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Proc. R. Soc. Lond. A. 362, 425-461 (1978) 

Printed in Great Britain 

Self-duality in four-dimensional Riemannian geometry 

BY M. F. ATIYAH,t F.R.S., N. J. HITCHINt 

AND I. M. SINGER: 

t Mathematical In8titute, Univer8ity of Oxford, 
24-29 St Gile8', Oxford, U.K. 

t Department of Mathematic8, Univer8ity of California, 
Berkeley, California 94720, U.S.A. 

(Received 23 December 1977) 

We present a self-contained account of the ideas of R. Penrose con- 
necting four-dimensional Riemannian geometry with three-dimensional 
complex analysis. In particular we apply this to the self-dual Yang-Mills 
equatiorns in Euclidean 4-space and compute the number of moduli for any 
compact gauge group. Results previously announced are treated with full 
detail and extended in a number of directions. 

INTRODUCTION 

This paper is essentially an amplification of our previous note (Atiyah, Hitchin & 
Singer 1977) concerning the deformation theory of self-dual solutions of the Yang- 
Mills equations in Euclidean 4-space. Besides providing full details for all the results 
announced in Atiyah et al. (I 977), we broaden its scope by setting it in a natural 
differential-geometric context, and we refine the results in a number of directions. 
We also include an account of the relation between self-duality and holomorphic 
struLctures. The basic ideas here are those of R. Penrose, in his twistor programme, 
but there are some advantages in having a presentation of Penrose's ideas in the 
framework of real Riemannian geometry. The application of twistor theory to 
Yang-Mills fields is due to R. S. Ward and has been further developed by Atiyah 
& Ward (I977). Our presentation overlaps slightly with their work but has a more 
differential-geometric viewpoint. We do not pursue the complex analytic implica- 
tions themselves. 

We begin in ? 1 with a review of four-dimensional Riemannian geometry, and 
the particular role of the duality *-operator. The special feature of four-dimensions 
is that the rotation group SO(4) is not simple but is locally isomorphic to SU(2) x 
SU(2). For this reason the Riemann curvature tensor has an extra decomposition: 
the conformally invariant part W (the Weyl tensor) decomposes under * as 
W = W+ ( WK. A self-dual metric (or conformal structure) is one for which W = 0, 
and such metrics will be our main concern. On the geometric side each of the 
SU(2) factors of S0(4) defines a spin bundle with fibre C2 and hence a projective 
spin bundle with fibre the complex projective line P1(C). This fibration will play an 
important role. In ? 1 and elsewhere we employ freely the concepts and techniques 
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426 M. F. Atiyah and others 

of modern differential geometry and we give, as far as possible, a coordinate-free 
treatment. 

In ? 2 we consider the *-operator in the context of connections and curvature on 
fibre bundles. We introduce the notion of a self-dual connection, i.e. one whose 
curvature Q satisfies *Q = Q, which for the physicists gives an absolute minimum 
of the Yang-Mills functional. The material here is by now standard except for the 
observation that self-duality of the spin bundles coincides with the Einstein 
property of the metric. 

We shall show that the self-duality property of metric and connections can be 
interpreted as the integrability conditions for complex structures. In order to have 
a unified treatment of both cases which is also conformally invariant, we give in 
? 3 a general integrability result associated to first order differential equations. This 
is applied first in ? 4 to the twistor equation to show that, if X is a self-dual 4- 
manifold, the projective bundle P(VJ) of anti-self-dual spinors inherits the structure 
of a complex analytic 3-manifold. The conformal invariance of the twistor equation 
implies that the complex structure of P(VJ) depends only on the conformal structure 
of X. The most noteworthy example arises when X is the 4-sphere in which case 
P(VJ) can be identified with complex projective 3-space. 

In ? 5 we apply the integrability result of ? 3 to prove that a hermitian vector 
bundle, over a complex manifold, with a connection whose curvature is of type 
(1,1) has a natural holomorphic structure. This is then combined with the results of 
? 4 to prove that a self-dual bundle over a self-dual 4-manifold lifts to give a holo- 
morphic bundle over P(VT). 

Section 6 is devoted to studying the moduli space of irreducible self-dual con- 
nections (over a self-dual manifold of positive scalar curvature). As outlined in 
Atiyah et al. (I 977) we derive a general formula for the dimension of each component 
of the moduli space. We also prove that the moduli space is globally a (Hausdorff) 
manifold. 

In ? 7 we specialize to SU(2)-bundles over S4 and give a differential-geometric 
treatment of the 't Hooft solutions, and we then proceed to consider other simple 
Lie groups G in ? 8. We prove that if k > k(G) then irreducible self-dual G-bundles 
over S4 with Pontrjagin index k exist and we compute the dimension of the moduli 
space. The lowest value of k(G) is found for all G. These results, which refine the 
information given in Atiyah et al. (1977), are very similar to recent results of 
Bernard, Christ, Guth & Weinberg (1977). 

Finally in ? 9 we give a differential-geometric proof that the moduli space for 
self-dual SU(2)-bundles over S4 with k = I is the hyperbolic 5-space corresponding 
to the known solutions described in ? 7. Another proof of this fact by using algebraic 
geometric methods is given in Hartshorne (I977). 
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Self-duality 427 

1. FOUR-DIMENSIONAL RIEMANNIAN GEOMETRY 

Let X be an oriented Riemannian manifold of even dimension 21, and let AP 
denote the bundle of exterior p-forms with AP = r(AP) its space of smooth sections. 
The Hodge star operator *: 21P P A21-p is defined by 

xA*/5= (x,/5)&eA21 

where x, fi eAP, (x, fi) is the induced inner product on p-forms and o is the volume 
form. 

Of particular interest is the star operator on forms in the middle dimension 
p = 1, where *: A1- A1l satisfies *2 = (_ 1)1. On 1-forms * is conformally invariant, 
for if we change the metric by multiplying by a scalar A, the inner product on tangent 
vectors is multiplied by A and on 1-forms by A-1. On the other hand the volume 
form is multiplied by Al and (x, fi) & = XA *,f remains the same. 

If 1 = 1, then *2 =- 1 and defines the complex structure on a Riemann surface. 
We are interested in the case 1 = 2, i.e. when X is a four-dimensional manifold. In 
this instance *2 = + 1 and the bundle A2 splits into a direct sum, 

A2 =4 A2 

where A2 are the + 1 eigenspaces of *. We call them the bundles of self-dual and 
anti-self-dual 2-forms respectively. 

The 2-forms are important in Riemannian geometry because of their relation 
with the curvature tensor, and this decomposition has a profound influence on the 
underlying geometry of four dimensions. 

The Riemann curvature tensor defines in general a self-adjoint transformation 
: A2-+-A2givenby k(e Aej) = YRijkl eke1, 

k, I 

where {ej} is a local orthonormal basis of 1-forms. In four dimensions, we can write 
R as a block matrix relative to the decomposition A2 =A2 2: 

[B* 07 ll 
where B E Hom (A2, A2 ) and A c End A2, C E End A2 are self-ad joint. 

This representation of M gives us a complete decomposition of the curvatuire 
tensor into irreducible components (Singer & Thorpe I 969): 

-e (trA, B, A -.ktrA, C-.3tr C), 

where trA =trC = scalar curvature, B is the traceless Ricci tensor and the last 
two components, which we denote W+ and W11, together give the conformally invariant 
Weyl tensor, W = W+ + W . Note that the metric is Einstein iff B = 0, conformally 
flat, iff W _ 0. Both of these special forms of metric occur in higher dimensions, 
but there is one specialization which is only valid in four dimensions and with 
which we shall be primarily concerned. 

15-2 
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428 M. F. Atiyah and others 

Definition. An oriented Riemannian 4-manifold is self-dual if its Weyl tensor 
W=W , i.e. if W --O. 

Since the Weyl tensor and the star operator are conformal invariants, it is clear 
that this is a property of the underlying conformal structure, and the choice of 
orientation. 

EXAMPLES 

1. If X is conformally flat, then W+ W 0 and X is clearly self-dual. Hence for 
example the 4-sphere S4, Sl X S3 and the 4-torus T4 with natural metrics are all 
self-dual. 

2. The complex projective plane P2(C) with its standard metric and orientation 
is self-dual. 

3. Any 2-complex dimensional Kiihler manifold with vanishing Ricci tensor is 
anti-self-dual with respect to its canonical orientation. The recent proof of the 
Calabi conjecture by Yau (I977) thus yields an anti-self-dual metric on any K3 
surface. 

There are topological restrictions on manifolds which carry a self-dual con- 
formal structure. In particular the signature of X must be non-negative, for the 
first Pontrjagin class P, may be represented by the integral 

pl(x) = 12 C /(ei A ej) A (ei A ej) 

= 2f(Iw?I2 - IW 12) 

1.f1J lw+12wo if Xisself-dual. 

Since the signature T is equal to j3pl we have T > 0 with equality iff W+ = W = 0O 
i.e. iff X is conformally fiat. 

In particular, since the 4-sphere S4 has zero signature and up to diffeomorphism 
a unique conformally flat structure, we deduce that there is on S4 a unique self-dual 
conformal structure. 

The 2-forms can be identified, by using the metric, with skew-adjoint trans- 
formations of A', and then the decomposition A2 = A+ A corresponds to the 
isomorphism of Lie algebras so(4) so(3) ? so(3), A2 being bundles of three- 
dimensional Lie algebras. It is convenient to use this decomposition on the Lie 
group level (Spin (4) SU(2) x SU(2)) and introduce, at least locally, the two 
complex spinor bundles V+ and VJ: the bundles of self-dual and anti-self-dual spinors. 
In the usual way, the complex endomorphism bundle of the total spin bundle 
V = V+ (3 IL is isomorphic to the complexified Clifford algebra bundle of A', which 
is isomorphic as a graded vector bundle to A* = ?3 AP, where AlP = AP? C. 

p 

(The Clifford algebra is the algebra generated by Al subject to the relations 

ei w er + ej}. ea m bi.) 
where {ei} is a local orthonormal basis.) 
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Self-duality 429 

Under this isomorphism, p-forms (for p 1, 2) act on spinors in the following 
way: A1 Hom(V+,V) Hom (V, . 

A+c End V+ consists of the traceless endomorphisms of V+, and the real bundle 
A+ the traceless skew hermitian endomorphisms. Similarly A2 cEnd V, and self- 
dual forms act trivially on anti-self-dual spinors. Since V+ V+, symplectically, 
we also have A+c 82+. (Here SmV+ denotes the mth symmetric power bundle of 
the two-dimensional complex bundle V+.) 

We can likewise express the decomposition of the curvature tensor (1.1) in 
spinor form. The bundle of self-dual Weyl tensors is identified with the bundle of 
self-adjoint traceless endomorphisms of A.2. The bun3dle of all endomorphisms of 

A+ is A+ 0 A+ 82V0 82V+ SOA+ = +. ?2+ is the bundle of skew- 

adjoint transformations, the one-dimensional bundle SOV+ consists of the scalar 
transformations, hence the bundle of self-dual Weyl tensors is +. Similarly the 
bundle of anti-self-dual Weyl tensors is S4V, and of traceless- Ricci tensors 

S2V+ O S2V . 
The real bundle A1 c A1A - Hom (V+, e) deserves some consideration in con- 

nection with the almost complex structures on X. If we fix a non-zero spinor 
bE 

(V+), at a point x, then this gives a real isomorphism A1l (V1)x defined by 
Clifford multiplication ac -+ cc. b and so identifies Al with a complex vector space 
and furnishes the tangent space of X at x with a complex structure compatible 
with the metric and orientation. Clearly multiplying 0 by a scalar A e C* defines 
the same complex structure, so the projective space P(V+)x parametrizes a set of 
compatible complex structures. 

