(d̂I) for any dI ∈ [0,∞). Letting α̂0 = Cα0 ≫ 0, we have
L̂α̂0 = CLC−1Cα0 = 0. This implies that α̂0 is a right eigenvector of L̂ associated
with eigenvalue zero. Similar to the proof of Theorem A.1 in Gao [SM1], we claim
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that (v̂I)TL̂v̂I = 0 if and only if v̂I is a multiple of α̂0. In fact, the spectrum
of L̂ takes the form σ(L̂) = σ(L) = {λ0, λ1, . . . , λn−1} with λ0 = s(L̂) = 0 and
λi < 0 for 1 ≤ i ≤ n − 1. Since L̂ is a real symmetric matrix, there exists a basis of
orthogonal eigenvectors, denoted by {α̂0, α̂1, . . . , α̂n−1}, corresponding to eigenvalues

λ0, λ1, . . . , λn−1, respectively. Denoting v̂I =
∑n−1

i=0 ξiα̂i, we have

(v̂I)TL̂v̂I =

(
n−1∑
i=0

ξiα̂i

)T

L̂

n−1∑
j=0

ξjα̂j

 =

(
n−1∑
i=0

ξiα̂i

)T n−1∑
j=0

ξjL̂α̂j

=

(
n−1∑
i=0

ξi(α̂i)T

)
n−1∑
j=0

ξjλjα̂j =
∑
i,j

ξiξjλj(α̂i)Tα̂j =

n−1∑
i=0

λiξ
2
i (α̂i)Tα̂i.

So (v̂I)TL̂v̂I = 0 if and only if ξ2 = · · · = ξn−1 = 0, i.e., v̂I = ξ0α̂0.
By repeating the process in the proof of Theorem 3.6, we have

(SM1.1) R0V̂11v̂I = (F11V̂
−1
11 + F12V̂

−1
22 F22F

−1
12 )V̂11v̂I .

It follows from V̂11α̂0 = DIα̂0 − dI L̂α̂0 = DIα̂0 and assumption (i) that (SM1.1)
becomes

R0(d̂I)DIα̂0 = F11α̂0 + F22V̂
−1
22 DIα̂0

= CF11C
−1α̂0 + F22CV −1

22 C−1DIα̂0

= CF11(DI − dIL
I)−1(DI − dIL

I)C−1α̂0 + CF22V
−1
22 DIC

−1α̂0

= CF11(DI − dIL
I)−1(DI − dIL

I)α0 + CF22V
−1
22 DIα0

= C(F11(DI − dIL
I)−1 + F22V

−1
22 )DIα0,

that is,

R0(d̂I)DIC
−1α̂0 = R0(d̂I)DIα0 = (F11(DI − dIL

I)−1 + F22V
−1
22 )DIα0

for any dI ≥ 0. Again by the Perron–Frobenius theorem, we have

R0(d̂I) = ρ(F11(DI − dIL
I)−1 + F22V

−1
22 ) = R0(dI), ∀dI ≥ 0.

Furthermore, if γI
i + δi = γA

i for i ∈ Ω, then

V̂22α̂0 = DAα̂0 = DIα̂0 ⇔ V̂ −1
22 DIα̂0 = α̂0

and therefore

R0(d̂I)DIα̂0 = F11α̂0 + F22V̂
−1
22 DIα̂0 = (F11 + F22)α̂0,

which means that R(1)
0 = · · · = R(n)

0 = R0(d̂I).

SM2. Proof of Theorem 3.15.

Proof. By Theorem 2.1, each entry of (S∗
i , I

∗
i , A

∗
i , R

∗
i ) is bounded for any dI > 0.

Thus, up to a sequence of dI → 0+, we assume that

(S∗
i , I

∗
i , A

∗
i , R

∗
i ) → (S̃i, Ĩi, Ãi, R̃i), i ∈ Ω.
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Without loss of generality, we let S∗
1 = min

i∈Ω
S∗
i . It follows from (3.13a) that

0 =dS
∑
j∈Ω

LS
1jS

∗
j + Λ1 − β1

I∗1 + τ1A
∗
1

N∗
1

S∗
1 − µ1S

∗
1

≥Λ1 − (max{1, τ1}β1 + µ1 − dSL
S
11)S

∗
1 .