The subgroup of Spin (4) SU(2) x SU(2) which leaves fixed b up to a scalar 
multiple is S' x SU(2), the double covering of U(2) 0 SO(4). Hence the projective 
space P(V?)x is naturally isomorphic to S0(4)/U(2), the space of all complex 
structures compatible with the metric and orientation. 

There is a dual way of looking at this, where we take not the Clifford multiplica- 
tion map A1 ? V+ - V, but its adjoint 

V- V? 0 Al, 

fl ei .V3b0g ei, 
i 

where g = lei 0 ei is the metric tensor. Now if we are given 0 E V+, we get a map of 
V into A1: 3b>(e*.i/,qS)ei (1.2) 

by means of the symplectic form on V+, and the image of V in AX is the subspace 
A1,0 of (1, 0) forms which equivalently defines the complex structure. 

The symplectic and hermitian structure on V+ defines an isomorphism 

V+ - V+ which is antilinear. Under this isomorphism, b?0 defines an element 
of (S2V+)X which is invariant under U(2): the hermitian form in (A2),. The space 
(A- ), then c onsists of (1, 1) forms orthogonal to this form. 
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430 M. F. Atiyah and others 

Using the metric, we see that this 2-form defines a skew-adjoint transformation 
I of the tangent space TR such that 12 - 1 and det I = + 1. This is the usual 
definition of an almost complex structure. 

It is clear now that we may consider two general classes of objects - self-dual 
and anti-self-dual - on a 4-manifold. The natural category with which we shall be 
concerned is that of self-dual objects on self-dual spaces. The objects of primary 
importance, which come to us from physics, are the self-dual Yang-Mills fields or 
self-dual connections which we consider next. 

2. SELF-DUAL GAUGE FIELDS 

Connections can always be viewed in two ways: as defined on principal bundles, 
or vector bundles. We shall use both methods, so we begin by reviewing the relation 
between them. 

On a principal G-bundle P over X, a connection is defined by a 1-form co with 
values in the Lie algebra g of G, and its curvature Q is the g-valued 2-form 

dw?l + [j, o], 

which descends to X as a section of g 0 A2 where g now denotes the vector bundle 
associated to P by the adjoint representation. 

On a vector bundle E over X, a connection is defined by its covariant derivative 
V, which is a first order linear differential operator 

V : A?(E) ->A1(E), 

where AP(E) = F(E0 AP) is the space of smooth sections of E0 AP. The covariant 
derivative has a natural extension 

D1: A1(E)-A2(E), (2.1) 

defined by Dl(e ca) = Ve A c+ e dac, 

where e eAO(E) and ac eA1. The curvature Q is then defined as the composition 
D1 V eA2 (End E). The relation is easy to describe. A representation of G on a vector 
space E defines an associated vector bundle P x GE and a local section of P a dis- 
tinguished local basis {ei} of E. Pulling back (o via the section and applying the 
representation we get a matrix of 1-forms otoj and defne Vei = ))j ( ej. Conversely 

j 
if E has a G-structure preserved by V, then this defines w on the principal bundle of 
G-frames. 

For the physicist the curvature Q eA2(g) is called the gauge field, and the con- 
nection form (o the gauge potential. The concept of equivalence of two connections 
which is appropriate here is that of gauge equivalence. 

Definition. A gauge transformation on a principal G-bundle P is a diffeomorphism 
f: P ->P such that (1) f (gp) = gf (p) g EC G, p E P, (2) f preserves each fibre, i.e. 
acts trivially on the base space X. 
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Self-duality 431 

The infinite dimensional group C of all gauge transformations consists of sections 
of the bundle of groups P x GC where C acts on itself by conjugation. Locally, 
f E 9 may be represented as a G-valued function on X and a connection as a g-valued 
1-form co. The action off on a connection is then locally given by 

f -lo) = f-1 df + (Adf-1) (c)). 

Under a representation, 9 is mapped into the group F(Aut E) of automorphisms 
of the vector bundle E and its action on the covariant derivative is that of con- 
jugation: 

f-1(V) = f-lVf. 

Connections have many invariants under gauge transformations. For example if p 
is any invariant polynomial on the Lie algebra g, then the Chern-Weil construction 
defines a differential form p(Q) by applying p to the curvature. This form is gauge- 
invariant. There is another property of a connection which is gauge-invariant, and 
this is the notion of a self-dual connection, self-dual Yang-Mills field, self-dual 
gauge field, or instanton. 

Definition. On a 4-manifold X, a connection is said to be self-dual if its curvature Q 
is in A+(g) (i.e. Q = *Q) and anti-self-dual if Q eA (g) (Q = _ *Q). 

In fact since the star operator is conformally invariant on 2-forms, the property of 
self-duality of a connection is invariant ulnder the larger group of transformations 
of a principal bundle consisting of those which act by conformal transformations 
on the base space X. 

EXAMPLES 

1. Take C to be U(1). Since C is abelian, the curvature Q is a closed 2-form such 
that Q/27ii defines an integral class, the first Chern class, in H2(X, DR). Given such 
a 2-form Q, we can always find a U(1) connection with Q as its curvature. If the 
connection is self-dual, then d*Q = *d*Q = *dQ = 0, so Q/2ii is in the harmonic 
space H+ n H2(X, Z)/torsion. This set may or may not be zero, depending on the 
conformal structure of X. For example, it can be shown that a flat torus T4 has 
non-flat self-dual U( 1) connections iff it is an abelian variety. 

2. Fix a Riemannian metric on X and consider the S0(3) bundle A+ with the 
induced Riemannian connection. The adjoint bundle g is in this instance A+ itself 
and the curvature of the induced connection is that part of the Riemann curvature 
tensor which lies in A+ 0 A2, i.e. 

Q = A +B* eA2(A2) 

in the decomposition of ? 1. Since B* e A2 (A), this connection is self-dual iff 
B = 0, in other words iff the metric is Einstein. In that case, A2 with the induced 
connection is anti-self-dual, and if X is a spin manifold, the spinor bundle V+ is 
self-dual and V is anti-self-dual (as bundles with SU(2)-connections). We thus have 
the following proposition. 
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PROPOSITION 2.2. Let X be a 4-manifold with an Einstein metric. Then the 
induced connections on the bundle of self-dual spinors 8V and the bundle of self-dual 
2-forms A2 are self-dual. The induced connections on the corresponding anti-self-dual 
bundles are anti-self-dual. Conversely, if the induced connections on VF and A2? are 
self-dual, the metric is an Einstein metric. 

In this way we immediately get non-trivial self-dual SU(2) connections on S4. 

On P2(C), the SO(3) connection on A2 reduces to S0(2) = U(1), but we still have a 
non-trivial anti-self-dual connection on A_. 

A bundle with a self-dual connection must satisfy some topological conditions. 
We see this in the above example of U(1) connections where the first CherD class 
c1 must be positive in some sense. The same is true of the first Pontrjagin class: 

If E is a hermitian vector bundle with connection, then the 4-form 

[1/(27ri)2] tr (Q2) 

represents the characteristic class 

pl(E) (c-2c2) (E) e1H4(X, Z) 

which, evaluated on the fundamental cycle of the compact manifold X, gives an 
integer. 

If the connection is self-dual, this integer is positive, since if oc E A2, ac2 = jlc 2O, So 

1 f*,..fl2 kfI0S12,h 

Pi(E) =-4 2Jtr = 472J'Q2,' 

and if p1(E) = 0, the connection is flat. Similarly, if the connection is anti-self- 
dual, p, (E) <, 0. 

In this context, the self-dual connections give absolute minima for the Yang- 
Mills functional 

87 2J SQ212&- 8c (I S+12 + JIQ_ 1 2, 

for this is always greater than or equal to the topological invariant (essentially 

p1(E)) 

82j'x(IQ+I2 
- IQ_2) o)X 

with equality iff Q_= -0, i.e. iff the connection is self-dual. These, then, are our 
basic objects of study: self-dual connections modulo the notion of gauge equivalence. 
We are going to link the structure of a self-dual connection with that of a self-dual 
base space, and our next task is to provide ourselves with a useful tool for this 
purpose. 

3. AN INTEGRABILITY THEOREM 

It is well known that the vanishing of the curvature tensor of a connection is the 
condition for the integrability of the horizontal subspaces in the principal bundle 
or, in the vector bundle approach, for the existence of a local basis of solutions of 
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Self-duality 433 

the differential equation Vs = 0. Our self-dual condition involves the vanishing of 

part of the curvature, and we shall relate this to the solutions of a more general 
differential equation Ds = 0, so in this section we shall consider first order differential 
operators from a particular point of view. 

Let E be a vector bundle, which for the moment we suppose real. A section 
s e F(E) defines by duality a function sv on the total space of the dual bundle E*: 

s (ex) = s(x),eEx> 

and its derivative dsv is a 1-form on E*. In local terms, choose a basis (e, ..., ek) 
for E and take the dual basis (es, ..., en) for E*, then we can parametrize E* locallyby 

(A1, . ** /in) XI ... I n) Ai6(X)e sE*. 

Now if s = Efiei, then 
i 

sv(Al, ..., An x1, ... Xn) = EAifi(X) 

and dsv = EdAif1 + EAi dfi. 

Now let D :F(E)-* r(F) be a linear first order differential operator and let 

Ix c Fx denote the subspace consisting of all D(s)x where s runs over all local sections 
of E at x. We shall say that D is of constant rank if dim Ix is independent of x. When 
this is the case we shall associate with D a vector bundle V(D) on E*\O (the com- 
plement of the zero section). V(D) is the sub-bundle of the cotangent bundle 
T*(E*\O) whose fibre at a point ex cE*E consists of all 1-forms (dsV)ex where s is a 
local section of E satisfying D(s)x = 0. The constant rank assumption ensures that 
the spaces V(D)6x have constant dimension and that V(D) is indeed a vector bundle. 
By using the language of jets (Taylor expansions) this construction can be re- 

formulated as follows: The derivation dsv of sections of E factors through the 

universal derivative, the 1- jet jl(s) e F(J,(E)) and we get a homomorphism of vector 
bundles over E*: V: p*J,(E) - T*E* 

where p: E* -- X is the projection. V is surjective off the zero section and is charac- 
terized by the property V(p*jl(s)) = dsv. 

It is easy to see that V is well defined by this property and that when it is restricted 

to p*(E0 A') c p*J,(E), 

-V((e,x j'x),x) = -<e(, ex>pP*Y,x e (T*E*)6x. 

A linear first-order differential operator D is defined as a homomorphism from 

J1(E) to F, whose kernel R we assume to be a vector bundle. Then the vector 

bundle V(D) defined above is just V(p*R). 

EXAMPLE 

If D = V, the covariant derivative of a connection on E, then R c J1(E) is 
isomorphic to E under the natural homomorphism J,(E) -*E and V(V) c T*(E*\O) 
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is the annihilator of the bundle of horizontal subspaces on E*. Locally, relative to 
the basis (e,, ..., ek) we obtain the connection matrix e&j where 

Vei = z (& e; 

and then V(V) is spanned by the 1-forms 

Oi = dAi -- z clf Aj I <, i <, k. 

Consider now a general differential operator D of the form crV where o: E Al -- F 
is the symbol of D, and V is a connection on E. Let S, R n E(& Al be the kernel 
of the symbol homomorphism and S2 c E$ A2 the image of S, 0 A' under exterior 
multiplication. 