Thus, with LS
11 < 0, it follows that S∗

1 ≥ Λ1/(max{1, τ1}β1 + µ1 − dSL
S
11) for any

dI > 0. Hence S∗
i ≥ S∗

1 > 0 for i ∈ Ω, giving S̃i > 0 for i ∈ Ω.
Claim 1: either Ĩ := (Ĩ1, . . . , Ĩn) = 0 or Ĩ ≫ 0. In fact, if Ĩk = 0 for some k, then

the equation (3.13b) implies

θkβk
Ĩk + τkÃk

Ñk

S̃k − (µk + γI
k + δi)Ĩk = θkβk

τkÃk

Ñk

S̃k = 0

and therefore Ãk = 0. Following (3.13c) and the irreducibility of LA, we must have
Ãi = 0 for i ∈ Ω. Similarly, the equation (3.13c) implies

(1− θi)βi
Ĩi + τiÃi

Ñi

S̃i − (µi + γA
i )Ãi = (1− θi)βi

Ĩi

Ñi

S̃i = 0.

Therefore, Ĩi = 0 for i ∈ Ω and the claim is proved.
Claim 2: Ĩ ≫ 0. Suppose not, then Ĩ = 0. From the proof of the first claim, we

know Ãi = 0 for i ∈ Ω. The equation (3.13d) gives

∑
i∈Ω

dR
∑
j∈Ω

LR
ijR̃j + γI

i Ĩi + γA
i Ãi − µiR̃i


=
∑
i∈Ω

(γI
i Ĩi + γA

i Ãi − µiR̃i) = −
∑
i∈Ω

µiR̃i = 0,

which implies R̃i = 0 for i ∈ Ω. Then the equation (3.13a) becomes

dS
∑
j∈Ω

LS
ijS̃j + Λi − µiS̃i = 0, i ∈ Ω

and therefore S̃ := (S̃1, . . . , S̃n) = S0. Namely, E∗ → E0 as dI → 0+.
Define Îi = I∗i /ϖ ∈ (0, 1] and Âi = A∗

i /ϖ ∈ (0, 1] for i ∈ Ω with ϖ =
maxi∈Ω{I∗i , A∗

i }. The equations (3.13b) and (3.13c) can be rewritten as

(SM2.1)

dI
∑
j∈Ω

LI
ij Îj + θiβi

Îi + τiÂi

N∗
i

S∗
i − (µi + γI

i + δi)Îi = 0, i ∈ Ω,

dA
∑
j∈Ω

LA
ijÂj + (1− θi)βi

Îi + τiÂi

N∗
i

S∗
i − (µi + γA

i )Âi = 0, i ∈ Ω.

Since S∗
i /N

∗
i → 1 as dI → 0+, it follows from (SM2.1) that

Îi → Īi and Âi → Āi, for i ∈ Ω, as dI → 0+,

which satisfy

(SM2.2)

θiβi(Īi + τiĀi)− (µi + γI
i + δi)Īi = 0, i ∈ Ω,

dA

n∑
j=1

LA
ijĀj + (1− θi)βi(Īi + τiĀi)− (µi + γA

i )Āi = 0, i ∈ Ω,
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or equivalently,

(F − V (0))(Ī, Ā)T = 0 with V (0) = diag(DI , DA − dAL
A)

for some Ī = (Ī1, . . . , Īn) ≥ 0 and Ā = (Ā1, . . . , Ān) ≥ 0. The irreducibility and
essential nonnegativity of F − V (0) and (Ī, Ā)T > 0 imply that s(F − V (0)) = 0.
Thus R0(0) = 1, which contradicts the underlying assumption of the theorem. Since
Ĩ ≫ 0, the equations (3.13c) and (3.13d) indicate that Ãi > 0 and R̃i > 0 for i ∈ Ω,
respectively.