PROPOSITION 3.1. V(D) c T*(E*\O) is involutive iff (1) DIF(Sl) c F(S2), 
(2) QF(E) c F(S2), where Q:A0(E)->A2(E) is the curvature of V and Dl: 
A'(E)-*A2(E) the extended covariant derivative (2.1). (Note that the first condition 
is a 'torsion' condition on the connection - the vanishing of certain components of 
the connection matrix - and the second condition is a condition on the curvature.) 

Proof. Recall that V c T*M is involutive if for any section v e F( V), dv = >vj A ai 
for 1-forms vi eF( V), in other words if dr( V) c r(V2) where V2 c 1A2 is the image 
of VQ(& A' under exterior multiplication. 

If D = o-V, then V(D) = V(p*(Sl ?3 E)) and is thus spanned by the 1-forms 

i= dAi- oijAj(1 < i < k)in V(p*E), 

and -o = Z8ijk Aidxk(l <s i < m)in V(p*S,), 

where crio = ijk e1jQ dxk locally span S,. Now T*(E*\O) has a local basis dAl, ..., dAk 

dx,...., dxn, or equivalently l0 6,Ok, dxl, ..., dxn, hence V2 is spanned by forms 
6i A .j, 0i A dxj, ox A dx. The forms orq A dxj span V(S2). Taking the exterior deriva- 
tive of 6i and o? we find 

dOi =-Ai d(oij -EdAj A coi 

=-AJ dCt)ij - 1Gk A ?oij Ilk - Yj A loi 
= -/LAk Qik -Oj A c0ij' 

which is a section of V2 if EAk Qik is a section of V(S2) i.e. iff QF(E) c F(S2). 

doJ-Y =8ijk dAN A dxk + XAj dsijk A dxk 
_ E8ik Oj A dxk+ Ysijk wml Am A dxk + Aj dsijk dXk 

_ X8ijk Oj A dxk + (Dl oj) 

which is a section of V2 iff (Dl o.i)v is a section of V(S2), i.e. iff Dl,r(Sl) c F(S2). 
Hence V(D) is involutive iff the conditions of the theorem hold. 

Note that in the case D = V, then S, = 0 and the condition is precisely the 
vanishing of the curvature. In the real situation, we could now apply the Frobenius 
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integrability theorem and obtain a foliation on E*\0. Suppose instead that E is a 
complex vector bundle, then sv is a complex valued function on E*, dsv a section 
of the complexified bundle and V(D) a sub-bundle of T*(E*\0). If now V and D 
commute with the complex structure on E, then proposition (3.1) still holds, where 
the Ai's are to be treated as complex numbers. 

There is one particularly important class of subbundles of the complexified 
cotangent bundle: those V c T* such that V n V =0 and V+V = T*, for such a 
bundle defines an almost complex structure. If it is involutive, then the Newlander- 
Nirenberg theorem (I957) implies that the structure is integrable. 

4. SELF-DUAL SPACES AND COMPLEX MANIFOLDS 

As an application of proposition 3.1, we shall prove the following: 

TUE OREM 4.1. Let X be an oriented 4-manifold. Then a conformal structure on X 
defines in a natural way an almost complex structure on P(Vi), which is integrable 

iff I = 0, i.e. iff X is self-dual. (Note that the spin representations are well defined 
projective representations of SO(4), so we need not assume that X is a spin manifold.) 

Proof. The question is local, so we may consider the vector bundle V . We also 
choose a metric within the conformal structure. There are two natural differential 
operators defined on V : the Dirac operator, 

D: rv )V >r(v 1 f> r(v+), 

whose symbol is Clifford multiplication, and the so-called twistor operator (Penrose 

I975) 
D: I(v ) > r(v- OA') r( v+), 

where C is orthogonal projection 1- o.*o. onto the kernel of o- in F(V ? A1). Locally, 

DV1 = V/r + 2ei . DV/r? e13 eF ( Vt), where g = 2ei X ei is the metric tensor. We are 
going to apply proposition 3.1 to the operator D, so first consider S, = keri c 

V I Al. This is just V+ embedded as i/ ei.-* V . ei. Now at oe V*-, V(Sl) is 

Y_<ei./i,0>e i, i.e. the ALO subspace of Al parametrized by the symplectic dual 

spinor to 0 (see 1.2)). Hence V(D) - V(p*Sl ? p*V) is a four-dimensional complex 
sub-bundle of T*( V* \0) and such that V(D) n V(D) = 0, in other words an almost 

complex structure. To check its integrability we just have to verify the conditions 
of (3.1). 

1. If 0 = Yei . i/ (r ei, then since the Riemannian connection preserves the metric 
tensor g, 

Vq = Eej.Vi?) ej. 

Furthermore, since V is torsion free, D, 0 = A (V) = Yei . Vj Jb 13 ej A ei E r(S2) 
where A denotes alternation. 
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2. F(S2) consists of sections which are in the image of the map V+ ? A1 -+ VJ L A2 
defined by -f 0 ac lei. )e . ei A a. If Z4j 0 ej is in the kernel of this map, 

lei . f j ( ei A ej = 0, 

and hence ei ifj-=ej = for i : j from which it follows that e fi =-ej rj = 0, and so 

V+(0A1 C V i A,2 

If we decompose these bundles into irreducible components, 

V+ (0Al (S2V+? V_) OW, 

and V 0 A2 c (S2V E?V i) $ V (D S3V. 

Hence QF(W_) c F(S2) ifF the composition 

I -V LA2-* S3V 

is zero. But this is precisely the S4V component of the Riemann curvature tensor, 
i.e. W. 

So the sub-bundle is involutive, and the complex structure integrable, iff X is 
self-dual, i.e. =_ 0. The structure is clearly invariant under scalar multiplication 
by A E C'* on V*\O and hence the quotient space P( V*) = P(VQ) has a complex 
structure. The twistor equation DVf = 0 can be made conformally invariant by 
giving the bundle V conformal weight - I (Fegan I976). Since the sub-bundle 
V(D) is defined by the operator D it follows that the complex structure on P(VT) 
is defined in terms of the conformal structure on X. In particular any orientation 
preserving conformal transformation of X induces a holomorphic transformation 
of P(V). 

Remarks 

1. If we fix a Riemannian metric in the conformal class, the almost complex 
structure on P(Vi) can be seen more geometrically as follows. First, using the 
Riemannian connection we can split the tangent bundle of P(VL) into vertical and 
horizontal parts. On the vertical part we have the complex structure of the fibres 
(complex projective lines). On the horizontal part at a point 0 eP(VL)x over x E X 
we put the complex structure on Al parametrized by qS as explained in ? 1. Note 
that this complex structure defines the opposite orientation on Al since 0 E P(VL)x. 
One can now proceed to verify directly that the vanishing of WlL is precisely the 
integrability condition for the almost complex structure. Finally, one can check 
that conformally equivalent metrics on X give rise to the same almost complex 
structure on P(VL). In our approach the conformal invariance follows from the 
known conformal invariance of the twistor equation. 

2. Since the complex structure on P(VL) descends from one on V*\0, we have 
locally a holomorphic line bundle H over P(V ) whose principal bundle is V*\0. 
Globally, the spin bundle V and the line bundle H exist only if w2(X) = 0, but in 
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all cases H2 is a well defined bundle. H2 is in fact canonically associated to the 

complex structure on P(V ) and is not an extra piece of data: we have H-4 K, 
the canonical line bundle of holomorphic 3-forms on P(V). This can be seen as 
follows: the bundle R associated to the twistor equation Do = 0 is an extension 

V+ --R - I 

of the spin bundle V of conformal weight - 2 by V+ of weight 1- = t and hence R 
has a canonical SL(4, C) structure. R is mapped into T*( V* \0) as the holomorphic 
cotangent bundle and so V*\0 has a non-vanishing section Cl) of A4T*. Locally 

=) =7 A o A 01 A 02 in the notation of (3.1) where ov = ZAj<ei. if., qj> ei and 
i= dAi - Dwij Aj and one may show that dwt) = 0, i.e. Cl is holomorphic, using the 

expressions for d0i and dov in (3.1) and the fact that W = 0. On the other hand w 
is homogeneous of degree 4 in A and hence trivializes H4K on P(V ). Hence K H-4. 

The fibres of P(V') -- X are complex submanifolds, projective lines, of P(V ). The 
normal bundle of each fibre is trivial as a real bundle, but not as a holomorphic 
one as we shall see next. Take a fibre (V* )x, with A1, A2 linear coordinates. Then 
from proposition 3.1, the conormal bundle N* of this fibre is spanned by ov and o2 

where 
Tva = 1<ei * Vf., ?> ei, 

where 0 E (V* )x and ?fa E (V+)x. Now o-v and ov are holomorphic sections of N* on 
(V* ), since dov in (3.1) contains no dAi terms. Hence they trivialize N* on (V* ). 
But they are linear in 0, so on P( V* )x they trivialize HN* where H is the hyperplane 
bundle, and so N H 0 H, or more invariantly N (V*)Z0 H. Next note that 
the holomorphic sections HO(P1, (9(H)) are parametrized naturally by (VL)x and so 
the space of holomorphic sections of N, 

HO(P1, ?7(N)) (V 0 VE)4 - Hom (V+, )x (AL)) 

Consider a decomposable element 0 (J E (V+ 0 J'L),. In HO(P1, (3(N)) this defines a 
section 01q where 1, is the linear form corresponding to Vf. This is a section of N which 
vanishes somewhere, namely at 0 where 1*(0) = <(f, 0> = 0. Conversely, the set of 
sections in 11O(P1, ((N)) which vanish somewhere corresponds to the set of de- 
composable elements in (V* 0 V L),, or equivalently elements of rank less than or 
equal to 1 in Hom (V+, VI),* If a E (Al). annihilates a spinor Vf by Clifford multiplica- 
tion, then 0 = a2. =- (a,ta,) Vf and so a is of length zero, and conversely if 
(a, a) = 0, a is of rank less than or equal to 1. It follows then that there is a 1-1 
correspondence between holomorphic sections of N which vanish somewhere, and 
the null-cone in (Al), defining the (complex) conformal structure. 

This is a principle of fundamental importance in the Penrose twistor programme; 
the conformal differential geometry over the complex numbers has been coded 
into the holomorphic structure of P(V ) and the holomorphic lines thereon. 

In fact, given a complex 3-manifold Z and a line P1(C) c Z with normal bundle 
H @ H, then H1(Pl, ((N)) = 0 and it follows from a theorem of Kodaira (i962) 

that the line belongs to a 4-parameter complex analytic family whose tangent 

This content downloaded from 128.97.244.238 on Fri, 25 Jul 2014 02:07:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


438 M. F. Atiyah and others 

space at C is naturally isomorphic to HO(C, &(N)). The set of sections which vanish 
somewhere defines naturally a complex conformal structure which, as Penrose 
(1976) shows, is self-dual. In our case, we need a positive definite real conformal 
structure and hence an extra piece of information. This information is a real structure 
on the complex manifold P(V1), that is, an anti-holomorphic involution ': P(VK) 
P(Vf), defined by the quaternionic structure J: V - V in each fibre. On each fibre 
P1(C), J is anti-holomorphic and, regarding P1(C) as S2, is the antipodal map and 
so takes the complex structure I on Al to -. On the direct sum of the complex 
structures, - is thus anti-holomorphic. 

-r has no fixed points on P(V ) but does leave the fibres invariant. This means that 
the base space X, which parametrizes the fibres, is mapped naturally into the fixed 
point set of r with respect to its natural action on the complex four-dimensional 
family of lines described above, and the action on the tangent space of this fixed 
point set reduces the complex conformal structure to a real one. As a consequence 
of this, any self-dual space X has a real analytic structure, relative to which the 
conformal structure is real analytic. 

To sum up, theorem 4.1 translates a self-dual space into a complex 3-manifold 
with no real points, fibred by a real family of lines having normal bundle H D H. 

EXAMPLES 

1. Take X to be 4 with its flat conformal structure, then P(V) is just S2 X4 

given the complex structure of the total space of the holomorphic bundle H 0 H 
over P1(C). The holomorphic sections give the 4-parameter family C? of lines. If X 
is replaced by a flat torus Rt4/F, we get the non-Kaihler manifolds described by 
Blanchard (1956) and Calabi. 

2. If X = S4, then P(V =-P3(C). The lines are just the ordinary lines in P3(C), 
parametrized by the Klein quadric Q4. The real structure on P3(C) is given by a 
quaternionic structure J: C4 -- C4 and the real lines are defined by quaternionic 
planes in C4, i.e. P1(H) S4, also to be thought of as the real quadric S4 c Q4. 

3. If X = P2(C), then P(VL) is the flag manifold F3. A point of F3 is a pair (x, 1) 
where x eP2(C) and 1 c P2(C) is a line containing x. The standard metric on P2(C) 
is induced from a hermitian form on C3 which defines an antilinear map from C3 
to its dual space and thus an antiholomorphic map from P2(C) to P'*(C). Under 
this map a pair (x, 1) goes to a pair (x, 1) where 1 ex. This is the real structure on F3. 

The complex 4-parameter family of lines on F,3 is given by taking pairs (y, m) 
where y E P2(C) and m c P2(C) is a line not passing through y. For each line I through 
y, we associate the point (I n m, 1) E F3 and so get the P1(C) of lines through y mapped 
into F3. The real lines are those where the 1-dimensional vector space defined by 
y, and the 2-dimensional space defined by m in C3, are orthogonal relative to the 
hermitian form, and such pairs are simply parametrized by y eP2(C). 

Note that the projection from F3 to P2(C) is not the usual holomorphic one: 
instead of associating to (x, l) the point x, we associate the point x' orthogonal to 
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x in I relative to the hermitian structure of C3. Note further that the fibre P(V )X 
parametrizes complex structures on Al with oppo8ite orientation to the integrable 
complex structure on P2(C). That complex structure defines a section of P(V+), 
the reduction of A2 to SO(2) mentioned in ? 2. 

4. If X is any conformally flat manifold, then P(V ) has a flat holomorphic pro- 
jective connection. If ir,(X) -? S0(5, 1) is the holonomy representation on X, its 
composite with the projective spin representation S0(5, 1) -? 80(6, C) -+ PSL(4, C) 
is the holonomy representation on P(VE). This gives a way of constructing many 
examples of compact projectively flat complex manifolds. 

5. 8E1JF-DUAL CONNECTIONS AND 1OLOMORPHIC BUNDLES 

A second application of Proposition (3.1) is the following (see also Griffiths I966). 

THEOREM 5.1. Let X be a complex manifold, E a C(O hermitian vector bundle with 
connection V whose curvature Q is of type (1, 1), i.e. Q eA"'(End E). Then E has a 
natural holomorphic structure and V is the unique (1, 0) hermitian connection. 

Proof. We apply (3.1) to the following differential operator: 

D-: r(E) > r(E0 Al) > r(E0 AOJ). 

D is formally like the Dolbeault 
- 

operator. We are going to show that there is a com- 
plex structure on E for which D = a. 

Here S = ker o = EG A1'0 and so clearly V(D) n V(D) = 0. Moreover 
dim V(D) = dim X + dim E, so again we have an almost complex structure on E*\0. 
It remains to verify the integrability conditions of (3.1). 

1. If e0 dz F(S,), then 

D1(e?8) dz) = Ve 0dzi A dz + YV- e 3 &i A dz 

which is in A2,0(E) ? A1"l(E) c F(S2). 
2. If Q E A "(End E), then 

QF(E) c A1 l(E) ' r(S2). 

(In fact we see here that it is only necessary to assume that the curvature has no 
component of type (0, 2). For a hermitian connection this of course means that the 
(2, 0) component vanishes as well.) 

Hence (3.1) implies that the almost complex structure is integrable, i.e. E*\0 
is a complex manifold. In fact the complex structure extends across the zero 
section since V(D) is generated by the forms 

dAi- 1ij Aj and Ai dzj, 

or equivalently dAi - E2&i) Aj and dzj, 

and this extends. What is more, the zero section is a complex submanifold relative 
to this complex structure, so its normal bundle is holomorphic. But the normal 
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bundle is naturally isomorphic to E*, so E* and E are holomorphic vector bundles. 
The isomorphism between the conormal bundle N* and E may be described as 
follows: to each section 8 F'(E) associate the 1-form dsv of ? 3 restricted to the 
zero section. In local coordinates this is ei dAij0 which is a local section of N*, 
since the zero section is defined by A1 = ... = A. = 0. But the zero section is also 
holomorphic and so is locally given by w =... = wn= 0 where wi are holomorphic 
functions. Being holomorphic they must satisfy 

dwi = ZAij(dAj - Njk Ak) + >BiJ dzj. (5.2) 

Now dwiIo = EA ij dAjIo is a local holomorphic section of N*. Using the isomorphism 
between N* and E, we can apply the covariant derivative VI in the direction 

alai, and find 
VI(dwilo) = Z(aAjj ) dAj lo + YAij jAk dAk 0. 

From (5.2) we have Aii = awil/Aj and awi/la = - Aij Ok Ak, hence at Al- = 
An-0 A = 0) aA9zA = -2Aik(O4kj, and so V7(dwiIo) = 0 and V is a (1,0) 
connection. In other words D = 5. 

Remarks 

1. Although the theorem is expressed in terms of connections on vector bundles, 
it is equally true for principal bundles with compact structure group, for if E has a 
G-structure for G c U(k) which is preserved by the connection, then the holo- 
morphic bundle P x U(k) GL(k, C)/Gc has a covariant constant section where P is 
the bundle of unitary frames of E. Since V is a (1, 0) connection, every covariant 
constant section is holomorphic and hence the holomorphic frame bundle reduces 
to GCe. In the framework of principal GC-bundles the holomorphic structure can be 
described geometrically as follows. Using the connection we split the tangent bundle 
to the principal bundle into horizontal and vertical parts. Using the complex 
structure of base (X) and fibre (GG) we then get an almost complex structure on the 
principal bundle. One can then check that the integrability for this almost complex 
structure is the vanishing of the (0, 2)-component of the curvature tensor. The 
complex structure is clearly invariant under the action of GC and hence defines a 
holomorphic bundle. 

2. The condition Q eA'1 (End E) is unchanged by a gauge transformation. For 
two gauge-equivalent connections, the two complex structures on E are not the 
same, but are equivalent under the gauge transformation. 

3. If dimc X = 1, then A2 1'1 so every hermitian connection on a CZ vector 
bundle over a Riemann surface defines a complex structure. 

4. If dimc X = 2 and X has a hermitian metric, then a bundle E on the under- 
lying real 4-manifold is anti-self-dual iff Q eA2 (End E) - A-,1 (End E) where 
Al, is the space of (1, 1) forms orthogonal to the hermitian form (see ? 1). It follows 
from the theorem, then, that each such bundle is holomorphic. Moreover, because 
the curvature is orthogonal to the hermitian 2-form any holomorphic section of E is 
covariant constant by the vanishing theorem of Kobayashi & Wu (I 970). 

This content downloaded from 128.97.244.238 on Fri, 25 Jul 2014 02:07:45 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Self-duality 441 

As an example we saw in ? 2 that the SO(3) bundle on A2 on P2(C) was anti-self- 
dual. The theorem gives its complexification the holomorphic structure of the sub- 
bundle of End T of traceless endomorphisms of the holomorphic tangent bundle. 
The manifold on which we really want to use theorem 5.1 is the complex 3-manifold 
P(VJ) of theorem 4.1. The main result, following the ideas of Penrose and Ward, is 
that the concept of a self-dual connection on a bundle over a self-dual space trans- 
forms into that of a holomorphic bundle on a complex manifold. More precisely: 

THEOREM 5.2. Let E be a hermitian vector bundle wilth self-dual connection over a 
self-dual 4-manifold X and let P = p*E be the pulled back bundle on P(L ). Then 
(1) F is holomorphic on P(V); (2) F is holomorphically trivial on eachfibre; (3) there 
is a holomorphic isomorphism o: r*F - <F*, where r: P(V )P(V ) is the real 
structure, such that o- induces a positive definite hermitian structure on the space of 
holomorphic sections of F on each fibre. Conversely, every such bundle on P(Y ) is 
the pull-back of a bundle E with self-dual connection on X. 

Proof. 1. From remark 2 of theorem 4.1, the complex structure on the horizontal 
space Al at a point qx E P(V)x has the opposite orientation to that of X. Hence by 
remark 4 above, (A2) () 1)x 

and so p*A2 is a sub-bundle of A1'1 of P(V). It follows then, from theorem 5.1 
that if E has a self-dual connection, the curvature of F = p*E is in A1"(End F) and 
so F is holomorphic. 

2. Along each fibre P1, the pulled-back connection is clearly trivial, since any 
basis (el, ..., ek) of E at x is co-variant constant on the fibre at x. But since V is a 

(1,0) connection every covariant constant section is holomorphic and so along 
each fibre, F is holomorphically trivial. 

3. On E* take a local unitary basis (6c,., ck) then in theorem 5.1 the complex 
structure on F* is defined by the forms 

dA - wo1A1 and dz2. 

The first type of form is invariant under r, since they are pulled back from the base 
space X. Hence applying r, we get a complex structure on .* defined by the forms 

dXi -X Aj Aj and dz1. 

But since the connection is hermitian, ~i- = - 7 and we get a holomorphic structure 
on Fe defined by d a 

dAj + Y,oj,i Ax and dzj, 

and this under the hermitian isomorphism Fe F gives the induced holomorphic 
structure on F, i.e. 

Conversely, suppose F is a bundle on P(TU) satisfying 1, 2 and 3. If F is holo- 
morphically tri-vial on each fibre, then there is a natural isomorphism 
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obtained by e-valuation of a holomorphic section at each point z in the fibre. 
Since the holomorphic sections are solutions of an elliptic equation, the spaces 
HO(P(VT)), C(F)) over X form a vector bundle E and so F _ p*E. 

The isomorphism cr: ,r*F F* induces a hermitian structure on the holomorphic 
sections on each fibre, which by hypothesis is positive definite, and thus gives a 
hermitian structure on E and F. Take the unique (1, 0) connection V on F preserving 
this hermitian structure. 

We claim that V is the pull-back of a self-dual connection on E. First, by the 
uniqueness of (1, 0) connections, V on each fibret is the flat connection defined by the 
trivialization (5.3), hence any sectiont of E is covariant constant along the fibre 
when pulled back and so V defines a connection on E over X. Secondly, since V 
is of type (1, 0), its curvature Q E A1l 1(P(V ), End E) but since V is also pulled back 
from X, Q ep*A2(X, End E). Now, as is easily verified, 

Al' (P(V )) n p*A2(X) = p*A2 (X). 

Hence V on E is self-dual. 

Remarks 

1. A consequence of this theorem is that a self-dual connection on a self-dual 
space is gauge-equivalent to a real analytic one. A particular consequence of this 
is that the restricted, local and infinitesimal holonomy groups are all the same 
(Kobayashi & Nomizu I963). 