Remark SM2.1. For the limit of E∗ as dI → 0+, equation (3.13b) gives

(SM2.3) βi
Ĩi + τiÃi

Ñi

S̃i =
1

θi
(µi + γI

i + δi)Ĩi, i ∈ Ω

and substituting it into (3.13a), (3.13c), and (3.13d) yields

(SM2.4)

dS
∑
j∈Ω

LS
ijS̃j + Λi −

1

θi
(µi + γI

i + δi)Ĩi − µiS̃i = 0, i ∈ Ω,

dA
∑
j∈Ω

LA
ijÃj +

1− θi
θi

(µi + γI
i + δi)Ĩi − (µi + γA

i )Ãi = 0, i ∈ Ω,

dR
∑
j∈Ω

LR
ijR̃j + γI

i Ĩi + γA
i Ãi − µiR̃i = 0, i ∈ Ω.

Then (SM2.4) can be rewritten in matrix form as follows

(SM2.5)

(
diag(µi)− dSL

S
)
S̃ = Λ− diag(θ−1

i )DI Ĩ,(
DA − dAL

A
)
Ã =

(
diag(θ−1

i )− In
)
DI Ĩ,(

diag(µi)− dRL
R
)
R̃ = diag(γI

i )Ĩ + diag(γA
i )Ã,

where Λ = (Λ1, . . . ,Λn)T. Solving S̃, Ã, and R̃ from (SM2.5), then substituting the
results into (SM2.3) gives a system of quadratic equations in terms of Ĩ.

SM3. Proof of Proposition 3.17.

Proof. Under the above assumption, the total population of patch i satisfies

dNi

dt
= Λi − µiNi + d

∑
j∈Ω

LijNj , i ∈ Ω,

which has a globally asymptotically stable positive equilibrium N∗ = (N∗
1 , . . . , N

∗
n).

That is, N∗ is the unique positive solution to

(SM3.1) Λi − µiN
∗
i + d

∑
j∈Ω

LijN
∗
j = 0, i ∈ Ω.

Since N∗
i is bounded regardless of the selection of dispersal rate d and connectivity

matrix L, it follows from (SM3.1) that

lim
d→∞

(N∗
1 (d), . . . , N

∗
2 (d)) = mα
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for some m > 0, where α = (α1, . . . , αn)T is the right positive eigenvector with
eigenvalue zero of matrix L satisfying

∑
i∈Ω αi = 1. Summing up (SM3.1) over i ∈ Ω

gives ∑
i∈Ω

(Λi − µiN
∗
i (d)) = 0, ∀d ≥ 0,

implying that

lim
d→∞

(∑
i∈Ω

(Λi − µiN
∗
i (d))

)
=
∑
i∈Ω

Λi −
∑
i∈Ω

µimαi = 0, i.e., m =
∑
i∈Ω

Λi

/∑
i∈Ω

µiαi .

Furthermore, the equilibrium equations (3.13) imply that

E∗ → (mSα,mIα,mAα,mRα) as d → ∞,

where m♮ > 0 for ♮ ∈ {S, I, A,R} obey

(SM3.2)

mS +mI +mA +mR = m,∑
i∈Ω

(
θiβi

mI + τim
A

m
mSαi − (µi + γI

i )m
Iαi

)
= 0,

∑
i∈Ω

(
(1− θi)βi

mI + τim
A

m
mSαi − (µi + γA

i )m
Aαi

)
= 0,∑

i∈Ω

(
γI
i m

Iαi + γA
i m

Aαi − µim
Rαi

)
= 0.

Denote m̃♮ = m♮/m ∈ (0, 1) for ♮ ∈ {S, I, A,R}. Then (SM3.2) can be rewritten as

m̃S + m̃I + m̃A + m̃R = 1,(SM3.3a)

(p22m̃
I + p23m̃

A)m̃S − q22m̃
I = 0,(SM3.3b)

(p32m̃
I + p33m̃

A)m̃S − q33m̃
A = 0,(SM3.3c)

p42m̃
I + p43m̃

A − p44m̃
R = 0,(SM3.3d)

where

p22 =
∑
i∈Ω

θiβiαi, p23 =
∑
i∈Ω

θiβiτiαi, q22 =
∑
i∈Ω

(µi + γI
i )αi,

p32 =
∑
i∈Ω

(1− θi)βiαi, p33 =
∑
i∈Ω

(1− θi)βiτiαi, q33 =
∑
i∈Ω

(µi + γA
i )αi,

p42 =
∑
i∈Ω

γI
i αi, p43 =

∑
i∈Ω

γA
i αi, p44 =

∑
i∈Ω

µiαi.