2. Since the idea behind this theorem is to encode all the information on X into 
the holomorphic structure of objects on P(W ), there remains the question about 
whether the isomorphism cr: T*P -->F* is an extra piece of information. In fact 
this is not so: if the connection on E is irreducible (i.e. E has no sub-bundles preserved 
by V), then o is unique, modulo a scalar multiple. This again is a consequence of 
the theorem of Kobayashi & Wu (1970), for any two isomorphisms differ by an 
automorphism of the bundle F. We can introduce a hermitian metric on P(VI) 
(by pulling back the metric of X to the horizontal subspaces and adding the metric 
of the fibre) such that Q is of type (1, 1) and orthogonal to the hermitian form. 
It follows that any holomorphic section of End F is covariant constant and, if V 
is irreducible, must be a scalar. 

3. Theorem 5.2 is again valid for a principal G-bundle, where G is a compact real 
form of the complex group Gc, by taking a faithful representation of G. A principal 
G-bundle P on X with self-dual connection is then characterized as a holomorphic 
principal GC bundle Pe on P(JT), trivial on the fibres of P(VL) and an antiholomorphic 
map f: Pe- *PC such that f acts on the base space P(V) by r and f(g.p) = gf(p) 
where g 1-4 g denotes the real structure on GW. If the connection on P is irreducible 
(i.e. G is the closure of the holonomy group), then f is uniquely defined modulo 
the centre of G. 

This reinterpretation of self-dual connections on self-dual spaces makes the 

t See footnote on p. 46 1. 
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construction of such objects in principle easier, for we have at our disposal the 
techniques and apparatus of complex analysis, sheaf theory and algebraic geometry. 
This approach is treated elsewhere (Atiyah & Ward '977; Hartshorne 1977). The 
aim of this paper is to use a differential geometric approach on the manifold X, 
and so we leave the complex analysis, though noting that it does provide justifica- 
tion for linking together the twin concepts of self-dual manifold and self-dual 
connection. 

6. MODULI OF SELF-DUAL CONNECTIONS 

We have seen in ? 2 that the space of self-dual connections on a principal C-bundle 
P is acted upon by the group C of gauge transformations of P, so that given one 
such connection we get infinitely many. The situation is analogous to that of 
complex structures on a manifold: given one, we get many by applying diffeo- 
morphisms. It makes sense, however, to talk of complex structures modulo this 
notion of equivalence, and the space of such structures, when it exists, is called the 
space of moduli. We use the same notation here: the space of all self-dual connections 
on P modulo gauge equivalence will be called the space of moduli of self-dual con- 
nections on P. 

If H cz G is a subgroup, then any self-dual H connection defines a self-dual 
G-connection, so that the space of moduli of G-connections contains H-connections 
for all subgroups H c G. (Actually the map from the moduli space of H to that of 
C-connections is not quite an inclusion because H may have outer automorphisms 
induced by inner automorphisms of G.) It is more natural, then to consider the 
space of all irreducible self-dual G-connections, i.e. those for which the connection 
does not reduce to any proper closed subgroup H c G. Since irreducibility is an 
open condition, this will form an open set in the space of all connections, though as 
we shall see later it may be empty. 

We know nothing a priori about these moduli spaces, the next theorem shows 
that under fairly general conditions, they are finite dimensional manifolds: 

TH E O R E M 6. 1. Let X be a compact self-dual Riemannian 4-manifold with positive 
scalar curvature. Let P be a principal C-bundle over X where C is a compact semi- 
simple Lie group. 

Then, the space of moduli of irreducible self-dual connections on P is either empty 
or a manifold of dimension 

pl(g) - - dim G (X -r), 

where pl(g) is the first Pontrjagin class of the bundle associated to P by the adjoint 
representation - the 'adjoint bundle', X is the Euler characteristic of X, and r is the 
signature of X. 

Proof. The proof is in three parts: infinitesimal, local, and global. 
1. Compute the dimension of the space of infinitesimal deformations of a self-dual 

connection using the Atiyah-Singer index theorem and a vanishing theorem. 
2. Use the method of Kuranishi to apply Banach space inverse and implicit 
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function theorems to integrate the infinitesimal deformations and obtain a local 
moduli space. 

3. Show that the local moduli spaces give local coordinates on the global moduli 
space and that this global space is a Hausdorff manifold. 

1. First assume the space is non-empty, and that we have at least one self-dual 
connection wo. If wo' is another connection, the two differ by an element r eA1(g) 
and the relation between the two curvatures is 

Q'-Q = D 1 [7,], 

where Dl: Al(g) -?A2(g) is the extended covariant derivative (2.1). Thus if ?t is a 
1-parameter family of self-dual connections, 

Ot = Q+D17-t + 2 [7Tt, -t], 

and p_(D1Tt + 2?[7tt]) = ? eA2 (g), (6.2) 

where p_ is the projection onto A-, i.e. 

p- = 2(a- *Cc). 

Differentiating with respect to t and putting t = 0, we get p2(D1 i)=0 eA (g) 
where r (07r/t?t)lt=-o. If the family were obtained by a 1-parameter family of 
gauge transformations, i.e. (t = fi1. ao where ft c 9, then from ? 2 we would have 
r=Vf where f ec (g) = AO(g). Thus a 1-parameter family of self-dual connections 
defines an element in ker p Dl/Im V. Now p D1 V = p_(D1 V) = p_(Q) = 0 since 
the connection is self-dual, so we have defined an element in the first cohomology 
group H1(g) of the following complex: 

0--*A(g) >1(g Al(g) >O, 

where do = V and d1 = p D1. It is easy to see that this complex is elliptic and 
hence the cohomology groups are finite dimensional. The aim is to compute 
hl = dim H1(g) by calculating the alternating sum h? - h1 + h2 by the index formula 
and then using a vanishing theorem to show that h? = h2 0. 

In fact h? = dim HO(g) and these are the covariant constant sections of g which 
correspond to the Lie algebra of the centralizer of the holonomy group. Since by 
hypothesis the connection is irreduLcible, this is the centre of G, which, since G is 
semi-simple, is zero-dimensional. Hence h? = 0. 

To proceed with the vanishing of h2, it is useful to replace, in the standard way, 
the above elliptic complex by a single elliptic operator 

d+d*: A1(g)-?A0(g) ccjA2(g), 

where d* denotes the formal adjoint of do = V by means of the Riemannian metric 
on X. 

We can write this in terms of the Dirac operator D associated to the metric: 

D: r(V+o v Eg)-> r(Vi?V Eg), 
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since these two elliptic operators have the same symbol and factor through the 
same connection; in other words they can both be written in the form Do = so-i Vio 
where Vi qS is the covariant derivative of 0 relative to the connection induced on 
A'? g V+ V (E) g by the Riemannian connection and the given self-dual con- 
nection. 

Let us now consider in general, the Dirac operator 

D: r(Vo E)-Jr(V0 E) 

on spinors with values in some auxiliary bundle E with connection. We can consider 
D as the composition 

F(VO E)_- r(V?3 E?3 A)) F(V0 E), 

where V is the covariant derivative of the connection induced on V(? E by the 
Riemannian connection on V and the given connection on E, and C is Clifford 
multiplication by A' on V. We can now write D2 = (CV)2 = C2V2, where C2: 

V?D A'D A-- A' V is Clifford multiplication 3o (c) a /I,- /. a. #f . Now Clifford multi- 
plication is defined by the property X., +,/. = - 2(x,f/), hence c2 on the sym- 
metric part of V2*f is just - Tr V2# = V*VWf where V* is the formal adjoint of V, 
and the skew part of V2 is the curvature K of the bundle V?( E, considered as a 
section of End (V?3 E) ?3 A2 and hence of Hom (V?3 E, V ? E ? A2). We thus get 
the Weitzenbock decomposition of D2: 

-2f = V*VVP + (K) V/, 

where 0(K) is the self-adjoint composition 
V@E KV(K E3 A2 C@ 

V E > V0?A- V?E, 

The general vanishing theorem is now clear: if Di = 0, then D21t = 0, so 

o= j(V V*/) + (0(K) f, V), 

and if the endomorphism 0(K) is positive definite, then this expression is positive 
unless ?/= 0. We apply this to the case E = VE (l g, and consider D on V ?& V 3 g. 
Then the curvature of the bundle V El? (? g is 

K = K(V @ V-)@ 1+lIoK(g). 

The connection on P is self-dual, so K(g) eA2 (g). But A2 acts trivially on E by 
Clifford multiplication (see ? 1), so C(10 K(g)) = 0. Now K(V ? V-) fe (A2?D A2) 

but only the components in A2 0 A2 act non-trivially on V, and this part of the 
Riemann curvature tensor corresponds to C in the decomposition (1.1). If the space 
X is self-dual, then W O0 and C is a scalar, essentially the scalar curvature. We 
thenget (K)-R on , 

and so if R > 0, 0(K) > 0 and if Dfr = 0, then Vb = 0. Hence h2 = 0 in the complex. 
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We now have the vanishing result and so 

index (d + d*) =-h? + hl-h2 = hl 

and we may use the index theorem (Atiyah & Singer I968) to evaluate the alter- 
nating sum. For the Dirac operator 

D: F(V+?E)->r(?F( E), indexD=ch(E) S(X) [XI, 

where ch(E) = Chern character of E, and a (X) = A polynomial in the Pontrjagin 
classes of X. In four dimensions d/(X) = I2-Apl1(X). If E = V Q g, then 

index D = ch (g) ch (V_) 2(X)[X] 

=pl(g)+dimG(indexD: r(V+E0f)l-+(L0V)) 
= pl(g) - Idim G(_X -), 

and so this is the dimension of Hl(g), which is going to be the tangent space at cl 
to the space of moduli. Recall thatp1(g) > 0 for a self-dual connection. 

2. We have completed the infinitesimal computation. Next we have to integrate 
these infinitesimal deformations and show that every element in H1(g) is defined 
by a 1-parameter family. For this we follow closely the argument of Kuranishi 
(I965). From (6.2), a self-dual connection is given by a solution of the non-linear 
equation P_(D1 r + [r, r]) =O eA'(g)A 

For ease of notation, let us write this as 

dr+{r,r} = 0, 

where d is the differential in the complex 

A()d A( d A2( 

Consider the set 0 of self-dual connections 

0= {reA1(g): dr?{,r-r} - 0 and d*r = 0}. 

We shall show that a neighbourhood of the origin of 0 is a local space of moduli, 
but first we show that 0 is an h' dimensional manifold with tangent space H1(g) 
at the origin. 

Tako the Green operator G of the Laplacian dd* + d*d - A of the complex. Then 

GA = 1-H, 

where H is the orthogonal projection onto the harmonic subspace. Define a map 
F: Al(g) -A1(g) by F(-r) = r + Gd*{r, r}; 

then dF(r) = dr + dGd*{r, r} 
= dr +Cdd*{r, r} 

=dr + {r, r} since h2 = O, 
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and d*F(r) = d*-r + d*Gd*{r, r} 

= d*r+Gd*d*{r,r} 

= d*-r since d2 = 0. 

Hence F maps 0 into the harmonic subspace H1 c A1(g) of dimension hI. If we give 
Al(g) the Sobolev Ilk norm topology for sufficiently large k, then by the Sobolev 
inequalities F extends to the Banach space completion of A1(g) as a holomorphic 
map whose differential at r = 0 is the identity. The inverse function theorem and 
the regularity theorems for elliptic operators imply that F is invertible on Coo 
sections and F-1 restricted to H1 gives local coordinates for 0. 

We now have an h1-dimensional family 0 to realize all the infinitesimal deforma- 
tions at cl. We want to show that 0 is (a) locally complete, i.e. any self-dual connection 
sufficiently close to cl is gauge equivalent to one in 0; (b) locally universal, i.e. any 
CO3 family of nearby self-dual connections is gauge equivalent to a CO family in 0; 
(c) locally effective, i.e. no two self-dual connections in 0 sufficiently close to c) are 
gauge equivalent by a small gauge transformation. For this we use the exponential 
map exp AO(g) -? 9 and show the following 

LEMMA. There exists a neighbourhood U of 0 in Al(g) and W of 0 in AO(g) such 
that for any r E U, there is a unique X E W with d*() - exp (X) (wo + -r)) = 0. 

Proof. exp (-X) ( + -r)- = e-X(Vex) + Ad (exp (X)) r 

= VX+r+R(X, r), 

where R(tX, t-r)- t2R(X, -r, t) and R(X, -r, t) is CO in t for small t and in r and the 
1-jet of X. 

Now d*(exp (- X) (cl) +r) - cl) = O iff 

d*dX + d*r + d*R(X, r) = 0. (6.3) 

Applying C, we have X + Gd*r + Gd*R(X, r) = 0, 

since HO(g) = 0. Take neighbourhoods U1 c A1(g), W1 c AO(g) of the origin and 
let F be the mapping 

F: U1 x W1- A(g), (r, X) X + Gd*r + Gd*R(X, r). 

R is continuous in the llk topology on A1(g) x AO(g) to the Ilki1 topology on AO(g), 
so by the Sobolev inequalities F is continuous in the llk topology for small enough 
U1, W1. Hence F can be extended to the completion and by (6.3) and the implicit 
function theorem in Banach spaces, for sufficiently small U, any r E U admits a 
unique solution X(T) in the completion of AO(g), which is small. By elliptic regularity, 
since X satisfies the equation 

AX + d*R(X, r) + d*r = 0, 

X is Cm if -r is Cm. Hence if wo' is self-dual and sufficiently close to w0, there exists a 
gauge transformation exp (X) for small X such that exp (X) ' E 0, and we have 
local completeness. 
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If 0(s), s c [k is a Co family of self-dual connections, then for all s E Rk such that 
o)s)cU, d*(-exp(-X(s)) o)(s)) = 0 

where X(s) is Coo in s, since it is obtained from a Cl' mapping of Banach spaces. 
The map s - exp (- X(s)) w(s) then defines a gauge-equivalent Co-family in 0, 
so we have local universality. 

The uniqueness in the lemma implies local effectiveness, where 9 is given the 
topology induced from the Ilk topology on AO(g) by the exponential map. 

We now have our local moduli space: a neighbourhood of the origin in 0. 
3. The space of all connections cs1 on P is an affine space isomorphic to Al(g). 

If Q1 denotes the self-dual irreducible connections, then the global space of moduli 
is just %+/9, the quotient space under the action of the gauge group. We give 
X4 =,/+/1 the quotient topology from the llk topology on Al(g). This clearly has 
a countable basis of open sets. 

We want to show that XJK is a manifold. First we show that X4 is a Hausdorff 
space, in fact a metric space with the 110 topology from d/. Suppose wo,o + T s 
are connections in different orbits under W, then since the 110 norm is invariant. 
under C, we can define the distance between two orbits as 

inf I co + T -f o0 l inf JT -f -fVf 0, 
Je? feS 

so long as this is non-zero. We now map C into the sections of the bundle of groups 
Ad G c End g and regard f as a section of the vector bundle End g. Then 

jT-f-1Vffg = IfT-Vfl - (Af,f)o > Alfilo 
where A = D*D, Df = Vf-fT, A is the smallest non-zero eigenvalue of A, and fi 
is the projection of f onto the orthogonal complement of the zero eigenspace H. 
Consider the function F on the finite dimensional space H defined by 

F(s) inf Is(x)-fl2. 
fe (AdG), 

Since by hypothesis there are no sections of Ad G satisfying T =f-lVf, F(s) > 0 but 
as G is compact, F(s) > It > 0 and so iff f E, If112 > Ia. Hence 

T-f17VfJ12 > Al 

and the distance between two orbits is positive. 
We next want to show that the local moduli spaces 0 give local coordinates on 

-: we need to prove that a sufficiently small neighbourhood maps injectively 
into &, in other words is globally effective. To see this, suppose wo and w + r are in 
0 and are gauge equivalent by an arbitrary gauge transformationf, then 

f 1Vf r. 

Again map C into P (End g) by the adjoint representation (the kernel of this 
map is just the finite group of central gauge transformations), and decompose 
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End gE= D El where Eo is the trivial bundle corresponding to the endo- 
morphisms of the Lie algebra invariant under C. Now Ad C n AO(EO) is the identity 
section so if we decompose f e Ad ? as f = fo +fl, then If, I measures the distance 
of f from the identity. Furthermore, pointwise 

Irl12= if-Vfl2 = lVf2- lVfo!l2+lVf112, (6.4) 

and integrating 1r 1 
2 Ajfl, (6.5) 

where A is the smallest eigenvalue of V*V on El, non-zero since the connection is 
irreducible. Hence if T is small in the 110 norm, f is close to the identity in the 110 
norm in End g. 

Unfortunately this is not the topology for local completeness: we have to lift the 
section through the exponential map. However the pointwise formula (6.4) shows 
that if r is CO close to zero, then the length If,I is close to a constant, which by 
(6.5) is close to zero, hence f can be lifted back to X eA0(g) as a smooth section via 
the exponential map. By taking derivatives, if T is Ck close to zero, X is Ck and 
hence llk close to zero, and eventually in the neighbourhood W of the lemma and 
hence equal to zero. On a sufficiently small neighbourhood of 0, the Ck and Ilk 
topologies coincide and the above estimates can be made uniform in 'r, so that 
finally we have some open set U ( 0 which maps injectively intow+/W. 

This map is continuous, and also open since its inverse image in W+ is U f U 
fe E9 

which is open by the lemma, so we get a homeomorphism of an open set of Euclidean 
space to a neighbourhood of 4+19, and a topological manifold structure on it. 
The differentiability follows from the local universality of the local moduli spaces. 

Hence, finally, X- = .+/!Y is a differentiable manifold of dimension Pl(g) - 

dim G(X-,). 
What we have not done as yet is to show that there exist self-dual connections 

and moduli spaces. We shall do this next, and look at the case which is of most 
physical interest: the 4-sphere S4. 

7. THE 't HOOFT SOLUTIONS 

From a global point of view, the first thing to notice about the 4-sphere S4 iS that; 
it is simply-connected, and so the holonomy group of any connection is connected. 
Secondly, H2(S4, Z) = 0, so there are no non-trivial abelian self-dual connections 
and, more generally, the holonomy group of any self-dual G-connection with com- 
pact G is semi-simple. Furthermore, since the second cohomology group with 
arbitrary coefficients is zero, there is a unique lifting to a connection on the universal 
covering group bundle, which splits into a product of bundles with simply-connected 
simple Lie groups as structure group. The general problem can thus be treated by 
considering an irreducible self-dual connection with holonomy group G where C 
is a compact simply-connected simple Lie group. 
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The first such group is SU(2), and we shall describe next a range of self-dual 
examples on S4 due to 't Hooft; see also Jackiw, Nohl & Rebbi (I 977). 

A principal C-bundle on S4 iS classified topologically by an element in 1T3(G), 
which since SU(2) S3 is just the integers Z, and the integer invariant which 
classifies the bundle is the second Chern class c2(E) where E is the associated 
two-dimensional complex vector bundle. Note that for a self-dual connection 

pl(E) = - 2c2(E) is positive, so only bundles with negative c2 may have such connec- 
tions. The 't Hooft examples realize all negative values of c2. 

To construct them, we go back to the twistor equation in (4.1): 

Ds =V + 11ei Do (3 ei = 0 

On 4, this has, even lo,.ally, a four-dimensional vector space T of solutions which 
consist of affine linear spinors of the form x . 54 + V where b E- r(V+), Vf E r(I ) are 
covariant constant spinors. By interpreting these spinors to have conformal weight 

2, they extend to the whole of S4 under stereographic projection. 
We have an evaluation map 

p: S4xT-V_, 

p(x, 0) = 0(x), 

since the vectors in T are sections of V . 
In R4 , there is a distinguished two-dimensional subspace of T of constant spinors. 

By choosing a scale m, i.e. by fixing a flat metric on 4, we have a hermitian stru cture 
on this subspace (the conformal structure gives it a quaternionic structure) and 
its product with S4 is a flat hermitian sub-bundle L of S4 x T. The projection p from 
L to VL is surjective except at the point at infinity on S4. 

Now 4fro was obtained by stereographic projection from a0 x. In general take 
(k +1) distinct points a0, ..., ak and look at the flat, non-intersecting bundles 
Lo, ...,Lk ' S4 x T. We take the direct sum L = Lo 0 v 0 Lk and consider the 

projection map onto the direct sum 0D V of k copies of VI defined by 
1 

This is surjective if the points are distinct and thus has a two-dimensional bundle 
E as kernel. E has an induced hermitian structure from L, and c2(E) = - kc2(I L) = - k. 

We put a connection on E in the obvious way: restrict the flat connection of L 
to E and use the hermitian structure to project back to E: 

VE: AO(E)V A I1(L) -- A 1(E). 
We claim this connection is self-dual. 

To see this, we need only consider the local situation. Outside the points a,, ..., ak, 

projection onto Lo is an isomorphism, hence a local section of Lo defines a local 
section of E as follows: to a section 5b of L. we must associate a section (0, 01, ... *, k) 

where 0q is a linear spinor vanishing at ai, i.e. of the form (y - ai) . Yi and whose 
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value at x, (x - ai) . fi(x), is 0 (x). Choosing 0 to be a constant section of Lo, we 
have Vir(x) = (x - ai)-1 0. 

First of all, this local parametrization does not preserve norms, for if 2 = 1 
in L, then in. E 

2II = 1j012+jX-1. $12m2 - 1 m+42/r = p, 

where xi = x - ai and m4 is the scale which determines the hermitian structure 
on Li. 

Secondly, in the flat connection on Lo @ ... @ Lk, 

Vf =(O, l . (xl ) . ,...,Xk . V(Xk l) . 0) 

and projecting back onto E 

VE =z (xi1. OaX, IV(X? 1). 0) 0Xa/| al 
2 'VE4 (X=iE 

ia 

where {0} is a unitary basis of constant sections of Lo. Hence the connection matrix 
relative to this basis is 

k 

w = - (xy'/p)V(xy') 
i-l 

However using the fact that x-1 =-x/r2 in Clifford multiplication we see that 

- X-1. V(x-1). 0 = lej. (x/r4) 0 ej 

and since d (I/r2) =-2x/r4, then 

c)w=-2Se . d(logp)0ej, (7.1) 
where p = I+ Em/r4. 
co is thus locally given as the image of a 1-form a =- d (logp) under the natural 

map 
Al-->A_ 0 Al, 

a- F-*?(ej . oc)_ 0 ej, 

where A2 is identified with the Lie algebra of SU(2). The curvature Q = do + 1 [, w] 
is then in the image of natural maps 

Al 0 Al->A 0 Al 

both from the derivative term Voc and the quadratic term a, 0 a. For E to be self- 
dual, we require the component in A 2 0 A2 1 0 2 A0 S4V to be zero. But 
there are only two such natural maps: the inner product Al 0l -* 1, and the 
skew part Al 0 A1-> A2. For the derivative term, since da = 0 the skew-part 
vanishes and since a (9 a is symmetric, it vanishes on this too. The remaining 
scalar condition is d*a + 2(a, a) = 0 which for a =-Wd (logp) reduces to ip -0 
which is satisfied for p = 1 + EmM/r2. 

Hence these connections are all self-dual. 
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Remarks 

1. If we take the spinor bundle VI on S4, then c2(V+) =-1 and the 't Hooft 
construction gives a self-dual connection on V+, given a pair of points ao, a, and a 
scale. On the other hand, we know that a metric of constant curvature also gives a 
self-dual connection on V+. There is a relation: for every pair of points in S4, there 
is a constant curvature metric for which the points are antipodal and this metric 
is fixed by choosing a scale. The two connections produced in different ways are 
then gauge-equivalent. 