It follows from (SM3.3b) and (SM3.3c) that

p22m̃
I + p23m̃

A

p32m̃I + p33m̃A
=

q22m̃
I

q33m̃A
⇔ p22κ+ p23

p32κ+ p33
=

q22
q33

κ

gives

(SM3.4) κ =
m̃I

m̃A
=

(p22q33 − p33q22) +
√
(p22q33 − p33q22)2 + 4p32q22p23q33

2p32q22
.
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Thus, (SM3.3c) implies that

(SM3.5) m̃S =
q33m̃

A

p32m̃I + p33m̃A
=

q33
p32κ+ p33

.

Solving m̃A and m̃R from (SM3.3a) and (SM3.3d) yields

(SM3.6)

m̃A =
(1− m̃S)p44 − m̃I(p42 + p44)

p43 + p44
,

m̃R =
(1− m̃S)p43 + m̃I(p42 − p43)

p43 + p44
.

Combining (SM3.4) and (SM3.6) gives

m̃A =
(1− m̃S)p44

p43 + p44 + (p42 + p44)κ
.

Lastly, m̃I and m̃R are solvable using (SM3.4) and (SM3.6), respectively.
The overall nonsusceptible ratio at the limiting endemic equilibrium E∗(∞) is

mS
∑

i∈Ω αi

(mS +mI +mA +mR)
∑

i∈Ω αi
=

mS

m
= m̃S .

If θi = θ or τi = τ for all i ∈ Ω, then p22p33 = p23p32 and hence (SM3.4) becomes

κ =
(p22q33 − p33q22) +

√
(p22q33 − p33q22)2 + 4p33q22p22q33

2p32q22

=
(p22q33 − p33q22) + (p22q33 + p33q22)

2p32q22
=

p22q33
p32q22

.

Substituting it into (SM3.5) yields

1

m̃S
=

(
p22q33
q22

+ p33

)
1

q33
=

p22
q22

+
p33
q33

= R0I(∞) +R0A(∞) = R0(∞,∞).

The last two equalities are due to Theorem 3.3.

SM4. Patch Model with Multiple Infectious Subgroups. We generalize
model (2.1) from two infectious groups to m infectious groups. The number of indi-
viduals of infectious group k in patch i is denoted by Iik for i ∈ Ω = {1, . . . , n} and
k ∈ Ψ = {1, . . . ,m}. The transmission dynamics of the epidemic patch model with
multiple infectious groups are described the following system of ordinary differential
equations (1 ≤ i ≤ n)

(SM4.1)

dSi

dt
= dS

∑
j∈Ω

LS
ijSj + Λi − βi

∑
l∈Ψ

τilIil
Si

Ni
− µiSi,

dIik
dt

= dIk
∑
j∈Ω

LIk
ij Ijk + θikβi

∑
l∈Ψ

τilIil
Si

Ni
− (µi + γik + δik)Iik, k ∈ Ψ,

dRi

dt
= dR

∑
j∈Ω

LR
ijRj +

∑
k∈Ψ

γikIik − µiRi.
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Here Ni = Si+
∑

k∈Ψ Iik+Ri is the total population size of patch i, the proportion of
new infections in patch i that progress to infectious group k is θik satisfying 0 ≤ θik ≤ 1
and

∑
k∈Ψ θik = 1, and dIk and LIk = (LIk

ij )n×n are the dispersal rate and connectivity
matrix of infectious group k, respectively.

For convenience, suppose all connectivity matrices are irreducible. It is easy to
check that the generalized model (SM4.1) still has a unique disease-free equilibrium
E0 = (S0,0, . . . ,0,0). Direct calculations give the incidence and transition matrices

F = (Fkl)m×m and V = diag(V11, . . . , Vmm),

where the blocks

Fkl = diag(θ1kβ1τ1l, . . . , θnkβnτnl),

Vkk = diag(µ1 + γ1k + δ1k, . . . , µn + γnk + δnk)− dIkL
Ik .

Following the next generation matrix method, the basic reproduction number of model
(SM4.1) is defined as

R0 = ρ(FV −1).

Proposition SM4.1. The basic reproduction number of model (SM4.1) is

R0 = ρ

(∑
k∈Ψ

FkkV
−1
kk

)
= ρ

(∑
k∈Ψ

V −1
kk Fkk

)
.

Proof. We introduce

P = diag(P1, . . . , Pm), Q = (In)m×m and R = diag(R1, . . . , Rm),

where

Pk = diag(θ1k, . . . , θnk) and Rl = diag(β1τ1l, . . . , βnτnl), k, l ∈ Ψ.

It is easy to verify that F = PQR which implies that

FV −1 = PQRV −1 =

P1

. . .

Pm


In · · · In

...
. . .

...
In · · · In


W1

. . .

Wm

 ,

where Wl = RlV
−1
ll for l ∈ Ψ. Multiplying the m-th row of λImn−FV −1 by −PkP

−1
m

and then adding it to the k-th row for all k ∈ {1, . . . ,m− 1} yield

|λImn − FV −1|

=

∣∣∣∣∣∣∣∣∣∣∣

λIn − P1W1 −P1W2 · · · −P1Wm−1 −P1Wm

−P2W1 λIn − P2W2 · · · −P2Wm−1 −P2Wm

...
...

. . .
...

...
−Pm−1W1 −Pm−1W2 · · · λIn − Pm−1Wm−1 −Pm−1Wm

−PmW1 −PmW2 · · · −PmWm−1 λIn − PmWm

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

λIn 0 · · · 0 −λP1P
−1
m

0 λIn · · · 0 −λP2P
−1
m

...
...

. . .
...

...
0 0 · · · λIn −λPm−1P

−1
m

−PmW1 −PmW2 · · · −PmWm−1 λIn − PmWm

∣∣∣∣∣∣∣∣∣∣∣
.
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Multiplying the l-th column of the above by PlP
−1
m and adding it to the m-th column

for all l ∈ {1, . . . ,m− 1} give

|λImn − FV −1| =

∣∣∣∣∣∣∣∣∣∣∣

λIn 0 · · · 0 0
0 λIn · · · 0 0
...

...
. . .

...
...

0 0 · · · λIn 0
−PmW1 −PmW2 · · · −PmWm−1 λIn −

∑
l∈Ψ PlWl

∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, |λImn − FV −1| = λ(m−1)n
∣∣λIn −

∑
l∈Ψ PlWl

∣∣ with PlWl = PlRlV
−1
ll =

FllV
−1
ll . This completes the proof of the first equality, whereas the second equality

can be proved by similarly considering V −1F = ((V −1P )Q)R.

By the comparison principle and persistence theory, we can again establish sharp
threshold dynamics in terms of R0 for model system (SM4.1). Lower and upper
bounds on R0 similar to Theorem 3.3 can be obtained. Under certain conditions
(similar to Theorem 3.6 and Proposition 3.8, e.g., θik = θk and τik = τk for all i ∈ Ω,
and LIk is symmetric for all k ∈ Ω), some monotone decreasing results on R0 with
respect to dispersal rates can be expected. Theorem 3.10 holds if only one infectious
group moves, whereas it fails if there are more than two infectious groups move. When
only two patches are concerned, it is easy to verify that the proof of Proposition 3.11 is
still valid (one only needs to remove the unnecessary restriction “a11a22 > a12a21”).
Therefore, for model (SM4.1), the basic reproduction number R0 is either strictly
increasing, or strictly decreasing, or constant with respect to the dispersal rate of any
given infectious group in a two-patch environment.
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