2. The four-dimensional space T of solutions to the equation Do = 0 is in fact 
naturally the dual of the vector space whose projective space is P(VI) over S4 (cf. 
theorem 4.1). The isomorphism between this space and Lo @ L, gives it a symplectic 
structure since Lo and Li are SU(2) = Sp(l) spaces. The holomorphic bundle F 
on P3(C) corresponding via theorem 5.2 to E on S4 is then F = H'-/H where 
H c P3(C) X C4 is the Hopf bundle and H- its orthogonal space relative to the 
symplectic structure. 

The number of parameters in the construction of the 't Hooft solutions is 5k + 4 
in general: (k + 1) points on S4 and the scales mi, ..., mk modulo a scalar multiple. 
For k < 2 this set of data has conformal symmetries and the number of effective 
parameters is less, but for k > 2 the 5k + 4 parameters are effective (Jackiw et al. 
1977). We may check, then, from theorem 6.1 whether we have conceivably realized 
all moduli. 

For S4, x = 2 and r - 0. The three-dimensional adjoint bundle of an SU(2) 
connection may be identified, after complexification, with S2E where E is the 
two-dimensional vector bundle with c2(E) = - k, so since 

pl(g) = pl(S2E) = (C2- 2c2) (S2E), 
we see from the Chern character formula 

ch (S2E) = ch (E)2-ch(1) 

= (2+Ikx)2-1 

_ 3+4kx 

that Pl(g) = 8k and so the dimension of the space of moduli is 8k -3 (see Atiyah 
et al. '977; Schwarz 1977). Since 8k-3 > 5k +4 for k > 2 we see the power of 
theorem 6.1, for it asserts the existence of new self-dual SU(2) connections by 
deformation of the 't Hooft solutions. We shall see next that, using the theorem 
repeatedly, we can prove the existence of irreducible self-dual C-connections on 
S4 for an arbitrary simple Lie group G. 

8. SOLUTIONS FOR SIMPLE C 

For an arbitrary compact simple Lie group we again have 7T3() ;Z and so a 
principal C-bundle over S4 is classified by an integer k, called by the physicists the 
Pontrjagin index, topological charge or instanton number. For our purposes we 
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need the generator of T3(G) explicitly and for this we go to the Morse-theoretic 

proof of 73(G) Z given by Bott (I956). 

Let G be a simply-connected compact simple Lie group with maximal torus T. 
If t is the Lie algebra of T and X E t, then the straight line OX from the origin to X 
defines a geodesic in G whose index is twice the number of root planes crossed. 
Furthermore, every such line in the fundamental chamber crosses the root plane 
0(t) = 1 where 0 is the highest root. Hence if X is in this root plane, any non- 
minimal geodesic from the identity e E G to exp X must have index not less than 4. 
The space Qd of minimal geodesics from e to exp X is C(exp X)/T where C(g) is the 
centralizer of g and this is just a 2-sphere S2. Since this is a manifold, it follows 
(see Milnor i963, ? 22) that the induced homomorphism 7r2(Qd) -* 7r2(QG) is an 
isomorphism, where QG is the loop space of G. Hence 

7T3(G) _ 7T2(QG) o i2(S2) 

The Lie algebra of C(exp X) is t GD e0 where e0 is the two-dimensional root space of 
0. This root space generates a three-dimensional subalgebra which is the Lie 
algebra of a subgroup K of C(exp X), and such that K/K n T = C(exp X)/T. Hence 
if S U(2) is the universal covering group of K, we have a homomorphism p: S U(2) -- G 
which induces an isomorphism p*: ir3(SU(2)) -? r3(G). (In fact, since G is 2-con- 
nected, the Hurewicz homomorphism 7T3(G) -?13(G) is an isomorphism and p 
induces an isomorphism p*: H3(SU(2)) -? H3(G). From this it follows that K itself 
is a copy of SU(2), since the covering homomorphism H3(SU(2)) -?H3(SO(3)) is of 
degree 2.) In topological terms it means that any principal G-bundle of index k 
reduces to a principal SU(2)-bundle of index k. 

With this information, we can calculate the Pontrjagin number p1(g) in terms of 
k. The first Pontrjagin class pl(E) of a vector bundle E is defined under the Chern- 
Weil homomorphism by the invariant polynomial trA2 on End E. On g, this is the 
invariant polynomial tr (ad X)2: the Killing form. Since the bundle reduces to 
SU(2), we can compute p1(g) by restricting the Killing form of G to SU(2) and so 

P -(g) = B-pl(su(2)), 
BSU(2) 

where BG is the restricted Killing form and BSU(2) the Killing form of SU(2). 

BG Bsu(2) BvU(2)(O, 6) Now BSU(2 a B(0, 0)' 
BSU(2) BG - a~66 

where BV is the induced form on g* and 0 the highest root. The square of the length 
of the highest root can be readily compputed (see Bourbaki I 968) to give the following 
table 

G Al B1 Cl DI G2 FI Es E7 E8 

BV(6,a) t1+1 21-1 1+1 21- 2 412 1 8 30 

1 > 3 1 > 4 
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where the simply-connected groups corresponding to A1, B1, Cl, DI are of course 
SU(I+ 1), Spin(21+ 1), Sp(1) and Spin(21). This yields the following table for the 
dimension of the space of moduli of irreducible self-dual G-connections of index k 
(if it exists): 

TABLE 8.1. 

G dim,-=pl(g)-dimG 

SU(n) 4nk-n2 + 1 
Spin (n) 4(n-2) k-In(n-1) (n > 7) 
Sp(n) 4(n+1)k-n(2n+1) 

G2 16k- 14 
F4 36kk-52 
E6 48k -78 
E7 72k- 133 
E8 120k-248 

(These numbers have been independently computed by Bernard et al. (I977). Note 
that since pl(g) > 0 for a self-dual connection, k > 0. 

If dim G is large compared with k, then some of these numbers become negative 
and consequently there are no irreducible self-dual connections with such an index 
k. We are going to determine next the precise range of k for which there exist 
irreducible self-dual C-connections. Roughly speaking we shall start with a G- 
connection and an embedding of C in H, and by a parameter count show that there 
are more H-connections than reductions to C. Beginning with SU(2) and the 
't Hooft solutions, we inductively get solutions for H. There are a number of 
difficulties, however. 

The first is keeping track of the holonomy group: if we start with an irreducible 
C-connection on a principal bundle P and if by deformation we get a connection on 
the associated H-bundle Q, what do we know about the holonomy group of the 
deformed connection? fn fact, the holonomy group has a semi-continuity property. 
If ?t is a smooth family of connections with holonomy group qt, then for sufficiently 
small t, 

dim t > dim 00. (8.2) 

In our case, it is easiest to see this by using the real analyticity (remark 2 of theorem 
5.2), for here the Lie algebra of the holonomy group is isomorphic to that of the 
infinitesimal holonomy group and this, at a point p E P is spanned by the values at 
p of the g-valued functions Vk . .. V71 Q(X, Y) where X, Y, ... are the horizontal lifts 
of vector fields X, Y,... on S4, and Q is the curvature of the connection (see 
Kobayashi & Nomizu I963). 

if Q1DP S Qn, form a basis for this Lie algebra at t = 0, then they remain linearly 
independent under a small deformation, and hence the inequality (8.2). 

In the case of equality, then by the rigidity of semi-simple subalgebras of semi- 
simple Lie algebras (Richardson I967), there is a gauge transformation in Q which 
transforms the deformed connection to a C-connection on P. Hence, if C c H is a 
semi-simple subgroup of maximal dimension, a deformed C-connection is either 
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Self-duality 455 

gauge-equivalent to a connection on P, or is an irreducible H-connection, i.e. one 
whose holonomy group is the whole of H. 

Now every simply-connected compact simple Lie group has a distinguished 
connected subgroup of highest dimension, as can be seen from Dynkin's (I957) 

paper. We list them: 

TABLE 8.3 

S(U(n) x U(1)) c SU(n+ 1) 
Spin (n) c Spin (n + 1) 

Sp(n) x Sp(l) c Sp(n+ 1) 
SU(3) c G2 

Spin (9) c F4 
F4 cE6 

E6x U(l)c E7 
E7x SU(2) c E8 

Furthermore, each of the simple factors is, in Dynkin's terminology, of index 1 
in the group on the right hand side. The index of a simple subgroup C in a simple 
Lie group H is defined as the ratio of the invariant inner produ ct on l to the invariant 
inner product on g where the inner products are normalized to make the length of 
the highest root 2. By comparison with the discussion at the beginning of this 
section, this is just the degree of the induced map on 73 (which incidentally shows 
immediately that it is an integer). Hence the inclusions of the simple factors preserve 
the index k of a bundle on S4. 

The second difficulty is in the definition of the space of moduli, as we have really 
only considered moduli of irreducible connections in the large. However, for the 
parameter count we only need the local moduli spaces. We note that in the proof 
of theorem 6.1, h2 = 0 whatever the holonomy group and this gives us an hl- 
dimensional manifold of self-dual connections which is locally complete. The con- 
dition h? = 0 ensures local effectiveness. 

Now if c) is an irreducible self-dual C-connection, and G c H is a subgroup of 
maximal dimension, such that the associated H-connection has HO()) = 0, then we 
can apply the following argument: if the dimension of the local moduli space of the 
H-connections centred on w is larger than the dimension for G-connections, there 
must exist an irreducible self-dual H-connection. Suppose not, then each sufficiently 
close H-connection has holonomy group of dimension dim C, and by the rigidity 
argument above is thus gauge-equivalent to a G-connection. But this contradicts 
the local effectiveness of the space of G-connections. To see whether HO(f) = 0 is a 
mere group theoretic condition, for HO(l), the Lie algebra of covariant constant 
sections of f, is naturally isomorphic to the Lie algebra of the centralizer C(G) of 
G in H. 

We use this argument first to show that there exist irreducible Sp(n) connections 
for k > n. We use induction: suppose it is true for n- 1. Then if k > n, k-I > n-I 
and we have an irreducible Sp(n -1) x Sp(i) connection by taking the product of 
an Sp(n - 1) connection of index (k - 1) and an Sp(i) connection of index 1. Since 
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each inclusion is an isomorphism on 7r3, this defines an Sp(n) connection of index k. 
Now count the parameters by using (8.1): for Sp(n - 1) x Sp(1) connections we get 
4n(k - 1) - (n- 1) (2n - 1) + 5 which is less that the dimension of Sp(n) connections 
4(n + 1) k - n(2n + 1) if k > 1. To start the induction, the 't Hooft examples give 
Sp(l) - SU(2) connections for k > 1. 

Similarly irreducible Spin(n) connections exist for k > (n - ), except for n = 4 
which is not simple anyway (Spin(4) - SU(2) x SU(2)). Here for n < 7 we use the 
isomorphisms Spin(3) SU(2), Spin(5) Sp(2), Spin(6) SU(4) to obtain the 
formula from (8.1 ). 

From the inclusion Spin(9) c F4 we get irreducible F4 connections for k >, 3 and 
from F4 c E6 we get E6 connections for k >, 3. 

We cannot use this argument however, for SU(n) c SU(n+ 1) or E6 c E7 since 
we have a 1-dimensional centralizer U(1) and so HO(L) : 0 and we no longer have 
effectiveness. Nevertheless, the Kuranishi space still exists as a manifold, whose 
dimension by the index theorem is p1() - dim H + dim C(G). 

We use here a different argument: since HO(L) is the space of solutions of an 
elliptic equation, either there is an open neighbourhood of Co in the Kuranishi 
space of H-connections on which HO(lj) is of constant rank and forms a vector bundle, 
or in every neighbourhood HO(L) changes dimension. If it changes dimension, the 
holonomy group changes and by semi-continuity must be H. If HO(k) is of constant 
rank, we can find a smooth one parameter family of connections Vt- with V0 = U 

and Zt Xt = 0. 
Differentiating with respect to t, and putting t = 0, we have 

57xo + NXo = 0, 

i.e. VXIO+ [i,xo] = 0. 

In other words [r, X0] eA1(l) defines the zero element in H1(l) of the complex in 
theorem 6.1. Since we can find a family by integration such that T is arbitrary, we 
deduce that HO(L) acts trivially on H1(l) for the connection w. Let us consider 
SU(n) c SU(n + 1) in the light of this comment. 

The orthogonal complement su(n)' of the Lie algebra su(n) in su(n + 1) decom- 
poses into a trivial one dimensional factor, the Lie algebra of the centralizer u(1) 
and an irreducible complex representation of SU(n) on which U(1) acts as scalar 
multiplication. Now Hl(su(n +1)) = Hl(su(n)) D Hl(su(n)') for an SU(n) con- 
nection o and so if dim H1(su(n)') > 1, then U(1) acts as scalar multiplication on a 
non-trivial subspace of 11(su(n + 1)), hence dim HO(su(n + 1)) cannot be constant, 
and by our argument there must be an irreducible SU(n + 1) connection arbitrarily 
close to w. Now from (8.1), dimHl(su(n)') > 1 if k > {(2n+ 1), so irreducible 
SU(n) connections exist if k > +(2n - 1). 

In particular, irreducible SU(3) connections exist for k >, 2 and with the inclusion 
SU(3) c G2, and the first argument G2 connections exist for k > 2. A similar 
argument to SU(n) gives irreducible E7 connections for k > 3. 
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For E7 x SU(2) c E. we can take the product of an index k E7 connection and an 
index 1 SU(2) connection to obtain irreducible index (k+ +1) E8 connections for 
k > 3. However, if we consider the inclusion of the index 3 E7 connection in E8 we 
can apply the second argument for centralizer SU(2) and deduce that a nearby 
connection has a larger holonomy group. From Dynkin, this must be E7 x SU(2) 
or E8, and if the former then we would obtain an irreducible E7 connection of index 
less than 3. But this would give a value of dim H'(e8) under inclusion of 

120k -248+3 < O if k< 3. 

Hence there are no irreducible E7 connections for k < 3 and there exist irreducible 
E8 connections for k> 3. 

This non-existence argument can be extended to the other cases: if an irreducible 
G connection defines by inclusion an H-connection, then we can split the bundle 1 
into a direct sum g ' g' and 

dim H1(gl) = p1(l) - dim H + dim C(G) -Pl(g) + dim G > 0. 

So if pl(y) - dimH + dim C(G) < p1(g) - dim G we get non-existence of irreducible 
C-connections. For this we need inclusions with simple groups on the left hand 
side. We use the following inclusions, each one an isomorphism on 7T3 

SU(n) c SU(n + 1), 

Spin(n) c Spin(n + 1), 

Sp(n) c Sp(n + 1), 

G2 c Spin 7, 

F4 c E6, 

E6 E7, 

E7 cE8. 

For E8, Pl(g) dim G = 120k - 248 which is negative for k S 2 and this is sufficient. 
Using the values from (8.1) we obtain the following non-existence results: for 
Sp(n) if k < n; for Spin(n) if k < -n (n > 7); for SU(n) k < 1n; for G2 if k = 1 and 

F4, E6, E7, E8 if k < 2. Putting the existence and non-existence results together and 
taking account of the fact that k is an integer, we obtain the following: 

THEOREm 8.4. There exist irreducible self-dual G-connections on S4 of index k ifffor 

Sp(n) k > n SU(n) k > 1n Spin(n) k > In (wheren > 7) 

G2 k > 2, F4,E6,E7,E8 k > 3. 

(The above theorem corrects the inequality in our previous note (Atiyah et al. 1977).) 

COROLLA:RY. If k > 'n, there exist simple holomorphic vector bundles of rank n 
on P3(C) with c1 = 0, C2 = k. 

To prove this, we just lift the bundle from S4 to P3(C) and use theorem 5.2. 

I6 Vol. 362. A. 
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9. THE CASE k = 1 

An immediate corollary of theorem 8.4 is that every self-dual 0-connection on S4 

of index 1 reduces to an SU(2) connection. The dimension of the space of moduli 
for k = 1 is 5, and we have already found one five-dimensional space of self-dual 
SU(2) connections on S4 with k = 1, namely the Riemannian connections on V+ 
relative to the constant positive curvature metrics within the fixed conformal 
structure. These are all equivalent under the conformal group S0(5, 1), each with 
isometry group 0(5) and hence are parametrized by the five-dimensional hyperbolic 
space S0(5, 1)/0(5). What we do not know is whether this family is complete. We 
shall show this next by differential geometric means: 

THEOREM 9.1. Let o be any self-dual SU(2) connection on S4 of index 1. Then 
o is gauge-equivalent to the Riemannian connection of a metric of constant sectional 
curvature within the conformal structure. 

Proof. The space a?+ of self-dual connections on P is acted upon by the group 
of diffeomorphisms of P which commuto with the group action of G and act on S4 

by orientation preserving conformal maps. This group 91 is an extension 

-> 1 - S-O(5, 1) where 9 is the gauge group 

and so V+/g 4 -is acted upon by SOQ(5, 1), the component of the identity of 
SO(5, 1). Consider the point I E X defined by & and look at the isotropy subgroup 
H c SO(5, 1) of . Since dim K = 5 and dimSO(5, 1) = 15, dimH > 10. Now the 
Pontrj agin form of a self-dual connection defines a non-negative density IQ 2 cA4, 
and this is furthermore gauge-invariant, so I ? 12 must be preserved by H. However, 
since I Q 2 is non-vanishing on some open set U c S4, it defines a metric within the 
conformal structure on U, preserved by H. But the isometry group of a metric on 
an n-manifold always has dimension not more than ln(n +1) with equality only 
for a space of constant curvature (Kobayashi & Nomizu I 963 ) and hence dim H = 10, 
I fQ 2 defines a metric of constant curvature on U which since I Q 2 is finite must be a 
metric of constant positive curvature on S4. 

Take the connection on g 03 AP induced by o on the adjoint bundle g and the 
Riemannian connection on AP of a constant curvature metric obtained above. Now 
by the Bianchi identity D2 Q = 0 eA3(g) and since Q is self-dual *Q = Q and hence 
D* Q - 0 A'(g). We may write this as DQ = 0 where D is the Dirac operator on 
g 0 A+ VF+ ( V+ (J g and as in ? 6 use the Weitzenb6ck formula: 

0 = J(VQ VQ) + (C(K). Q, Q) 

= f(VQ VQ) + J?R(Q Q) + ([Q, Q], Q), (9.2) 

where R is the scalar curvature, and ([Q, Q], Q) is essentially the determinant of 
Q e F((Hom (g, A+)) where the three-dimensional bundles g and A2 are given the 
volume forms of their respective metrics. 
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Now the metric on S4 iS defined in terms of Q, and it follows that the algebraic 
term in Q is homogeneous in Q. Instead of computing it explicitly we note that it 
must be a positive multiple of 

(tr Q*Q)~ + adet Q, 

for some a E R, since R > 0. But we know that the Riemannian connection of the 
constant curvature metric is a solution of the self-dualequations, sowe can determine 
a. For the Riemannian connection Q: A1 2-- is a scalar and'is covariant constant, 
hence both terms in (9.2) vanish and 

A331 + aA3 = O, 
and so a = 31. 

However, in general if A is a 3 x 3 matrix, 

(detA*A)l <- 1(trA*A), 

hence IdetAjI < (trA*A)i and 

(tr Q*Q)I - 3idetQ > 0, 

with equality iff Q*Q is a scalar. This positivity condition yields the vanishing 
theorem in (9.2), i.e. the curvature Q must satisfy 

VQ=0 and Q*Q = scalar. 

Since VQ =0 and f IfQ2> 0, Q*Q is some non-zero constant and so by an appro- 
priate choice of scale for the constant curvature metric, the map Q: g -? A2 pre- 
serves the inner product structures on g and A42 and since VQ = 0, preserves the 
connections. In other words, the curvature Q itself is a gauge transformation 
taking w to a constant curvature connection. 

Alternatively, instead of using the vanishing theorem we can use a homogeneity 
argument, for if the connection w is taken into a gauge equivalent connection under 
the action of 50(5), then there is a unique action of Spin(5) on the principal bundle 
P, preserving the connection. This follows from the fact that the connection has 
no non-trivial automorphisms. Since the connection is now homogeneous, an 
algebraic argument reduces it to the standard case. 

For k = 2, there is quite a choice of irreducible connections: Spin(n) for n < 8, 
G2 and SU(3). All of these groups actually sit inside Spin(8) inducing an iso- 
morphism on 7T3 and so in some sense might be considered as degenerate forms of 
the twenty-dimensional space of Spin(8) connections. 

10. TirE DIRAC OPERATOR 

The methods of the infinitesimal calculation in theorem 6.1, namely the index 
theorem plus a vanishing theorem, may also be used to calculate the dimension of 
the null-space of the Dirac operator 

D: F(V+?E)-*Jr(vWE) 
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with a coefficient bundle E which is assumed to have a self-dual connection. In this 
case we must assume that the base space X is a spin manifold. 

The vanishing theorem for harmonic sections of V8 0 E reduces to the vanishing 
theorem of Lichnerowicz (I963) for harmonic spinors: if the scalar curvature 
R > 0, then there are no harmonic spinors. In contrast with the vanishing theorem 
of (6.1), this makes no additional self-dual assumption about the underlying 
conformal structure. 

The index h? - hl is then just h?, and may be calculated by the index theorem 
(Atiyah & Singer I968); 

indexD = ch (E)-1(X)[X] 

- 21p1(E)-TrdimE. 

For the 4-sphere T = 0 and we are left with index D = -2p1(E). 
In particular, if we have a self-dual connection on a principal G-bundle P and an 

irreducible representation p: C-->Aut E, we can compute the dimension of the 
harmonic self-dual spinors with coefficients in the associated vector bundle E. 

To compute p1(E) for simple C, we can see what multiple of the Killing form is 
the invariant form trp(X)2 on g. But this is just 

(dim E/dim C) C(E), 

where C(E) is the value of the Casimir operator on E. Hence 

index D = (dimE/dim C) C(E)pl(g). 

All these terms can be computed algebraically by using the Weyl dimension 
formula and the formula for the Casimir operator in terms of the highest weight 
w of the representation p. It leads to the following formula: 

h?(D) _ 2<w + 24, w>k Kw + &, Oi> 
dim G(6, > i &, i> 

where a is half the sum of the positive roots Oi and 0 is the highest root, all inner 
products taken relative to the Killing form. 

EXAMPLE 

If G = SU(2), with basic weight x, then the representation with highest weight 
lx has dimension I + I and Casimir operator ((I + 2) x, Ix> - 1(l + 2). Hence 

h0(D) (1 l(l+ 2)8k = 1(+( (1+ )k. 
J3a 16 6 

Jackiw & Rebbi have also obtained this formula. 
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FOOTNOTE TO PAGE 461. Fibre should be interpreted here as including the first formal 
neighbourhood. The trivialization (5.3) holds also in this sense because the co-normal bundle 
of a fibre has vanishing HO and HI; any section should then be a basis of sections. 
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